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ABSTRACT

A LOW-COMPLEXITY, NEAR-OPTIMAL SCHEDULING POLICY FOR
SOLVING A RESTLESS MULTI-ARMED BANDIT PROBLEM OCCURRING IN

A SINGLE-HOP WIRELESS NETWORK

Gül, Ömer Melih
M.S., Department of Electrical and Electronics Eng.

Supervisor : Prof. Dr. Elif Uysal-Bıyıkoğlu

June 2014, 84 pages

Power resources and battery lifetime are important issues for wireless networks such
as wireless sensor networks (WSNs). To extend the battery lifetime, the recent ad-
vances in energy harvesting (EH) techniques propose an effective solution. EH nodes
can harvest energy from environmental sources (e.g. solar, wind, vibrational, thermal)
to power their sensing, computing and communication functions. In this thesis, we
develop a solution to a scheduling problem under three scheduling scenarios. Firstly,
we consider a single-hop wireless network where the fusion center (FC) collects data
from a set of m EH nodes (e.g. nodes of a WSN). In each time slot, k of m nodes can
be scheduled by the FC for transmission over k orthogonal channels. FC has no direct
knowledge of battery states of nodes, or EH processes; it only has causal information
of the outcomes of transmission attempts. The objective is to find a low complex-
ity scheduling policy whereby the fusion center can collect the maximum amount of
throughput in this data backlogged system, where transmission is limited by harvested
energy. Energy is assumed to be stored losslessly in the batteries of nodes, up to a
storage capacity (infinite capacity case is also considered). The problem is treated in
finite and infinite problem horizons. Secondly, we consider the case where the infi-
nite data backlog assumption is lifted. Thirdly, we consider a dual problem of the
first scheduling problem. A low-complexity policy, UROP (Uniformizing Random
Ordered Policy) is proposed, whose near optimality is shown under general energy
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harvesting and data arrival processes (uniform, non-uniform, independent, Marko-
vian). Numerical examples indicate that under a reasonable-sized battery and buffer
capacity, UROP uses the arriving energy and data with almost perfect efficiency. As
the problem is a restless multi-armed bandit (RMAB) problem with an average reward
criterion, UROP may have a wider application area than communication network.

Keywords: communication networks, decision theory, energy harvesting, scheduling
algorithms, wireless sensor networks, wireless networks, restless multi-armed bandit
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ÖZ

TEK ATLAMALI BİR KABLOSUZ AĞDA OLUŞAN BİR HUZURSUZ ÇOK
KOLLU HAYDUT PROBLEMİNİ ÇÖZEN DÜŞÜK KARMAŞIKLIKTA BİR

ÇİZELGELEME POLİTİKASI

Gül, Ömer Melih
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Elif Uysal-Bıyıkoğlu

Haziran 2014 , 84 sayfa

Güç kaynakları ve pil yaşam ömürleri, Kablosuz Algılayıcı Ağları (KAA) için önemli
konulardır. Pil yaşam ömrünü uzatmak için enerji hasatlama (EH) tekniklerindeki son
gelişmeler etkili bir çözüm önermektedir. EH düğümler, düğümün algılama, hesaplama
ve haberleşme işlevlerine güç sağlamak için çevresel (örneğin, güneş, rüzgar, titreşim-
sel, ısısal) kaynaklardan enerji hasatlarlar. Bu tezde çizelgeleme problemine üç çizel-
geleme senaryosu altında çözüm geliştirilmektedir. İlk olarak, füzyon merkezinin
(FM) enerji hasatlayan düğüm kümesinden veri topladığı tek atlamalı bir kablosuz
ağ (örneğin KAA düğümleri) ele alınmakta ve her zaman dilimindeki m düğümün k
tanesi FM tarafından k ortogonal kanal üzerinden iletim için çizelgelenmektedir. FM,
EH süreçleri ve anlık pil durumları hakkında hiçbir bilgiye sahip değildir fakat önceki
iletim sonuçlarını bilmektedir. Amaç, iletimin hasatlanan enerji ile sınırlı olduğu veri
birikmiş sistemlerde füzyon merkezinin en yüksek miktarda veri hacmi toplamasını
sağlayan düşük karmaşıklıkta bir çizelgeleme politikası bulmaktır. Enerjinin düğüm
pillerinde belirli bir depolama kapasitesine kadar kayıpsız depolandığı kabul edilmek-
tedir (sonsuz kapasite durumu da göz önünde bulundurulmuştur). Problem, sonlu ve
sonsuz problem ufukları için incelenmektedir. İkinci olarak, sonsuz veri birikmesi
kabulünün kaldırıldığı durum ele alınmaktadır. Üçüncü olarak, ilk çizelgeleme prob-
leminin eşlek bir problemi ele alınmaktadır. Genel EH ve veri geliş süreçleri (düzgün,
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düzgün olmayan, bağımsız, Markov) için eniyiye yakınlığı gösterilen ve düşük kar-
maşıklıkta bir politika, DRSP (Düzgünleştiren Rastgele Sıralayan Politika) önerilmek-
tedir. Sayısal sonuçlar makul ölçüde pil ve arabellek kapasitesi varsayımıyla DRSP’nin
gelen enerjiyi mükemmele yakın verimlilikle kullandığını göstermektedir. Bu prob-
lem ortalama ödül kriterli bir huzursuz çok kollu haydut (HÇKH) problemi olduğu
için DRSP haberleşme ağları dışında daha geniş bir uygulama alanına sahiptir.

Anahtar Kelimeler: haberleşme ağları, karar kuramı, enerji hasatlama, çizelgeleme
politikaları, kablosuz algılayıcı ağları, kablosuz ağlar, huzursuz çok kollu haydut
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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

Power resource and battery lifetime are important issues for networks such as Wire-

less Sensor Networks (WSNs). Energy harvesting (EH) [1] can enable WSN opera-

tion in environments where maintenance is impractical or too costly. Energy harvest-

ing (EH) extends reliable operation lifetime [2, 3]. Energy may be harvested from the

environment in many different ways (solar, kinetic, etc.) [4]. Since energy harvesters

generally depend on uncontrollable energy resources and the amount of harvested

energy is generally low [4, 5], WSNs need robust, environmentally adaptive, energy

efficient policies for their operations.

As power (or energy) management is an important issue for networks, there is grow-

ing literature on scheduling in energy efficient communication systems in the recent

years. Prabhakar, Uysal-Bıyıkoğlu and El Gamal [6, 7] have presented the pioneer

works, which study an energy efficient transmission scheduling problem and propose

the "lazy scheduling" technique as a solution based on the fact that data transmission

rate is a concave function of transmission power. By the following years, there are

many works which investigate similar problems ([8]-[18]). Also, [19] studies a prob-

lem of energy harvesting transmitter broadcasting individual data to two receivers.

In [20], a similar scheduling problem is studied for energy harvesting transmitter

with a discrete set of transmission rates over static as well as fading channels. The

works [21, 22] investigated an extended version of the scheduling problem in [6, 7].

These works [21, 22] considers the scheduling problem with fading channels and en-

ergy harvesting transmitters and proposes near-optimal heuristics to the problem. In

[23, 24] represent several experimental results which are derived by implementing

1



the scheduling policies introduced in [20, 21] on a software defined radio. Moreover,

several duty cycle optimization methods in energy harvesting WSNs are investigated

in [25] for the application to low energy Bluetooth devices. Furthermore, [26, 27]

studies optimization methods for the feedback system in a MISO downlink commu-

nication by considering the case where users are capable to harvest energy from the

environment. [28] studies the minimum energy unicast routing problem in the pres-

ence of idealistic rateless codes. Likewise, [29, 30, 31] investigate several variations

of a scheduling problem in a communication system in which a mobile Internet ser-

vice provider, a flying platform in the lower stratosphere empowered by the renewable

energy, is envisioned to provide Internet access to the users as it moves over an area.

The problem is considered as dynamic knapsack problem. In [29, 30] study optimal

decision strategies for mobile Internet service providers to provide Internet access to

the users under a deterministic model. One of the notable contributions of this study

is to use genetic algorithm and rule based optimization beside competitive online

heuristics developed for the problem under deterministic model. In [31], the prob-

lem is modelled as a 0/1 knapsack problem under a stochastic model. Several online

heuristics are proposed using threshold policies obtained through various methods

applied to the decision problem, including rule-based heuristics.

In this thesis, three variations of a scheduling problem are considered. Firstly, we

consider a WSN where a fusion center (FC) collects data from m EH sensor nodes by

assigning the nodes to k orthogonal communication channels in each time slot. It is

assumed that each node always has data to transmit (i.e., nodes are data backlogged).

Each node has a battery (of a certain capacity, and without leakage) to store harvested

energy. It is also assumed that the multi-access communication is error-free and there

is no fading. If a node is scheduled, it will be assigned one of the channels. When

a node is scheduled to transmit, it can transmit data to the FC if it has sufficient

energy to send a packet. The transmission of each packet lasts an entire time slot.

The objective of the FC is to maximize the total throughput over a finite or infinite

problem horizon. This problem is studied in [32] and the work is extended to a more

general case in [33]. The thesis presents a more detailed version of the contents of

[32, 33].

In practice, battery states of nodes could be made available to the FC through some
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additional cost (i.e. additional time and energy loss due to additional feedback) and

complexity. However, it is interesting from a practical perspective to consider the case

where the FC makes scheduling decisions without knowledge of the instantaneous

battery states at nodes, or their statistics. Fortunately, it turns out that this lack of

knowledge has little effect on performance. We will observe that by knowing only the

outcomes of previous transmission attempts, the FC can schedule almost as efficiently

as an omniscient scheduler.

Assuming EH processes as Markovian processes, this problem may be formulated as a

partially observable Markov Decision Process (POMDP), and Dynamic Programming

(DP) [34] can be employed for optimal solution. However, the state space of DP

should be very large to get a good approximation to the problems with continuous

state variables like energy. Furthermore, DP has exponential complexity with respect

to number of nodes m [34]. Therefore, complexity of DP may become excessively

high for the EH scheduling problem with large number (hundreds) of nodes and large

state space.

A second approach for solving this scheduling problem is reinforcement learning by

considering the problem as a POMDP. Q-learning [35] is the easiest to implement and

the most effective model-free algorithm among reinforcement learning algorithms. Q-

learning guarantees convergence to optimal for a generic model. However, Q-learning

is not applicable for problems with large-state space, because its convergence is slow

[36]. In fact, many algorithms can guarantee the convergence to optimal behavior

[37]. However, in many practical applications, a policy which achieves near opti-

mality quickly is preferable to the policy which converges slowly to exact optimality

[36]. As the discount factor gets closer to 1 (i.e. the undiscounted case), the conver-

gence rate of Q-learning decreases more. There are approaches such as R-learning

[38], which maximize average reward; however, the convergence of R-learning has

not been proven. Also, reinforcement learning has a very important problem: the

trade-off between exploration and exploitation [39]. Therefore, Q-learning and gen-

erally reinforcement learning do not seem to be suitable for obtaining an efficient

and practical solution to this scheduling problem, especially when a large number of

sensors and a continuous state variable, energy, is considered.
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Another approach for this scheduling problem is to consider it as a restless multi-

armed bandit problem (RMAB), which is a special version of POMDP. RMAB is

an extension to classical multi-armed bandit (MAB) problem, which is solved opti-

mally by Gittins [40] and an optimal solution is proposed under certain assumptions

by Whittle [41]. Papadimitriou and Tsitsiklis show that finding optimal solution to

a general RMAB is PSPACE-hard and it has a very high computational complexity

[42]. Considering memory limits of sensors, a much more applicable policy is re-

quired. Therefore, a simpler approach called a myopic policy (MP) is suggested for

RMAB problems and proven to be optimal in limited cases for the sensor manage-

ment problems in [43, 44, 45]. However, a myopic policy is not generally optimal

since MP concentrates only on the present and not consider the future [46, 47]. A

channel probing problem is studied in [48] and it is shown that MP is not always opti-

mal. The assumption that the scheduling decision does not affect transition probabil-

ities was an appropriate one for the problems addressed in [43, 44, 45, 48]. However,

this assumption does not apply to the EH scheduling problem at hand, this is not a

reasonable assumption, as energy is a flexible resource that can be stored (without

any discount, ignoring battery leakage which is very minor in practice [2]) and can

be used whenever desired. On the other hand, spectrum is an inflexible resource that

cannot be stored and that must be used at the instant when it is available. Therefore,

the solutions presented in [43, 44, 45, 48] papers are not directly applicable to our

problem.

The closest works in the literature to the problem at hand are the scheduling prob-

lems studied in [47, 49]. We have posed essentially the same problem, with the

exception that no battery and unit sized batteries at nodes are assumed in [47] and

[49], respectively. In both [47] and [49], the scheduling problem is formulated as a

POMDP, where the focus is on immediate reward instead of future rewards. In [49],

a single-hop wireless sensor network which consists of EH transmitter nodes with a

unit sized battery and a central receiver node with multi server is considered as a rest-

less multi-armed bandit problem (RMAB). Optimality of Whittle index policy which

is generally suboptimal for RMAB [50] is proven for a certain case under certain as-

sumptions on the EH process. In [49], the optimality of a Round-Robin based myopic

policy is proved under the assumption that each node has only unit sized battery and
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the ratio between the number of transmitter nodes and the number of communication

channels of the central node is an integer (m/k is an integer). In [47], the problem

is formulated as POMDP and the optimality of MP is proven for two cases: 1) the

nodes are not able to harvest and transmit simultaneously, and the EH process transi-

tion probabilities are affected by the scheduling decisions, and 2) the nodes have no

battery. Since myopic policies proposed in [47, 49] are based on Round-Robin (RR)

scheme, assuming that "m/k is an integer" is important (m/k is also the period of RR

Policy). These assumptions are somewhat restrictive for real life implementation.

To set up the problem, a model about the generation and usage of energy is needed.

First, energy in a node’s battery decreases if the node sends a data packet. Second,

energy in a battery increases in a continuous fashion by harvested energy. Third,

battery leakage is neglected. This assumption follows from examining typical bat-

teries in use today for which leakage is negligibly small for over durations of several

minutes. Based on these mild assumptions about energy, a suitable performance mea-

sure for a policy can be average reward over the finite and the infinite horizon rather

than expected total discounted reward for this scheduling problem which is a delay-

insensitive communication problem [51]. In communication network problems, delay

is investigated as average delay; and not as discount. In applications, EH sources may

use vibrational or kinetic energy, the behavior of which is typically not predictable [1],

[3]. Optimal scheduling for this continuous, independent EH process becomes a hard

problem, and the problem requires good near-optimal solutions.

By taking a deterministic approach, a near-optimal transmission scheduling policy,

Uniforming Random Ordered Policy (UROP) [32], is developed and proven to be

near optimal by assuming that each sensor has an infinite capacity battery (It will be

shown that if the sensors have a reasonable-sized finite battery, UROP has almost the

same efficiency as its efficiency under a reasonable-sized finite battery assumption).

It is also guaranteed that UROP is asymptotically optimal for a general case of energy

arrival process under the infinite battery assumption (larger than unit battery) as the

horizon length increases. In comparison with the myopic policies in [47, 49], UROP

can still guarantee near-optimal performance when m/k is not an integer.

As a variation of the problem at hand, we consider a single hop network where a
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fusion center (FC) collects data from m EH nodes, according to a time-slotted oper-

ation. When a node is scheduled for transmission in a time slot, it transmits a packet

if it has data to transmit, and sufficient energy to perform a transmission. The FC

does not have direct knowledge of the state of the system (i.e. numbers of data pack-

ets or energy stored at nodes), or statistics of the energy harvesting and data arrival

processes. We assume that k of the nodes (any subset of k distinct nodes) can be

scheduled at any time. The objective of the FC is to maximize total throughput over a

finite or infinite horizon. In fact, this problem is the extended version of the problem

studied in [32]. This scheduling problem is studied in [52] and the work is extended

to a more general case in [33]. The more detailed version of these works is presented

here. The thesis presents a more detailed version of the contents of [32, 33, 52].

This problem may be also formulated as Restless Multi-Armed Bandit (RMAB) prob-

lem (proposed by Whittle [41]), and when energy and data arrivals are modeled

as Markov processes, a partially observable Markov Decision Process (POMDP).

Dynamic programming (DP) and reinforcement learning (RL) [36] are possible ap-

proaches for solution, however, these approaches do not provide practical solutions

that scale well with the number of nodes and states of EH and DA processes. As the

optimal solution of a general RMAB is PSPACE-hard [42], a simpler approach my-

opic policy (MP) is proposed for some RMAB problems. However, MP is generally

suboptimal [46].

The problem was posed and studied, for a limited capacity battery for storing energy

harvests, and infinite data backlog in [47, 49, 53]. The optimality of Round Robin

(RR) based myopic policies are exhibited in the mentioned studies under certain con-

ditions on energy harvesting processes. In [32], relaxing the battery constraint (al-

lowing unlimited storage), the optimality of a simple randomized policy, UROP was

shown. It was also argued that practically the same performance is obtained under

finite storage capacity with this algorithm.

As a second variation of the scheduling problem, the first variation of the problem

is extended to the unbacklogged case; i.e., when stability of data buffers is consid-

ered together with the efficient consumption of harvested energy. In particular, near-

optimality of the UROP (redefined below for convenience) is exhibited under quite
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general energy harvest (EH) and data arrival (DA) processes under infinite battery

and buffer assumptions. We also show through simulations that efficiency of UROP

under a reasonable sized finite battery and buffer assumption deviates little from that

under an unlimited buffer assumption. It is worth noting that unlike many RR based

algorithms, UROP is completely flexible with respect to the number of users that can

be scheduled at a time (k) in relation to the size of the user pool (m).

Thirdly, a dual version of the first problem is considered. In this problem, we consider

a single hop communication network where a centralized controller (CC) collects data

from m nodes, according to a discrete time fashion. When a node is scheduled in a

time slot, it transmits a data packet if it has data to transmit. The CC does not have

direct knowledge of the state of the system (i.e. numbers of data packets stored at

nodes), or statistics of data arrival processes. We assume that k of the nodes (any

subset of k distinct nodes) can be scheduled at any time. The objective of the FC is

to maximize total throughput over a finite or infinite horizon.

The rest of this thesis is organized as follows. In Chapter II, first of the scheduling

problems is considered. Then, the second scheduling problem is studied in Chapter

III. In Chapter IV, a dual version of first scheduling problem is studied. Finally,

Chapter V concludes the thesis.
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CHAPTER 2

UROP: A SIMPLE, NEAR-OPTIMAL SCHEDULING POLICY

FOR ENERGY HARVESTING WIRELESS NETWORKS

In this chapter, a network scheduling problem for a single-hop wireless network is

investigated with the following assumptions. In the network, a fusion center (FC)

schedules a set of energy harvesting nodes to collect data from them. Fusion center

does not know the instantaneous battery states of nodes or the statistics of random

energy harvesting processes. FC only knows the history of previous transmission

attempts. The batteries of the nodes have infinite battery capacity and there is no

leakage from the batteries.

The chapter is organized as follows. The system model and problem formulation are

described in Section 2.1. In Section 2.2, we study the scheduling capacity. In Section

2.3, we show that Round-Robin based policies cannot guarantee 100% throughput

under many non-uniform energy harvesting process for nodes. We show the optimal

omniscient solution for this problem in section 2.4. In Section 2.5, we suggest a

novel, low-complexity scheduling policy which is nearly throughput optimal for quite

general energy harvesting processes (uniform, non-uniform, independent, correlated)

in a finite horizon problem under an infinite battery assumption. Next, efficiency

bounds on UROP are obtained. Section 2.6 extends the results from finite horizon

to infinite horizon. In Section 2.7, we compare the performance of UROP with that

of a Round-Robin policy and the Myopic Policies in [47, 49] through simulations.

Computational complexities of the scheduling policies proposed in this chapter and

Myopic Policies in [47, 49] are discussed in Section 2.8.
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Figure 2.1: A single hop wireless network where a fusion center (FC) collects data from energy
harvesting (EH) nodes located in a star topology around it.

2.1 System Model and Problem Formulation

We consider a single-hop wireless network in which m energy harvesting (EH)-

capable nodes have circularly symmetric distribution around a Fusion Center (FC)

and send data packets to FC (See Figure 2.1). The WSN operates in a time-slotted

fashion over time slots (TSs) of equal duration. In each TS, FC schedules k out of m

sensors for data transmission by assigning these to the k orthogonal channels. We as-

sume that each node always has data to transmit (i.e. data is backlogged as in [47, 49])

during the problem horizon of T TSs. Data packets have equal size and require unit

energy for transmission.

The EH processes are assumed to be independent for each node. The total energy

harvested by node si upto TS t is denoted by Ei(t), and the increment of this energy

harvested during the TS t is denoted as Eh
i (t). The energy present in the battery

at t (stored minus used) is Bi(t). Note that the performance of the communication

system is investigated under infinite battery assumption. Then, the finite battery case

with Bi(t) = 50 ∀si is also considered in numerical results.

We denote by S = {s1, s2, .., sm} the set of all nodes. The amount of data sent by

10



node si in TS t is I(si ∈ Ssc(t))I(Bi(t) ≥ 1) ∈ {0, 1} where I(X) is the indicator

function of event X , and Ssc(t) ⊂ S is the set of k nodes scheduled at TS t. The set

Ssc(t) is determined by a scheduling policy π.

Two definitions are in order: A fully efficient policy (alternatively, a 100% efficient

policy) ensures that the nodes use up all of the harvested energy by the end of the

problem horizon, more precisely, Bi(T ) < 1 ∀si ∈ S. An optimal policy is one that

maximizes data throughput for the given sequence of energy harvests. For certain

energy harvest processes, an optimal policy may not be fully efficient, as it will be

clear in the next section.

In the communication network, V (t) is the total number of data packets which FC

received from the surrounding nodes from the beginning (first TS) to TS t. Consis-

tently with previous literature ([47, 49]), the general objective is to maximize the total

throughput (considering RMAB literature, the expected discounted reward) over the

problem horizon

max
Ssc(t),t=1,..,T

V (T ) = max
Ssc(t),t=1,..,T

[
T∑
t=1

βt−1
∑
si∈S

I(si ∈ Ssc(t))I(Bi(t) ≥ 1)

]
, (2.1)

where 0 < β ≤ 1 is the discount factor, which reduces the value of data sent later.

The discount factor corresponds to placing lower value on data that is delayed. How-

ever, note that the problem at hand assumes infinite backlog and is therefore delay

insensitive by nature. The discount could also be considered to model battery leakage

that happens as transmission is withheld. Therefore, average reward criterion is more

suitable measure for delay-insensitive communication problems like this scheduling

problem than a discounted reward criterion [51].

Consistently with our assumptions about infinite data buffers, infinite batteries, and

no battery leakage, we shall set β = 1 and convert the objective function in (2.1) to

that in (2.2), which is an average reward criterion, namely time average throughput

max
Ssc(t),t=1,..,T

V (T )

T
= max

Ssc(t),t=1,..,T
E

[
1

T

T∑
t=1

∑
si∈S

I(si ∈ Ssc(t))I(Bi(t) ≥ 1)

]
. (2.2)

Note that the average throughput≤ k by definition. We propose an algorithm, UROP,
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which achieves nearly 100% throughput (and 100% efficiency whenever a fully effi-

cient schedule is feasible) in a broad class of energy harvesting (arrival) process under

infinite battery assumption. In this chapter, η, efficiency of a policy π is defined as the

ratio of the total throughput by policy π to the total throughput by fully efficient pol-

icy πfe on the problem horizon (ηfe = 1). In Section 2.3, it is proven that efficiency

of an arbitrary Round Robin Policy with quantum=1 TS πRR is very close to that of

myopic policy πMP (ηMP ) proposed in [47, 49]. Therefore, the efficiency of UROP

πUROP (ηUROP ) will be compared with that of an arbitrary Round Robin Policy with

quantum=1 TS πRR (ηRR) in Section 2.7 for simplicity. Note that a Round Robin

Policy with quantum=1 TS is a policy which allocates each node 1 TS during a round

(cycle). A RR Policy with quantum=2 TSs allocates each node 2 TSs during a round,

so on.

An arrival process is called admissible if a fully efficient schedule is possible. By the

analogy with admissible processes in these problems, we introduce four new terms

which we use for the EH scheduling problem in the rest of paper. Partial Density of

sensor si, D
(t)
i , is the total number of packets sent by the sensor si with πfe normal-

ized by k(T−t)
m

in the interval (t, T ]. Partial Density (D(t)) is the average of partial

densities of all sensors in the interval (t, T ],

D(t) =

∑
si∈S D

(t)
i

m
. (2.3)

Density of sensor i, Di, is the total number of packets sent by the node si with πfe

normalized by kT
m

during problem horizon T . Density (D) is the average of densities

of all sensors during problem horizon T ,

D =

∑
si∈S Di

m
. (2.4)

In fact, Di and D are used instead of D(0), D(0)
i , respectively, for simplicity.

In the rest of paper, we consider the region D,D(t) ≤ 1 for analysing efficiency of

UROP and comparing it with the RR-based myopic policies proposed in [47, 49].

Figure 2.2 and Figure 2.3 show two examples for both D(0) ≤ 1 and D
(0)
i > 1,

respectively.

12



t t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9

Ch 1

Ch 2

Figure 2.2: An example scheduling table kept by the fusion center (FC) for m = 4, k = 2 during the
interval [t, t + 9]. Dark colored TSs represent busy slots, and the white ones represent idle ones. 4 of
20 slots are idle even under an optimum policy (D(t) = 16

20 = 0.8).
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t t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9

Figure 2.3: An example scheduling table kept by the fusion center (FC) for m = 4, k = 2 during the
interval [t, t + 9]. Dark colored TSs represent busy slots. None of 20 slots are idle and two packets
cannot be sent even the communication system have enough energy for transmission (D(t) = 20+2

20 =
1.1).

2.2 Scheduling Capacity

To find a robust, efficient scheduling policy, we need to consider scheduling capac-

ity of the FC. Scheduling capacity corresponds to the maximum number of nodes

which can be scheduled by the FC in one TS. Since FC has k orthogonal channels,

the scheduling capacity of the FC is k. If the amount of average harvested energy

is so high that the scheduling capacity is exceeded, no 100% efficient policy exists

and energy will keep accumulating (there is an energy surplus). Considering finite

batteries, this will cause overflow in the batteries of nodes. Theorem 1 explores the

region of energy harvest rates such that a 100% efficient policy is feasible.

We shall now make some definitions that will be used in the rest of this section and

the paper. We denote by V (t)
i and V (t), the number of packets which could be sent by

only node si and by all nodes, respectively in the interval (t, T ]. V (t)
i and V (t) can be
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represented as

V
(t)
i =

⌊
Bi(t) +

T∑
j=t+1

Eh
i (j)

⌋
(2.5)

V (t) =
∑
si∈S

V
(t)
i . (2.6)

In the following theorem, we record the condition on the value of the total amount of

harvested energy so that a 100% efficient policy is feasible (We look for the region

that optimal policy is equivalent to 100% efficient policy). Note that according to the

restriction in the system model, each node is assigned to at most one channel per time

slot (i.e. send at most one packet per time slot).

Theorem 1. (Scheduling Capacity Theorem) Assuming that one node can transmit

one packet per time slot as mentioned in system model, for 0 ≤ t < T ,

(i) If V (t)
i > (T − t) for some si ∈ S and some t or V (t) > k(T − t) for some t, all

possible policies will have efficiency below 100% and battery levels of some nodes

grow unboundedly (in practice, considering finite batteries, they will overflow).

(ii) If V (t)
i ≤ (T − t) ∀si ∈ S&∀t and V (t) ≤ k(T − t) ∀t, a 100% efficient policy

that maximizes throughput while keeping battery levels of all nodes finite, exists.

Proof. (i) As a node si can transmit one packet per time slot, a node can transmit

(T − t) data packets in the interval (t, T ]. If V (t)
i > (T − t) for some si ∈ S, then

each of these nodes cannot transmit V (t)
i −(T−t) data packets although it has enough

energy to transmit them. Therefore, a 100% efficient policy does not exist and battery

levels of these nodes grow unboundedly.

Even, V (t)
i ≤ (T − t) ∀si ∈ S&∀t, a 100% efficient policy does not exist if

V (t) > k(T − t) (2.7)

is satisfied.

As the total uplink rate available is k data packets per time slot, FC can accumulate at

most k(T − t) packets from the nodes in the interval (t, T ]. Suppose that there is an
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optimum policy π∗ which can achieve up to scheduling capacity. Then, efficiency of

π∗ equals to the maximum efficiency in the conditions (2.7), and it is represented as

η∗ =
min

{
k(T − t), V (t)

}
V (t)

=
k(T − t)
V (t)

. (2.8)

If (2.7) is satisfied, the scheduling capacity is exceeded in the interval (t, T ]. By (2.7),

η∗ < 1. Hence, there is no 100% efficient policy which lets FC receive V (t) packets

from the nodes.

(ii) As mentioned in part (i), a node can transmit (T − t) data packets in the interval

(t, T ]. If V (t)
i ≤ (T−t) ∀si ∈ S&∀t, then a node si can transmit all of its data packets

with its future energy harvests in the interval (t, T ].

V
(t)
i ≤ (T − t) ∀si ∈ S&∀t is required but not unique condition for the existence of

a 100% efficient policy. If (2.9) is also satisfied, then a 100% efficient policy exists.

V (t) ≤ k(T − t) (2.9)

FC can receive maximum k(T − t) data packets from the nodes in the interval (t, T ].

An omniscient policy could fill up all channels in all time slots as long as there is

a sensor with available energy. Trivially, this achieves 100% efficiency if D(t) ≤ 1

(equivalent to (2.9)). It is summarized as

η∗ =
min

{
k(T − t), V (t)

}
V (t)

=
V (t)

V (t)

= 1. (2.10)

By (2.10), η∗ = 1. Hence, there is a fully efficient (100% efficient) policy which

makes FC receive V (t) packets. Battery levels of all nodes are kept finite. Hence

when D(t) ≤ 1, there is an optimal policy which is 100% efficient.

Remark 1. By definition of D(t), (2.7) is equivalent to D(t) > 1. Define excess

energy as Bex(t) =
∑m

i=1 bBi(t)c = max
{
0, V (t) − k(T − t)

}
by assuming that
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V
(t)
i ≤ (T − t) ∀si ∈ S&∀t. By definition of D(t), Bex(t) = k(T − t)(D(t) − 1). As

D(t) > 1 and T →∞, battery levels of some nodes grow unboundedly.

2.3 Efficiency of RR-based Policies

The scheduling problem in this paper are also studied in [47, 49] for certain specific

cases. Both papers propose RR-based policies with quantum=1 TS which are myopic

policies. Then, they prove the optimality of these policies under certain specific cases.

First, we will investigate the efficiency of RR-based policies by Theorem 2. Then, we

will prove by Theorem 3 that there is only a slight difference between the efficiencies

of any two RR-based policies in long problem horizon T (m
k
� T ). Hence, the

efficiency of RR-based myopic policies in [47, 49] are investigated. It is shown that

the policies in [47, 49] are generally suboptimal.

For the cases that each node has a battery larger than unit size, there is no known

myopic policy in the literature. Therefore, we will compare UROP only with the

policies in [47, 49], and the optimal policy in this paper.

Theorem 2. Suppose that T � m
k
∈ Z and the scheduling capacity of the FC is not

exceeded by Theorem 1 (V (t)
i ≤ (T − t) ∀si ∈ S,∀t and V (t) ≤ k(T − t) ∀t). If

there are some sensors si ∈ S such that V (t)
i > k(T−t)

m
, all RR-based policies with

quantum=1 TS will have efficiency below 100% although a fully efficient policy (πfe)

exists. Moreover, batteries of some sensors will overflow.

Proof. Assume that there are some nodes si ∈ S such that V (t)
i > k(T−t)

m
. We denote

by H the set of these sensors. By definition D(t)
i > 1 for nodes si ∈ H .

In this proof, what is implied by RR policy is RR-based policies with quantum=1 TS.

We investigate efficiency of RR in the two possible cases:

i. If σ = kT
m
∈ Z, RR allocates each node σ TSs for transmission.

ii. If σ = kT
m
/∈ Z, RR allocates some nodes bσc+ 1 TSs and other nodes bσc TSs.

Case i: If the FC schedules m nodes by RR policy in the problem horizon T , RR
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policy allocates each node σ = kT
m

= T
p

TSs equally. Although V (t) ≤ k(T − t), each

node si ∈ H can transmit maximum σ data but cannot transmit V (t)
i − σ data due to

RR policy. On the other hand, each of other nodes si ∈ S −H can transmit all V (t)
i

packets. By analogy with scheduling capacity, the efficiency of a RR policy can be

represented as

ηRR =

∑
si∈S

min
{
V

(t)
i , σ

}
∑
si∈S

V
(t)
i

=

∑
si∈H

min
{
V

(t)
i , σ

}
+

∑
si∈S−H

min
{
V

(t)
i , σ

}
∑
si∈S

V
(t)
i

=

∑
si∈H

σ +
∑

si∈S−H

V
(t)
i∑

si∈S

V
(t)
i

= 1−

∑
si∈H

(V
(t)
i − σ)∑

si∈S

V
(t)
i

(2.11)

As V (t)
i > σ ∀si ∈ H , ηRR < 1. Hence, suboptimality of RR policy is proven for the

first case although there exists an 100% efficient policy by Theorem 1.

Case ii: If the FC schedules m nodes by RR policy in the problem horizon T , RR

policy allocates some nodes bσc + 1 TSs and other nodes bσc TSs for transmission

where σ = kT
m

/∈ Z and {σ} , σ − bσc. To maximize efficiency of RR policy, we

assume that each node si ∈ H can transmit maximum bσc+1 data packets. However,

each of these nodes cannot transmit V (t)
i − bσc − 1 data due to RR policy although

V (t) ≤ k(T − t). On the other hand, each of other nodes si ∈ S − H can transmit

all V (t)
i data packets. By the analogy with scheduling capacity, the efficiency of RR
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policy can be represented as

ηRR =

∑
si∈S

min
{
V

(t)
i , σ

}
∑
si∈S

V
(t)
i

=

∑
si∈H

min
{
V

(t)
i , σ

}
+

∑
si∈S−H

min
{
V

(t)
i , σ

}
∑
si∈S

V
(t)
i

=

∑
si∈H

(bσc+ 1) +
∑

si∈S−H

V
(t)
i∑

si∈S

V
(t)
i

= 1−

∑
si∈H

(V
(t)
i − bσc − 1)∑
si∈S

V
(t)
i

(2.12)

As V (t)
i > bσc + 1 ∀si ∈ H , ηRR < 1. Hence, suboptimality of RR policy is also

proven for the second case although there exists an 100% efficient policy by Theorem

1.

By Theorem 2, efficiency of RR policies is investigated; however, to obtain the ef-

ficiency from (2.11) and (2.12) may be a bit complicated. To calculate efficiency of

RR policies in a simpler way, efficiency of RR policies can be expressed with the

following remark, alternatively. We use this remark to calculate efficiency of RR in

Section 2.7.

Remark 2. Case i: Considering the definition of D(t)
i , ηRR can also be represented

as

ηRR = 1−

∑
si∈H

(D
(t)
i − 1)∑

si∈S

D
(t)
i

. (2.13)

Since D(t)
i > 1 ∀si ∈ H , ηRR < 1.
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Case ii: Considering the definition of D(t)
i , ηRR can also be represented as

ηRR = 1−

∑
si∈H

(D
(t)
i σ − bσc − 1)∑
si∈S

D
(t)
i σ

= 1−

∑
si∈H

(D
(t)
i − 1)σ − (1− {σ}))∑

si∈S

D
(t)
i σ

(2.14)

It is known that D(t)
i > 1 ∀si ∈ H and (1 − {σ}) < (D

(t)
i − 1)σ since σ � 1 >

1− {σ}. Therefore, ηRR < 1.

From Remark 2 and Theorem 1, efficiency of RR be as low as k
m

. This worst case

efficiency of k
m

occurs when k of the nodes always have sufficient energy to transmit

a data packet in each TS and the remaining ones have no energy.

For a sufficiently long problem horizons, these results can be extended to RR-based

policies with larger quanta. The following remark, used in the rest of the paper, is a

consequence of the assumption there is no battery leakage.

Remark 3. (No battery leakage) Let T1, T2 ∈ (0, T ] and T1 < T2. If si is not

scheduled (selected) in interval (T1, T2], Bi(T1) ≤ Bi(T2) where Bi(t) is the energy

remaining in battery of sensor si at the end of TS t. That is, Bi(t) does not decrease

unless si transmits data.

Theorem 2 states that RR-based policies become suboptimal when D(t)
i > 1 even for

one node. In the following theorem (Theorem 3), it is shown that an arbitrary RR

policy with quantum=1 TS has almost the same efficiency as any other RR policy

with quantum=1 TS.

Theorem 3. (Upper and lower bounds on RR throughput) Assume that m
k
∈ Z.

In problem horizon T ,

max
{
V RR(T )

}
−min

{
V RR(T )

}
≤ m− k (2.15)

wheremin
{
V RR(T )

}
andmax

{
V RR(T )

}
are the minimum and maximum through-

put which can be achieved under a RR policy with quantum=1 TS, respectively.
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Proof. There are three cases for the problem horizon T : 1) T < m
k

, 2)T ≥ m
k

and
kT
m
∈ Z, and 3) T ≥ m

k
and kT

m
/∈ Z

Case 1: If T < m
k

= p, T ≤ p−1. Sincemin
{
V RR(T )

}
≥ 0 andmax

{
V RR(T )

}
≤

kT ≤ k(p− 1) = m− k, max
{
V RR(T )

}
−min

{
V RR(T )

}
≤ m− k. This proves

the statement for this case.

Case 2: Denote by Uj the nodes scheduled in TS j where j ≤ p = m
k

and Sm =⋃p
j=1 Ui . All RR policies have same length period p. Denoted by τRRl the lth period

of RR, namely, τRRl = [(l − 1)p+ 1, lp]. Assume that T1, T2 ∈ τRRl and T1 < T2

where T1 and T2 are the TSs when a node si is scheduled lth time by the FC under

two different RR policies with quantum=1 TS, πRR1 and πRR2, respectively.

By Remark 3, efficiency of πRR2 in T2 is not lower than that of πRR1 in T1 for the

node si since πRR2 schedules the node later than πRR1 does. By Remark 3, if a node

si cannot send data in T1 and can send in T2, then it would certainly have data to send

when it is scheduled in T1 + p instead of T2. Therefore, V RR1
i (T1) ≤ V RR2

i (T2) ≤
V RR1
i (T1 + p) for ∀si ∈ Sm.

This means that giving each node one more TS, any RR policy can achieve maximum

throughput achieved by most efficient RR. In other words, the least efficient RR can

achieve the throughput of the most efficient RR by continuing only one period more.

Note that since Up is the nodes scheduled last under a RR policy, they achieve max-

imum throughput which can be achieved under RR policy by Remark 3. Therefore,

the least efficient RR uses only m− k TSs more than other RR policies to guarantee

same throughput. By using the extra m−k TSs which the least efficient RR used, the

most efficient RR policy can have throughput m−k more than it has. By considering

the last period during the problem horizon T , Theorem 3 will be proved for this case.

Assume that T = sp = t+ p where s ∈ Z. Considering the last period [t+ 1, t+ p],

the worst performance of RR occurs when the set of nodes Uj can transmit no data in

TS t+ j; however, they get ready for transmission in TS t+ j+1 (Bi(t+ j+1) ≥ 1).

Since there is no next TS for Up, nodes of Up cannot improve their battery states.

Therefore, the throughput difference is determined by nodes si ∈ S − Up. Since

|S − Up| = m− k, the difference is m− k. Hence, it is proved for this case.
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Case 3: Assume that T = sp + c where 0 < c < p, s ∈ Z. In case 2, it is shown

that the maximum difference is m − k in TS sp. In the interval [sp + 1, sp + c],

Sc =
⋃c
j=1 Uj is scheduled. For the nodes si ∈ Uj ⊂ Sc, Bi(t) ≥ 1 in TS sp. If

Bi(sp + j) ≥ 2 ∀si ∈ Uj ⊂ Sc, the throughput difference remains as m− k. Unless

Bi(sp + j) ≥ 2 ∀si ∈ Uj ⊂ Sc, the difference remains same or decreases depending

on other nodes si ∈ S − Sc. This concludes the proof.

As the myopic policies (MP) in [47, 49] are also RR policies with quantum=1 TS,

they have almost same efficiency as any other RR policy with quantum=1 TS. Since

the difference between throughputs of two arbitrary RR policies with quantum=1

TS is m − k, the difference between efficiencies of two arbitrary RR policies with

quantum=1 TS is m−k
V fe(T )

= m−k
V ∗(T )

(Recall that π∗ = πfe unless the scheduling capacity

is exceeded). Considering large T , the difference becomes little (in fact 0 as T →∞).

Therefore, instead of MPs in [47, 49], an arbitrary RR policy with quantum=1 TS will

be used in the comparisons of scheduling policies in Section 2.7 for simplicity.

In Section 2.4, we investigate optimal omniscient policies which give us motivation

to find a near optimal policy for the scheduling problem at hand in Section 2.5.

2.4 Optimal Omniscient Policies

For the EH scheduling problem, [47, 49] propose RR-based Myopic Policy (MP)

and prove that the MP is optimal for certain specific cases. However, Theorem 2 and

Theorem 3 state that RR-based policies with quantum=1 TS (including the MP in [47,

49]) become suboptimal when D(t)
i > 1 for some sensor i although an 100% efficient

policy exists (D(t) ≤ 1). The EH scheduling problem resembles a simplified unicast

switch scheduling problem. Like unicast switch scheduling problems, this problem

has input queues (energy queues) and feasible activation sets are such that at most k

users are scheduled. Different from usual unicast switch scheduling problem setups,

buffer (battery) states are not known in this problem; therefore, switch scheduling

policies that assume the availability of state information cannot be applied directly.

However, these provide intuition for finding an omniscient scheduling policy (i.e. one

which knows the current battery states) for the EH scheduling problem.
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For unicast switch scheduling problems, the following approaches are well-known:

Maximum Size Matching (MSM) and Maximum Weight Matching (MWM) [54],

[55]. Maximum Size Matching selects in each TS an activation set with the max

number of nonempty queues. On the contrary, Maximum Weight Matching also re-

spects queue size not only whether queues are empty or not. Maximum Size Matching

may sometimes cause starvation due to head-of-line (HOL) blocking which limits its

throughput to below 100% in some cases [54] and [56]. On the other hand, Maximum

Weight Matching policies always guarantee 100% throughput for all admissible traf-

fic (with analogy, D(t) ≤ 1 in our problem) and two MWM algorithms are offered to

achieve 100% throughput in [54]. However, due to lower computational complexity,

MSM policies are sometimes preferred [57].

Different from unicast switch scheduling problems, there is no preffered output for

packets in the EH scheduling problem. All k lines correspond to the same output port

to which any packet can be sent. This implies that HOL blocking does not occur in

the EH scheduling problem, so both MSM and MWM will provide 100% throughput

in our problem. Due to lower computational complexity, MSM is preferable. To

find an omniscient policy for the EH scheduling problem, we assume that FC knows

whether each node can transmit data or not in any TS. With this knowledge, there is

no unique optimal omniscient policy for this problem. We shall concentrate on one

optimal policy which provides intuition to find a near optimal, nonomniscient and

online policy later.

To find such a policy, we map the problem onto a variation of block-packing game

Tetris. A different Tetris model which we are inspired by was previously used in

multicast switch scheduling problems [58] and [59]. In this model, packets from

same input are sent to different output ports. In our case, different from the Tetris

model of [58] and [59], the packets from same input are sent to same output port if

the input is scheduled to transmit data to that output port in our model (The model is

shown in Figure 2.4.). That is the critical point which provide us intuition to find a

simple, near optimum, nonomniscient and online policy in the next section.

Based on our tetris model, we propose an omniscient, optimum scheduling policy,

Uniformizing Policy (UP) for all admissible EH process. Considering nonuniform
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3 3 6 6 9 9 4 3 3
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31 4 4

Node 1

Node i

Node 9

t t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+9t+8

1a

3a

2aFusion
Center

Figure 2.4: An example scheduling table kept by the fusion center (FC) for m = 9, k = 3 during
the interval [t, t + 9]. Dark colored TSs represent busy slots labeled by node ID using the slot, and the
white ones represent idle ones. 3 of 30 slots are idle even under an optimum omniscient policy (UP)
(D(t) = 0.9). UP allocates the slots in order to leave the least number of slots idle: resembling a Tetris
game. Note that each node can use only one channel at a time slot.

EH processes at all m nodes, UP uses the empty output ports to schedule the nodes

in each TS. If there are some nodes which are scheduled in previous TS but does

not have enough energy to transmit data in current TS, UP schedules new nodes. By

scheduling new nodes, UP prevents output ports to remain idle and balances the load

in each of k output ports. Hence, UP uniformizes the nonuniform EH processes of

m nodes such that all packets are scheduled in each of k output port almost equally.

By this almost equal partition of the packets sent by nodes, UP makes uniformization

and provides 100% throughput under all admissible uniform and non-uniform EH

processes.

The operation of UP is summarized below:

1. Order the nodes arbitrarily and use this order throughout problem horizon.

2. Schedule the first k nodes in the ordering that have enough energy to transmit a

packet.
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3. At the beginning of the next TS, check the k nodes that were just scheduled.

Replace those without energy to transmit a packet with new ones, respecting the initial

order. If less than k nodes with enough energy can be found, schedule those nodes

only.

4. Continue in a cyclic way.

2.5 A Near-Optimal Online Policy

2.5.1 Uniformizing Random Ordering Policy (UROP)

Assuming that all energy harvesting process is known in previous section, an opti-

mal omniscient solution is proposed for the energy harvesting scheduling problem.

However, the battery states of the nodes are not known in the exact energy harvesting

scheduling problem. Therefore, we propose a near-optimal online scheduling pol-

icy by using Lemma 1 (stated below) for all admissible energy harvesting processes

D(t) < 1.

D(t) < 1 means that there exists always idle TSs over a problem horizon even if an

optimal policy is applied. Lemma 1 states that if a scheduled node cannot transmit

data in TS t, an 100% efficient policy is applied to that node until TS t. Therefore,

we propose Uniformizing Random Ordering Policy (UROP) which uses the idle TSs

to determine battery state of the scheduled nodes (whether a node has enough energy

to transmit data or not).

Since energy harvesting processes are completely unpredictable for some energy har-

vesting sources [1, 3], UROP orders the nodes randomly before starting to schedule

them.

UROP operates as below:

1. Schedule the first k nodes according to initially determined random order.

2. If a scheduled node transmits data to FC in that TS, then it continues to be sched-
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uled.

3. Otherwise, FC starts to schedule the nodes which are on the top in the remaining

list of nodes according to initial cyclic random order replacing previously scheduled

nodes.

4. Continue in a cyclic way.

To schedule all nodes once, the fusion center uses m energy harvesting nodes to com-

plete a period (all nodes are scheduled once). As D → 1, the ratio of idle TSs over

whole problem horizon decreases. As D → 0, the ratio of idle TSs over whole prob-

lem horizon increases. The algorithm, UROP, whose operation is described above is

hence an adaptive and near optimal policy. In this section, the efficiency of UROP is

investigated by assuming that no node behaves as an elephant node (defined below).

In Section 2.6, it is shown that UROP is asymptotically optimal over infinite horizon

for all admissible energy harvesting processes.

Definition 1 (Elephant node): If the node who is next in line for selection by the FC

happens to be already transmitting continuously since its last selection, the node is

said to behave as an elephant node between the previous selection (scheduling) time

and the current selection time. In this case, FC selects the next node to schedule for

one of the empty channels and the elephant node continues to transmit on its assigned

channel as before. Figure 2.5 represents an elephant node.

2.5.2 Efficiency of UROP in Finite Horizon Case

In this part, the efficiency of UROP is investigated in a quite general case of energy

harvesting process. First, several lemmas are stated and proved. Then, the lemmas

will be used to prove Theorem 4 and Theorem 5.

Lemma 1. (Partial Optimality) If Bi(t) < 1 for a sensor si at the end of TS t, an

optimal policy has been applied for node si and efficiency of the scheduling policy is

100% for node si up to TS t.
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Figure 2.5: An example scheduling table kept by the fusion center (FC) for m = 8,k = 3 during
the interval [t, t + 16]. Dark colored TSs represent busy slots labeled by node ID, and the white ones
represent idle ones. Node 4 behaves as an elephant node since it does not idle within a round continues
transmission from t + 2, until t + 14. Note that it has already transmitted data in t + 12 when it is next
supposed to be scheduled.

Proof. The number of data packets which could be sent by node si with the remaining

energy in TS t is bBi(t)c. If si has transmitted all data packets which could be sent

with Ei(t) by TS t (bBi(t)c = 0 or equivalently Bi(t) < 1), and efficiency is 100%

for node si until TS t.

Remark 4. If Ei(t) is the total amount of harvested energy in sensor si until TS t and

V ∗i (t) is the number of packets (throughput) which could be sent by sensor si until TS

t under π∗, V ∗i (t) = bEi(t)c. Recall that π∗ = πfe for 0 ≤ D ≤ 1.

Recall that UROP benefits from idle time slots to schedule the nodes efficiently. Now,

we will define some new parameters related to idle time slots and these will be used

in Lemma 2, Lemma 3, Lemma 4 and Theorem 4. Aidle(j, l) is the pair of the jth

channel of the FC and lth idle TS for the jth channel. Aidle(j, l) occurs in TS γjl . In

this TS γjl , FC drops a node using jth channel and start to schedule another node in

same channel. In the idle TSs, FC drops some of the k nodes and starts to schedule

other nodes in their place. TI is the set which consists of all pairs Aidle(j, l). Figure

2.6 represents the transmission channel-idle time slot pairs in an example scheduling

table.

Let’s denote by ξ(f)
i and ξ(f−1)

i the idle TSs when FC starts to schedule node si for

the last time and for the second last time, respectively. F1 and F2 are the set of all

pairs Aidle(u, v) such that γuv = ξ
(f)
i for a si ∈ S and the set of all pairs Aidle(u, v)

such that γuv = ξ
(f−1)
i for a si ∈ S. As there are m nodes, |F1| = |F2| = m. G1 is the

set of all pairs Aidle(p, q) such that γpq 6= ξ
(f)
i for si ∈ S. Moreover, G2 is the set of
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Figure 2.6: An example scheduling table kept by the fusion center (FC) for all k channels over
problem horizon T = N time slots. Dark colored TSs represent busy time slots (the time slot in
which FC could receive a data packet from the scheduled (selected) user.), and the white colored TSs
represent idle time slots (the slot in which FC could not receive a data packet from the scheduled
(selected) user.)

.

all pairs Aidle(p, q) such that γpq 6= ξ
(f)
i and γpq 6= ξ

(f−1)
i for si ∈ S. In other words,

G1 = TI − F1 and G2 = TI − (F1 ∪ F2).

Lemma 2. If Aidle(u, v) ∈ (F1 ∪ F2),

i) There does not exist such a pairAidle(p, q) ∈ G1 that γpq > γuv for someAidle(u, v) ∈
F1.

ii) There does not exist such a pairAidle(p, q) ∈ G2 that γpq > γuv for someAidle(u, v) ∈
(F1 ∪ F2).

Proof. Part i) Assume that there is such a pairAidle(p, q) ∈ G1 that γpq > γuv for some

Aidle(u, v) ∈ F1. Since γpq 6= ξ
(f)
i ∀si ∈ S, the node sr which is selected by the FC

in TS γpq will be selected by the FC at least once more (γpq < ξ
(f)
r ). According to

UROP, a node sr which is selected in TS T1 cannot be selected by the FC in TS T2

unless ∀si ∈ S − sr are selected in the time interval [T1, T2]. Since γpq > γuv = ξ
(f)
i

for some si, these nodes cannot be selected by the FC in the time interval [γpq , ξ
(f)
j ].

Therefore, there does not exist such a pair Aidle(p, q) ∈ G1 that γpq > γuv for some

Aidle(u, v) ∈ F1.

Part ii) G1 = TI − F1 and G2 = TI − (F1 ∪ F2) = (TI − F1) − F2. Replacing

TI − F1 and F2 with TI and F1 , respectively, in Part i, we can said that there exists
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no Aidle(p, q) ∈ G2 such that γpq > γuv for some Aidle(u, v) ∈ F2. By Part i, there

exists no Aidle(p, q) ∈ F2 such that γpq > γuv for some Aidle(u, v) ∈ F1. Therefore,

there does not exist such a pair Aidle(p, q) ∈ G2 that γpq > γuv for some Aidle(u, v) ∈
(F1 ∪ F2).

Lemma 3. If ζ(f)
i is the idle TS when FC stops to schedule node si for the last time

and L is the set of the idle TSs ζ(f)
i , L ⊂ (F1 ∪ F2).

Proof. Recall that (F1∪F2) ⊆ TI . It can be said that FC starts to schedule a node iff it

leaves (stops to schedule) another node. (F1∪F2) includes two consecutive time (the

last and second last time) when FC starts to schedule a node for all nodes. Assume

that FC schedules a node si. Unless FC stops to schedule the node si, it cannot start

to schedule the node si again. Therefore, (F1 ∪ F2) includes at least one departure

time for each node. Since (F1 ∪ F2) includes the latest 2m idle TSs and at least one

departure time for each node, ζ(f)
i ∈ (F1 ∪ F2) for ∀si. Hence, L ⊂ (F1 ∪ F2).

Now, we state Lemma 4 and Lemma 5 which will help us find the worst case and

expected efficiency bounds of UROP.

Lemma 4. Assume that Sk ⊂ S is the set of k nodes which are scheduled last by the

FC in the problem horizon T , each node si ∈ Sk transmits
(
T − ξ(f)

i

)
data packets

in the time interval
(
ξ

(f)
i , T

]
.

Proof. If Sk ⊂ S is the set of last k nodes which are scheduled by the FC in problem

horizon T , there will be no other selection so no idle TS until deadline of problem

horizon T . Since each node can transmit at most one packet in each TS, each node

si ∈ Sk transmits
(
T − ξ(f)

i

)
data packets in the interval

(
ξ

(f)
i , T

]
.

Lemma 5. Assume that T1, T2 ∈ (0, T ] and T1 < T2. If si is not scheduled in interval

(T1, T2], V ∗i (T1) ≤ V ∗i (T2) where V ∗i (t) is the number of packets (throughput) which

could be sent by sensor si until TS t under optimal policy π∗.
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Proof. By Remark 4, V ∗i (T1) and V ∗i (T2) can be written as

V ∗i (T1) = bEi(T1)c

V ∗i (T2) = bEi(T2)c (2.16)

From Remark 3 (No battery leakage), the inequality below is written for all si ∈ S,

Ei(T1) ≤ Ei(T2)

bEi(T1)c+ {Ei(T1)} ≤ bEi(T2)c+ {Ei(T2)} . (2.17)

By substituting (2.16) into (2.17),

V ∗i (T1) + {Ei(T1)} ≤ V ∗i (T2) + {Ei(T2)} (2.18)

By using (2.18), it is shown that V ∗i (T1) ≤ V ∗i (T2) is possible; however, V ∗i (T1) >

V ∗i (T2) is not possible. There are three cases as below:

i) V ∗i (T1) = V ∗i (T2)⇒ {Ei(T1)} ≤ {Ei(T2)} as Ei(T1) ≤ Ei(T2).

ii) V ∗i (T1) < V ∗i (T2) ⇒ Ei(T1) < Ei(T2) as 0 ≤ {Ei(T1)}, {Ei(T2)} < 1 and

V ∗i (T1), V
∗
i (T2) ∈ Z.

iii) V ∗i (T1) > V ∗i (T2) ⇒ Ei(T1) > Ei(T2) as 0 ≤ {Ei(T1)}, {Ei(T2)} < 1 and

V ∗i (T1), V
∗
i (T2) ∈ Z. This situation contradicts with (2.18).

Hence, Ei(T1) ≤ Ei(T2) ∀si ∈ S and V ∗i (T1) ≤ V ∗i (T2) ∀si ∈ S.

By Theorem 4, the worst case efficiency of UROP is analysed for quite general energy

harvesting process. For this analysis, we consider the last 2m idle time slots and

previous lemmas.

Theorem 4. (Efficiency Bounds of UROP) Last departure time of the node sj which

satisfies ζ(f)
j ≤ ζ

(f)
i ∀si ∈ S − {sj} is denoted by ζ(f)

j = T0. In problem horizon T ,

the efficiency of UROP is bounded as

1− k(T − T0)∑m
i=1 V

∗
i (T )

≤ ηUROP ≤ 1, (2.19)

where V ∗i (T ) is the number of packets (throughput) which could be transmitted by

node si until TS t (included) under optimal policy π∗.
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Proof. Vi(t) is the number of packets (throughput) which have been sent by sensor si

until TS t. V (f)
i is the number of packets (throughput) which could be transmitted by

sensor si in the interval
[
ζ

(f)
i , T

]
. In fact, V (f)

i = V

(
ζ
(f)
i

)
i . We use V (f)

i for simplicity

of notation.

V ∗i = Vi

(
ζ

(f)
i

)
+ V

(f)
i can be written for ∀si ∈ S. By Lemma 1, Vi

(
ζ

(f)
i

)
is

the throughput in TS ζ
(f)
i until when an optimum policy π∗ is applied to node si.

Therefore, V (f)
i is the only factor for throughput loss of node si ∈ S − Sk. For

si ∈ Sk, the throughput loss by V (f)
i decreases by

(
T − ξ(f)

i

)
by Lemma 4.

Hence, the efficiency of UROP in problem horizon T can be written as

ηUROP =

∑m
i=1 Vi

(
ζ

(f)
i

)
+
∑

si∈Sk

(
T − ξ(f)

i

)
∑m

i=1 V
∗
i (T )

=

∑m
i=1 Vi

(
ζ

(f)
i

)
+
∑

si∈Sk

(
T − ξ(f)

i

)
∑m

i=1 Vi

(
ζ

(f)
i

)
+
∑m

i=1 V
(f)
i

. (2.20)

By using Lemma 4, the term
∑

si∈Sk

(
T − ξ(f)

i

)
is added to the numerator in (2.20)

since si ∈ Sk are not considered to be left by the fusion center in TS T . It is assumed

that ζ(f)
i < T ∀si ∈ Sk.

By (2.20), we can upper bound ηUROP .

i. Upper bound for efficiency of UROP

Efficiency of a policy cannot be more than 100% (η ≤ 1). From (2.20), ηUROP = 1

only if ∑
si∈Sk

(
T − ξ(f)

i

)
=

m∑
i=1

V
(f)
i (2.21)

is satisfied.

(2.21) comes true only if

V
(f)
i =

 0 if si ∈ S − Sk(
T − ξ(f)

i

)
if si ∈ Sk

(2.22)

is satisfied.
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If nodes harvest energy such that (2.22) is satisfied, ηUROP = 1. Therefore, upper

bound of ηUROP is 100%, namely, ηUROP ≤ 1.

By (2.20), let’s find the lower bound of ηUROP .

ii. Lower bound for efficiency of UROP

The inequalities below can be written for a long problem horizon T .

To find the lower bound of ηUROP , we will define a loss function Vloss in (2.23)

according to (2.20) and maximize Vloss by considering the worst case,

Vloss =
m∑
i=1

V
(f)
i −

∑
si∈Sk

(
T − ξ(f)

i

)
. (2.23)

In (2.23), Vloss can be maximized by minimizing
∑

si∈Sk

(
T − ξ(f)

i

)
. Since ξ(f)

i ≤ T

∀si ∈ Sk,
∑

si∈Sk

(
T − ξ(f)

i

)
≥ 0. This occurs only if ξ(f)

i = T ∀si ∈ Sk.

By Equation (2.5),

V
(f)
i =

Bi

(
ζ

(f)
i

)
+

T∑
t=ζ

(f)
i +1

Eh
i (t)

 (2.24)

Since
∑

si∈Sk

(
T − ξ(f)

i

)
≥ 0, Vloss is maximized if

∑
si∈Sk

(
T − ξ(f)

i

)
= 0. Then

(2.23) converts into

Vloss =
∑
si∈S

V
(f)
i . (2.25)

We denote by S
(lf)
k the set of k nodes which satisfy ζ

(f)
i ≤ ζ

(f)
j ∀si ∈ S

(lf)
k and

sj ∈ S − S(lf)
k . Vloss can be written as

Vloss =
∑
si∈S

V
(f)
i

=
∑

si∈S
(lf)
k

V
(f)
i +

∑
si∈S−S

(lf)
k

V
(f)
i . (2.26)

While maximizing Vloss, (2.27) must be considered for all nodes because the effi-

ciency of the scheduling policies are analyzed under the assumption that the schedul-

ing capacity of the communication system is not exceeded according to Theorem 1
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(Scheduling Capacity Theorem).

V (ζ
(f)
i ) ≤ k(T − ζ(f)

i ),∀si ∈ S (2.27)

From (2.27), FC can accumulate maximum k data packets. This scheduling capacity

can be achieved if there is an energy harvesting process such that k out of m nodes

can transmit one data packet in each TS and the remaining nodes can transmit no

packet.

In this case, Vloss becomes maximum when each node si ∈ S
(lf)
k harvests 1 unit

energy and the other nodes si ∈ S − S(lf)
k harvest almost no energy in each TS.It can

be shown as below in (2.28). By putting (2.25) in (2.26), (2.28) can be written as

Vloss =
∑

si∈S
(lf)
k

Bi

(
ζ

(f)
i

)
+

T∑
t=ζ

(f)
i +1

Eh
i (t)

+
∑

si∈S−S
(lf)
k

Bi

(
ζ

(f)
i

)
+

T∑
t=ζ

(f)
i +1

Eh
i (t)

 .
(2.28)

Last departure time of the node sj = s0 which satisfies ζ(f)
i ≤ ζ

(f)
j ∀si ∈ S − {sj}

is denoted by ζ(f)
j = T0. By using Lemma 5 and (2.28), we write an upper bound for

Vloss as

V
′

loss =
∑

si∈S
(lf)
k

⌊
Bi (T0) +

T∑
t=T0+1

Eh
i (t)

⌋
+

∑
si∈S−S

(lf)
k

⌊
Bi (T0) +

T∑
t=T0+1

Eh
i (t)

⌋
≥ Vloss.

(2.29)

To maximize Vloss, maximizing V ′loss will be enough so take Vloss = V
′

loss. To satisfy

this equality, we assume that Ti = T0 for si ∈ S(lf)
k . By using (2.27),

V (T0) =
∑
si∈S

V
(T0)
i ≤ k(T − T0) (2.30)

can be written. Hence,

V (T0) =
∑

si∈S
(lf)
k

V
(T0)
i +

∑
si∈S−S

(lf)
k

V
(T0)
i ≤ k(T − T0) (2.31)

V (T0) =
∑

si∈S
(lf)
k

[
V

(T0)
i − V (f)

i + V
(f)
i

]
+

∑
si∈S−S

(lf)
k

[
V

(T0)
i − V (f)

i + V
(f)
i

]
≤ k(T − T0) (2.32)
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Since T0 = ζ
(f)
i ∀si ∈ S

(lf)
k ,

V
(T0)
i − V (f)

i = 0,∀si ∈ S(lf)
k (2.33)

Hence, the inequality (2.32) converts into

V (T0) =
∑

si∈S
(lf)
k

V
(f)
i +

∑
si∈S−S

(lf)
k

[
V

(T0)
i − V (f)

i

]
+

∑
si∈S−S

(lf)
k

V
(f)
i ≤ k(T − T0). (2.34)

By using (2.26) and (2.29) for V ′loss in (2.34), one obtains

V (T0) = V
′

loss +
∑

si∈S−S
(lf)
k

[
V

(T0)
i − V (f)

i

]
≤ k(T − T0). (2.35)

Since T0 ≤ ζ
(f)
i ∀si ∈ S − S

(lf)
k , by Lemma 5,

V ∗i (T0) ≤ V ∗i

(
ζ

(f)
i

)
,∀si ∈ S − S(lf)

k , (2.36)

V tot
i (T )− V ∗i (T0) ≥ V ∗i (T )− V ∗i

(
ζ

(f)
i

)
,∀si ∈ S − S(lf)

k , (2.37)

V
(T0)
i ≥ V

(f)
i , ∀si ∈ S − S(lf)

k . (2.38)

By (2.35), to maximize V ′loss,
∑

si∈S−S
(lf)
k

[
V

(T0)
i − V (f)

i

]
should be minimized. By

(2.38),

V
(T0)
i − V (f)

i ≥ 0. (2.39)

If V (T0)
i − V (f)

i = 0, (2.35) converts into

V (T0) = V
′

loss ≤ k(T − T0). (2.40)

By using (2.29) and (2.40),

Vloss ≤ k(T − T0) (2.41)
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By (2.20), efficiency of UROP can be written as below:

ηUROP = 1−

∑m
i=1 V

(f)
i −

∑
si∈Sk

(
T − ξ(f)

i

)
∑m

i=1 Vi

(
ζ

(f)
i

)
+
∑m

i=1 V
(f)
i

(2.42)

Recall that
∑

si∈Sk

(
T − ξ(f)

i

)
≥ 0. By using (2.42) and (2.23), (2.43) can be derived,

ηUROP ≥ 1− Vloss∑m
i=1 V

∗
i (T )

≥ 1−
∑m

i=1 V
(f)
i∑m

i=1 V
∗
i (T )

≥ 1− k(T − T0)∑m
i=1 V

∗
i (T )

. (2.43)

Hence, Theorem 4 is proven and the worst case efficiency bounds of UROP are found

as

1− k(T − T0)∑m
i=1 V

∗
i (T )

≤ ηUROP ≤ 1. (2.44)

When elephant nodes are present: Regular nodes scheduled by UROP, give rise to

at least one idle TS in a period (frame). However, this does not hold for elephant

nodes. If there are nodes that behave as elephant nodes in a period, these do leave

any TS empty in that period. Consequently, for these nodes UROP behaves as UP,

which does not give up TS to determine the battery states of nodes. Hence, efficiency

bounds in Theorem 4 are also valid in case of elephant nodes.

Considering the worst case in Theorem 4, we found lower and upper bounds for the

efficiency of UROP in terms of parameters. k is known and V ∗i (T ) can be found for

each node si by Remark 4. However, the parameter T0 cannot be determined unless

all details of scheduling in problem horizon is known. Due to the incertainty of T0,

Theorem 4 does not give sufficient information about efficiency of UROP. As we

mentioned in Section 2.1, expected average reward is a suitable performance measure

for the EH scheduling policy over finite or infinite horizon [51]. Considering T0 (and

the other departure times of nodes) as ergodic processes depending on EH processes,

we take expectation of the bounds of UROP in Theorem 5. Hence, the bounds of

UROP can be determined in expected manner.
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Theorem 5. (Expected Efficiency Bounds of UROP) For 0 < D < 1, expected

efficiency of UROP is bounded as

1− 2m

(1−D)DTk
≤ E {ηUROP} ≤ 1, (2.45)

whereD,T,m, and k are density, problem horizon length, number of the nodes, num-

ber of the orthogonal channels of the FC, respectively.

Proof. By Theorem 4, the efficiency of UROP can be written as

1− k(T − T0)∑m
i=1 V

∗
i (T )

≤ ηUROP ≤ 1 (2.46)

1− k(T − T0)

V ∗(T )
≤ ηUROP ≤ 1. (2.47)

Recall that the efficiency of UROP is analyzed for the systems satisfying D(t) < 1

∀t < T . Remember that π∗ = πfe if D(t) < 1 ∀t < T . Therefore, V ∗(T ) =

V fe(T ) = DTk D(t) < 1. In this analysis, a scenario is assumed and EH process

is determined but not known by the FC. Therefore, D, T , k and so V ∗(T ) are deter-

mined.

In the following inequality, an expectation is taken over (T − T0) which depends

on the scheduling policy of the FC, not on the parameters D, T , k and so V ∗(T ).

Therefore, E {V ∗(T )} = V ∗(T ).

1− E
{
k(T − T0)

V ∗(T )

}
≤ E {ηUROP} ≤ 1 (2.48)

1− kE
{

(T − T0)

V ∗(T )

}
≤ E {ηUROP} ≤ 1 (2.49)

1− kE {(T − T0)}
V ∗(T )

≤ E {ηUROP} ≤ 1 (2.50)

We denote by τar,i and τdep,i, elapsed time between two consecutive selection of same

sensor si and elapsed time between two consecutive departure of same sensor si. For

long problem horizons, E {τar,i}=E {τdep,i} ∀i. By Lemma 3, L ⊂ (F1 ∪ F2). By
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Lemma 2, none of nodes si ∈ S − Sk can be selected (started to schedule) more than

twice by the FC in the time interval (T0, T ]; therefore, 2.51 can be written as

E {T − T0} < 2E {τar} . (2.51)

None of the nodes si ∈ Sk can be left (stopped to schedule) more than once by the

FC in interval
(
ζ

(f)
i , T

]
; therefore, one obtains

E
{
T − ζ(f)

i

}
< 2E {τdep} (2.52)

Hence, (2.50) is converted into

1− 2kE {τar}
V (T )

≤ E {ηUROP} ≤ 1. (2.53)

Let D and k denote, the density during problem horizon T and the number of orthog-

onal channels of the FC, respectively. By definition of D, V ∗(T ) = DTk. Hence,

D =
kE {τar} −m
kE {τar}

(2.54)

E {τar} =
m

k(1−D)
(2.55)

By using (2.53) and (2.55), (2.56) is written as

1−
2k
(

m
k(1−D)

)
DTk

< E {ηUROP} ≤ 1

1− 2m

(1−D)DTk
< E {ηUROP} ≤ 1. (2.56)

Note: As D = 0 means no harvested energy in the whole communication network, it

is trivial case and not considered in our calculations. D = 1 means that there is no

idle TS if the fusion center apply the 100% efficient policy (πfe). However, UROP
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benefits from idle TSs to schedule the sensors as mentioned in Section 2.5. From

Theorem 1, no πfe exists for D > 1. Therefore, we investigate 0 < D < 1.

As you may notice that the expected lower bound becomes negative for the case

m ≥ (1−D)DTk
2

. However, we know that expected efficiency is nonnegative.

2.6 Extension to the Infinite-Horizon Case

As in (2.13) and (2.14), efficiency of RR-based policies (also MP in [47, 49]) de-

pend on not only sensor densities D and D(t) but also partial sensor densities Di and

D
(t)
i and cannot improve as problem horizon goes to infinity. Also, it is proved that

batteries of nodes for which Di > 1 and D(t)
i > 1 will overflow over infinite hori-

zon. However, efficiency of UROP in finite horizon case improves and converges to

1 (100% efficiency) for 0 < D < 1 as the problem horizon increase and goes to

infinity. By Theorem 5 and the relation V ∗(T ) = DTk, efficiency of UROP is, for

0 < D < 1,

lim
T→∞

(
1− 2m

(1−D)DTk

)
< lim

T→∞
E {ηUROP} ≤ 1 (2.57)

Hence, lim
T→∞

E {ηUROP} = 1, which shows that UROP is asymptotically optimal in

the infinite horizon for general energy harvesting processes.

2.7 Numerical Results

In this section, efficiency achieved by RR and UROP policies are compared for inde-

pendent (Poisson) and correlated (Markovian) energy harvesting processes under high

density (D=0.975) and low density (D=0.2) energy harvesting processes first. RR and

UROP are then compared under a fairness criterion for independent (Poisson) and

correlated (Markovian) energy harvesting processes under high density (D=0.975).

We focus on the region D(t) ≤ 1 so η∗ = ηfe = 1.

To begin with, we compare efficiencies of these policies under both infinite and finite

battery assumption for four cases. To create a realistic scenario, we take m = 100,
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Table 2.1: Efficiencies (ratio of total throughput by a policy to total throughput by optimal policy) of
UROP, RR under infinite and finite battery Bi = 50 assumptions for uniform independent low density
energy arrivals (Di = D = 0.2 ∀i) such that m/k ∈ Z. Efficiency of UROP is also shown for m/k

taking a noninteger value.

Efficiency Infinite battery Finite battery
Efficiency of Round-Robin (m

k
∈ Z) 99.83 99.83

Efficiency of UROP (m
k
∈ Z) 99.58 99.58

Efficiency of UROP (m
k
/∈ Z) 99.41 99.41

Table 2.2: Efficiencies (ratio of total throughput by a policy to total throughput by optimal policy) of
UROP, RR under infinite and finite battery Bi = 50 assumptions for uniform independent high density
energy arrivals (Di = D = 0.975 ∀i) such that m/k ∈ Z. Efficiency of UROP is also shown for m/k

taking a noninteger value.

Efficiency Infinite battery Finite battery
Efficiency of Round-Robin (m

k
∈ Z) 99.64 99.64

Efficiency of UROP (m
k
∈ Z) 99.45 99.45

Efficiency of UROP (m
k
/∈ Z) 99.37 99.37

k = 10, T = 2000 for both policies. We also investigate the efficiency of UROP

by taking m = 103 and k = 10. Note that we compare efficiency of UROP with

an arbitrary RR since ηRR ∼= ηMP for long problem horizons (Theorem 3). In this

section, we investigate the efficiencies of both policies under both an uniform and

nonuniform EH processes. First, uniform, low and high density independent traffic

are formed by taking Di = 0.2 for all nodes. Under these EH processes, both UROP

and RR achieves nearly 100% efficiency as shown in Table 2.1 and Table 2.2. Then,

uniform, low and high density Markovian traffic are formed by taking Di = 0.975

for all nodes. Under these EH processes, both UROP and RR achieves nearly 100%

efficiency as shown in Table 2.3 and Table 2.4. Secondly, nonuniform, high density

traffic is formed by taking Di = 3 for 25 of the nodes and Di = 0.3 for the remaining

ones (Recall that Di is partial density of sensor si as defined in Section 2.2). More-

over, low density, nonuniform traffic is formed by taking Di = 2.1 for 5 nodes and

Di = 0.1 for the remaining nodes. Independent EH processes are modelled as Pois-

son. Markov EH process are modelled by a state spaceMi = {0, 1, 2}, ∀si and a 3×3

transition matrix P such that Pii = 0.9 ∀i and Pij = 0.05 for i 6= j. The harvested

energy for node si in TS t, Eh
i (t), is determined by Mi such that Eh

i (t) = Di×Mi(t)

(Note that each transmission requires unit energy.).
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Table 2.3: Efficiencies (ratio of total throughput by a policy to total throughput by optimal policy) of
UROP, RR under infinite and finite battery Bi = 50 assumptions for uniform Markovian low density
energy arrivals (Di = D = 0.2 ∀i) such that m/k ∈ Z. Efficiency of UROP is also shown for m/k

taking a noninteger value.

Efficiency Infinite battery Finite battery
Efficiency of Round-Robin (m

k
∈ Z) 99.79 99.79

Efficiency of UROP (m
k
∈ Z) 99.67 99.67

Efficiency of UROP (m
k
/∈ Z) 99.61 99.61

Table 2.4: Efficiencies (ratio of total throughput by a policy to total throughput by optimal policy) of
UROP, RR under infinite and finite battery Bi = 50 assumptions for uniform Markovian high density
energy arrivals (Di = D = 0.975 ∀i) such that m/k ∈ Z. Efficiency of UROP is also shown for m/k

taking a noninteger value.

Efficiency Infinite battery Finite battery
Efficiency of Round-Robin (m

k
∈ Z) 99.63 99.63

Efficiency of UROP (m
k
∈ Z) 99.51 99.51

Efficiency of UROP (m
k
/∈ Z) 99.47 99.47

In Figure 2.7 (Low density, independent energy harvesting process), UROP has nearly

100% efficiency whereas RR has approximately 80% efficiency. In Figure 2.8 (High

density, independent energy harvesting process), UROP continues to attain nearly

100% efficiency whereas the efficiency of RR has dropped below 50%. This is an

expected result since Theorem 2 states that as the number of nodes s.t. Di > 1

increases, efficiency of RR decreases. By Remark 2, efficiency of RR is expected to

be ηRR = 48.7% and ηRR = 72.5% for the low and high density energy harvesting

process, respectively.

In Figure 2.9(Low density, Markov energy harvesting process), UROP has nearly

100% efficiency whereas RR has nearly 70% efficiency. In Figure 2.10 (High den-

sity, Markov energy harvesting process), UROP has nearly 100% efficiency whereas

RR has nearly 50% efficiency. When the energy harvesting process has memory, we

observe similar results, except that the performance of RR drops further. The effi-

ciency of UROP is more robust to memory in harvest process, as compared to RR

(Note that Pii = 0.9, ∀i).

Considering all four figures, we wish to make three additional remarks. First, the

efficiency of UROP converges to 100% as T → ∞, as shown in Section 2.6 (UROP
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Figure 2.7: Efficiencies (ratio of total throughput by a policy to total throughput by optimal policy)
of UROP, RR under infinite and finite battery Bi=50 assumptions for nonuniform independent low
density energy arrivals (D = 0.2) such that m/k ∈ Z. Efficiency of UROP is also shown for m/k

taking a noninteger value.
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Figure 2.8: Efficiencies (ratio of total throughput by a policy to total throughput by optimal policy)
of UROP, RR under infinite and finite battery Bi=50 assumptions for nonuniform independent high
density energy arrivals (D = 0.975) such that m/k ∈ Z. Efficiency of UROP is also shown for m/k

taking a noninteger value.
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Figure 2.9: Efficiencies (ratio of total throughput by a policy to total throughput by optimal policy)
of UROP, RR under infinite and finite battery Bi=50 assumptions for nonuniform Markov low density
energy arrivals (D = 0.2) such that m/k ∈ Z. Efficiency of UROP is also shown for m/k taking a
noninteger value.
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Figure 2.10: Efficiencies (ratio of total throughput by a policy to total throughput by optimal policy)
of UROP, RR under infinite and finite battery Bi=50 assumptions for nonuniform Markov high density
energy arrivals (D = 0.975) such that m/k ∈ Z. Efficiency of UROP is also shown for m/k taking a
noninteger value.
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is asymptotically optimal). Secondly, efficiency of UROP with a reasonable-sized

finite battery Bi=50 is almost same as that with infinite battery. Finally, UROP can

achieve nearly 100% throughput both for m/k ∈ Z and m/k /∈ Z cases, while RR

needs m/k ∈ Z assumption for optimality. We conclude that UROP is more adaptive

and efficient than RR (and MP proposed in [47, 49] by Theorem 3).

In addition to throughput, the performances of RR and UROP are also compared in

terms of fairness, which is often an important issue for scheduling policies. We apply

Jain’s Fairness index [60],

f(x) =
[
∑m

i=1 xi(t)]
2

m
∑m

i=1 x
2
i (t)

, (2.58)

where xi(t) is the ith user allocation up to TS t. Adopting the proportionate progress

(P-fairness) criterion in [61], we scale the resource allocation xi(t) over users as

xi(t) =
Vi(t)

V ∗i (t)
. (2.59)

RR is usually known as a fair policy since it schedules users periodically. RR is 100%

fair for uniform EH processes. However, RR may not be very fair for nonuniform

EH processes. In fact, from 2.13 and 2.14 the efficiency of RR is expected to be

FIRR = 89.3% for high density D = 0.975, nonuniform arrivals. On the other hand,

UROP schedules the users proportionally to their loads as well as respecting same

or periodically. Consequently, UROP can achieve 100% fairness for general case of

EH process. This is evident on Figure 2.11 and Figure 2.12. It is also observed that

UROP is nearly 100% fair also for m/k noninteger case.

2.8 Computational Complexity of the Scheduling Policies

In addition to throughput and fairness, computational complexity is very important

for scheduling policies. Therefore, computational complexities of RR, UROP and UP

(uniformizing policy, the omniscient policy proposed in Section 2.4) are compared in

this section. RR has complexity O(1). Besides achieving almost 100% throughput

and 100% fairness for various EH processes, UROP has low-complexity as well. In

each TS, UROP checks the k nodes which are scheduled in previous TS thus it makes
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Figure 2.11: Fairness of UROP, RR under infinite and finite battery Bi=50 assumptions for high
density D = 0.975 and independent EH process by m/k integer assumption.
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Figure 2.12: Fairness of UROP, RR under infinite and finite battery Bi=50 assumptions for high
density D = 0.975 and Markov EH process by m/k integer assumption.
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only k computations in each TS. Therefore, computational complexity of UROP is

O(kT ).

It is also interesting to compare UROP with UP in terms of computational complexity.

UP is an optimal omniscient policy. In each TS, UP checks the k nodes scheduled in

previous TS and looks for replacement nodes if some of the k nodes cannot transmit

data in that TS. As FC schedules k nodes in each TS, it can find k nodes which can

transmit data to the FC in that TS by checking at least battery states of k nodes. If

the first checked k nodes includes some nodes which cannot transmit data in that TS,

then FC continue to check the remaining nodes until it find k nodes to transmit data.

Note that if the number of nodes which can transmit data to the FC is less than k, FC

check battery states of all nodes and schedules k nodes including all nodes which can

transmit data in that TS. Therefore, the number of computation which UP makes in

each TS is between k and m. Hence, UP has a computational complexity between

O(kT ) and O(mT ).

The results show that UP may have complexity O(mT ) to achieve 100% throughput

whereas UROP has complexity O(kT ) to achieve nearly 100% throughput. This

implies that UP may have m
k

times more computation than UROP to achieve the same

throughput performance. In other words, UROP achieves the same performance as

UP with up to m
k

times lower complexity.
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CHAPTER 3

ACHIEVING NEARLY 100% THROUGHPUT WITHOUT

FEEDBACK IN ENERGY HARVESTING WIRELESS

NETWORKS

In this chapter, we investigate a similar network scheduling problem with the schedul-

ing problem in previous chapter except that there is no data backlog assumption in this

problem. Recall the other assumptions stated in the previous chapter. In the network,

a fusion center (FC) schedules a set of energy harvesting nodes to collect data from

them. Fusion center does not know the instantaneous battery states of nodes or the

statistics of random energy harvesting processes. Fusion center only knows the his-

tory of previous transmission attempts. The batteries of the nodes have infinite battery

capacity and there is no leakage from the batteries.

This chapter is organized as follows. The problem formulation is made precise in

Section 3.1. In Section 3.2, we investigate the scheduling capacity of the system. In

Section 3.3, we show that RR-based policies are suboptimal under many non-uniform

energy harvesting and data arrival processes. In Section 3.4, we describe and gener-

alize the Uniformizing Random Ordered Policy (UROP) to operate under arbitrary

energy harvesting and data arrival processes under an infinite battery assumption. In

Section 3.5, we compare UROP and myopic policies in [47], [49], [53] through sim-

ulations.
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3.1 System Model and Problem Formulation

We consider a single-hop wireless network in which a Fusion Center (FC) collects

data packets from m energy harvesting (EH) nodes surrounding it. The wireless net-

work operates in a TDMA fashion over time slots (TSs) of equal duration, and can

schedule up to k nodes in each TS.

When a node is scheduled for transmission, it transmits if it has at least unit of en-

ergy and one data packet in its buffer. For simplicity, data is sent in the form of unit

sized packets which take unit energy to transmit, and each transmission is success-

ful with probability 1. Data becomes available at nodes according to an arbitrary

process, corresponding to the nodes collecting measurements from their environment

and encoding them as data packets to be sent to the fusion center.

We denote by S = {s1, s2, .., sm} the set of nodes. The EH processes are assumed to

be independent for each node. The amount of energy harvested by node si during TS

t is denoted byEh
i (t), and the total energy harvested by time t byEtot

i (t). The number

of new data packets becoming available at node si in slot t is denoted by Da
i (t), and

the total number of packets collected at node si up to TS t byQtot
i (t). Both battery and

buffer sizes are assumed to be unlimited. Moreover, we denote by Bi(t) and Qi(t),

the energy remaining in the battery of node si and the number of packets remaining

in the buffer of node si at TS t. The number of packets transmitted by node si in TS t

is denoted by Wi(t) = I(si ∈ Ssc(t))I(Bi(t) ≥ 1)I(Qi(t) ≥ 1) ∈ {0, 1} where I(A)

is indicator function and the set of k nodes scheduled by FC in TS t, are Ssc(t) ⊂ S.

In each TS t, Ssc(t) are determined by a policy π.

In the wireless network, V (t) is the total number of data packets which FC received

from nodes from TS 1 to TS t. In general (consistently with previous literature [47],

[49], [53]), the objective is to maximize the total throughput (expected discounted

reward when considering decision theory literature) over the problem horizon:

max
Ssc(t),t=1,..,T

V (t) = max
Ssc(t),t=1,..,T

E

[
T∑
t=1

βt−1
∑
si∈S

I(si ∈ Ssc(t))I(Bi(t) ≥ 1)I(Qi(t) ≥ 1)

]
(3.1)
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where 0 < β ≤ 1 is the discount factor. The discount factor corresponds to placing

lower value on data that is delayed. Additionally in this case, as the FC schedules

the nodes according to both their energy and their packets, β could be considered to

correspond to delay and battery leakage. Ignoring delay and leakage (which tends to

be quite negligible in time frames typical for transmitting a packet [2]) and focusing

purely on throughput, we shall set β = 1 and convert problem (3.1) to problem (3.2)

(average reward, a suitable performance measure for delay-insensitive communica-

tion problems [51]):

max
Ssc(t),t=1,..,T

V (t)

T
= max
Ssc(t),t=1,..,T

E

[
1

T

T∑
t=1

∑
si∈S

I(si ∈ Ssc(t))I(Bi(t) ≥ 1)I(Qi(t) ≥ 1)

]
(3.2)

Several definitions are in order: A fully efficient policy (alternatively, 100% efficient

policy) ensures that the nodes use up all of the harvested energy such that Bi(T ) < 1

∀si ∈ S, or the nodes transmit all their data. Efficiency of a policy π (η) is defined

as the ratio of total throughput achieved by π and the throughput achieved by a fully

efficient policy πfe within the problem horizon (ηfe = 1). An optimal policy π∗ is

the scheduling policy that maximizes throughput by using the harvested energy. It

is important to our study to understand, for a given case of energy harvests and data

arrivals, whether there exists an both optimal and fully efficient policy (to find the

region where π∗ = πfe = 1).

This paper shows near optimality of Uniformizing Random Ordered Policy, proposed

in [32], for a broad class of energy harvesting and data arrival processes. UROP goes

through nodes by self-adapting to their energy harvest and data arrival rate, and in this

way stands in contrast to Round Robin (RR) policies. In particular, a RR policy with

quantum=1 is a policy that goes through nodes in a cyclic order, giving each node one

time slot at a round (cycle). By [32], efficiency of any RR policy with quantum=1

πRR (ηRR) is almost the same as that of myopic policies πMP (ηMP ) proposed in

[47], [49], [53]. Then, efficiency of UROP πUROP will be compared with that of an

arbitrary RR Policy with quantum=1 TS πRR in Section 3.5. Recall that a Round

Robin Policy with quantum=1 TS is a policy which allocates each node 1 TS during

a round (cycle). A RR Policy with quantum=2 TS allocates each node 2 TS during a

round. A RR Policy with quantum=3 TS allocates each node 3 TS during a round, so
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on.

Before moving on to Section 3.2, it will be useful to introduce some more terminology

that will be used in the rest of paper. Density of node i (Di) is the number of packets

sent by the node si with πfe normalized by kT
m

during problem horizon T . Partial

Density of node si (D(t)
i ) is the total number of packets sent by the node si with

πfe normalized by k(T−t)
m

in the time interval (t, T ]. Density (D) is the average of

densities of all nodes during problem horizon T . Partial Density (D(t)) is the average

of partial densities of all nodes in the interval [t, T ]. By definition, D,D(t) ≤ 1.

3.2 Scheduling Capacity

As the FC has access to k channels, it can schedule at most k nodes in each TS. If

the system harvests too much energy, then the scheduling capacity of the system is

exceeded and no 100% efficient policy exists. We denote by V (t)
i and V (t) the number

of packets which could be sent by node si and by all nodes, respectively in the interval

(t, T ]. V (t)
i and V (t) can be represented as

V
(t)
i = min

{⌊
Bi(t) +

T∑
j=t+1

Eh
i (j)

⌋
, Qi(t) +

T∑
j=t+1

Da
i (j)

}
, (3.3)

V (t) =
∑
si∈S

V
(t)
i . (3.4)

In the following, we record the condition on the value of the total amount of energy

harvested and the number of data packets arrived so that a 100% efficient policy is

possible.

Theorem 6. (Scheduling Capacity) Assume 0 ≤ t < T ,

i. If V (t) > k(T − t), no policy can achieve 100% efficiency, all possible policies

have efficiency below 100%.

ii. If V (t) ≤ k(T − t), a 100% efficient policy that maximizes throughput exists.
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Proof. i)

V (t) > k(T − t) (3.5)

As scheduling capacity of the FC is k packets per slot, FC can receive at most k(T−t)
packets from the nodes in the interval (t, T ]. Assume a policy π which can achieve

up to scheduling capacity. Then, efficiency of π equals the maximum efficiency in

the condition (3.5), and it is represented as

η∗ =
min

{
k(T − t), V (t)

}
V (t)

=
k(T − t)
V (t)

. (3.6)

If (3.5) is satisfied, the scheduling capacity is exceeded. By (3.5) and (3.6), η∗ < 1.

This means that optimum policy cannot achieve 100% (fully) efficiency. Therefore,

there is no 100% efficient policy which makes FC receive all V (t) packets from the

nodes.

ii)

V (t) ≤ k(T − t) (3.7)

As scheduling capacity of the fusion center (FC) is k data packets per time slot, FC

can accumulate at most k(T − t) data packets from the nodes in the time interval

(t, T ]. Consider an omniscient offline policy: it will not leave an idle TSs as long as

there is a node with energy and data available, who is currently not scheduled. Hence,

if there is an idle TS, this is because all available energy is being used. Trivially, this

scheduling policy achieves 100% efficiency if D(t) ≤ 1,

η∗ =
min

{
k(T − t), V (t)

}
V (t)

=
V (t)

V (t)

= 1. (3.8)

If (3.7) is satisfied, the scheduling capacity of the fusion center is not exceeded. By

(3.8), there is an 100% efficient policy which makes the fusion center accumulate all

V (t) data packets from the nodes.
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3.3 Efficiency of RR-based Policies

The scheduling problem is also investigated in [47], [49], [53] for certain scenarios.

These papers propose myopic policies (MP) which are a kind of RR-based policies

with quantum=1 TS and show that RR-based myopic policies is optimal in certain

specific cases as mentioned in introduction.

First, we will investigate the efficiency of RR-based policies with quantum=1 TS in

Theorem 7. There is only a slight difference between the efficiencies of any two

RR-based policies in long problem horizon T (m
k
� T ) (as proven in Theorem 3 in

previous chapter). [32] Hence, the efficiency of RR-based myopic policies in [47],

[49], [53] are investigated. It is shown that the policies in [47], [49], [53] are generally

suboptimal.

For the case that each node has a battery arger than unit energy size or a buffer larger

than one packet size, there is no known myopic policy in the literature. Therefore,

we will compare UROP only with myopic policies in [47], [49], [53] in terms of

efficiency.

Theorem 7. Suppose that T � m
k
∈ Z and the scheduling capacity of the FC is not

exceeded by Theorem 6 (V (t)
i ≤ (T − t) ∀si ∈ S,∀t and V (t) ≤ k(T − t) ∀t). If

there are some sensors si ∈ S such that V (t)
i > k(T−t)

m
, all RR-based policies with

quantum=1 TS will have efficiency below 100% although a fully efficient policy (πfe)

exists. Moreover, batteries of some nodes will overflow.

Proof. In this proof, RR policy implies RR policies with quantum=1 TS. We study

efficiency of RR in two possible cases:

i. If σ = kT
m
/∈ Z, RR allocates some nodes bσc+ 1 TSs and other nodes bσc TSs for

data transmission.

ii. If σ = kT
m
∈ Z, RR allocates each node σ TSs for data transmission.

Assume that V (t)
i > k(T−t)

m
, ∃si ∈ S and H is the set of these nodes. By definition of

density, D(t)
i > 1 ∀si ∈ H .

i. If the FC schedules m nodes by RR policy in the problem horizon T , RR policy
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allocates some nodes bσc + 1 TSs and other nodes bσc TSs for data transmission

where σ = kT
m

/∈ Z and {σ} , σ − bσc. To maximize efficiency of RR policy, we

assume that each node si ∈ H can transmit at most bσc + 1 data packets. However,

each node cannot transmit V (t)
i − bσc − 1 data packets although V (t) ≤ k(T − t)

which means that a both optimum and 100% efficient policy exists. On the other

hand, each node si ∈ S − H can transmit all V (t)
i data packets. Efficiency of RR

policy is represented as

ηRR =

∑
si∈Smin

{
V

(t)
i , σ

}
∑

si∈S V
(t)
i

(3.9)

=

∑
si∈H(bσc+ 1) +

∑
si∈S−H V

(t)
i∑

si∈S V
(t)
i

(3.10)

= 1−
∑

si∈H(V
(t)
i − bσc − 1)∑
si∈S V

(t)
i

. (3.11)

By definition of D(t)
i , ηRR is also stated as

ηRR = 1−
∑

si∈H(D
(t)
i σ − bσc − 1)∑
si∈S D

(t)
i σ

(3.12)

= 1−
∑

si∈H(D
(t)
i − 1)σ − (1− {σ}))∑

si∈S D
(t)
i σ

. (3.13)

As D(t)
i > 1 for si ∈ H and σ � 1−{σ}, (1−{σ}) < (D

(t)
i −1)σ. Hence, ηRR < 1,

i.e., RR is suboptimal.

ii. As σ ∈ Z, RR allocates each node σ = bσc TSs for data transmission. None of

nodes can use bσc+1 TSs for data transmission. Therefore, efficiency of RR policies

in this case can be represented as

ηRR = 1−
∑

si∈H(V
(t)
i − σ)∑

si∈S V
(t)
i

(3.14)

instead of (3.11). By definition of D(t)
i , ηRR is stated as

ηRR = 1−
∑

si∈H(D
(t)
i − 1)∑

si∈S D
(t)
i

. (3.15)

Since D(t)
i > 1 and D(t) ≤ 1 ∀si ∈ H , ηRR < 1. Hence, RR policies with quantum=1
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TS are suboptimal because an optimal policy achieves fully efficiency (π∗ = πfe)

when D(t) ≤ 1 by Theorem 6.

3.4 A Near-Optimal Online Solution

The following Lemma forms the basis of our policy, UROP.

Lemma 6. (Partial Optimality) If min {Bi(t), Qi(t)} < 1 for a node si at TS t, it

can be said that an optimal policy π∗ has been applied for the node si and efficiency

is 100% for the node si up to TS t.

Proof. For a data packet transmission, buffer of a node si must not be empty and the

node must have at least unit energy. If Qi(t) = 0, si has no data packet to send. If

Bi(t) < 1, there is not enough energy for data transmission. By TS t, the node si has

transmit all data packets which could be sent with the total harvested energy up to TS

t, Etot
i (t), and efficiency is 100% for the node si up to TS t.

D < 1 implies that there exists always idle TSs over a problem horizon even if πfe

is applied. Lemma 6 states that if a scheduled node cannot transmit data in TS t (idle

TS occurs), a 100% efficient policy is applied to that node until TS t. By Lemma 6,

UROP will be proposed based on this observation: UROP uses idle TSs to determine

the battery states of scheduled nodes.

3.4.1 Uniformizing Random Ordered Policy (UROP)

Considering that the energy harvesting and data arrival processes may be unpre-

dictable, UROP orders the nodes randomly before starting to schedule them. The

first k nodes in the ordering are scheduled to transmit. If a scheduled node can trans-

mit a packet to the FC (because it has enough energy and data to transmit) in one TS,

then it will continue to be scheduled in the next TS. Otherwise, FC schedules the next

node in the ordering in its place. FC completes a scheduling round when all m nodes

are scheduled once. In part B, efficiency of UROP is studied for finite horizon case.
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In part C, it is shown that UROP is asymptotically optimal under a broad set of energy

harvesting and data arrival processes.

3.4.2 Efficiency of UROP in Finite Horizon Case

In this part, the worst case and expected efficiency of UROP is studied in quite general

energy harvesting and data arrival processes. First, several lemmas are stated. Then,

these lemmas are used to prove Theorem 8 and Theorem 9.

Remark 5. If Etot
i (t) and Qtot

i (t) are the total harvested energy and arrived packets

in node si up to TS t and V ∗i (t) is the number of data packets which could be sent by

node si until TS t under π∗, V ∗i (t) = min {bEtot
i (t)c , Qtot

i (t)}.

Now, we will define some new parameters related to idle time slots and these will be

used in Lemma 7, Lemma 8, Theorem 8 and Theorem 9. Aidle(j, l) is the pair of the

jth channel of the FC and lth idle TS for the jth channel. Aidle(j, l) occurs in TS γjl .

In this TS γjl , FC drops a node using jth channel and start to schedule another node

in same channel. In the idle TSs, FC drops some of the k nodes and starts to schedule

other nodes in their place. TI is the set which consists of all pairs Aidle(j, l). Figure

3.1 represents the transmission channel-idle time slot pairs in an example scheduling

table.

Let’s denote by ξ(f)
i and ξ(f−1)

i the idle TSs when FC starts to schedule node si for

the last time and for the second last time, respectively. F1 and F2 are the set of all

pairs Aidle(u, v) such that γuv = ξ
(f)
i for a si ∈ S and the set of all pairs Aidle(u, v)

such that γuv = ξ
(f−1)
i for a si ∈ S. As there are m nodes, |F1| = |F2| = m. G1 is the

set of all pairs Aidle(p, q) such that γpq 6= ξ
(f)
i for si ∈ S. Moreover, G2 is the set of

all pairs Aidle(p, q) such that γpq 6= ξ
(f)
i and γpq 6= ξ

(f−1)
i for si ∈ S. In other words,

G1 = TI − F1 and G2 = TI − (F1 ∪ F2).

Lemma 7. If Aidle(u, v) ∈ (F1 ∪ F2),

i) There does not exist such a pairAidle(p, q) ∈ G1 that γpq > γuv for someAidle(u, v) ∈
F1.

ii) There does not exist such a pairAidle(p, q) ∈ G2 that γpq > γuv for someAidle(u, v) ∈
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Figure 3.1: An example scheduling table kept by the fusion center (FC) for all k channels over
problem horizon T = N time slots. Dark colored TSs represent busy time slots, and the white ones
represent idle ones.

(F1 ∪ F2).

Proof. Part i) Assume that there is such a pairAidle(p, q) ∈ G1 that γpq > γuv for some

Aidle(u, v) ∈ F1. Since γpq 6= ξ
(f)
i ∀si ∈ S, the node sr which is selected by the FC

in TS γpq will be selected by the FC at least once more (γpq < ξ
(f)
r ). According to

UROP, a node sr which is selected in TS T1 cannot be selected by the FC in TS T2

unless ∀si ∈ S − sr are selected in the time interval [T1, T2]. Since γpq > γuv = ξ
(f)
i

for some si, these nodes cannot be selected by the FC in the time interval [γpq , ξ
(f)
j ].

Therefore, there does not exist such a pair Aidle(p, q) ∈ G1 that γpq > γuv for some

Aidle(u, v) ∈ F1.

Part ii) G1 = TI − F1 and G2 = TI − (F1 ∪ F2) = (TI − F1) − F2. Replacing

TI − F1 and F2 with TI and F1 , respectively, in Part i, we can said that there exists

no Aidle(p, q) ∈ G2 such that γpq > γuv for some Aidle(u, v) ∈ F2. By Part i, there

exists no Aidle(p, q) ∈ F2 such that γpq > γuv for some Aidle(u, v) ∈ F1. Therefore,

there does not exist such a pair Aidle(p, q) ∈ G2 that γpq > γuv for some Aidle(u, v) ∈
(F1 ∪ F2).

Lemma 8. If ζ(f)
i is the idle TS when FC stops to schedule node si for the last time

and L is set of ζ(f)
i s, L ⊂ (F1 ∪ F2).
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Proof. Recall that (F1∪F2) ⊆ TI . It can be said that FC starts to schedule a node iff it

leaves (stops to schedule) another node. (F1∪F2) includes two consecutive time (the

last and second last time) when FC starts to schedule a node for all nodes. Assume

that FC schedules a node si. Unless FC stops to schedule the node si, it cannot start

to schedule the node si again. Therefore, (F1 ∪ F2) includes at least one departure

time for each node. Since (F1 ∪ F2) includes the latest 2m idle TSs and at least one

departure time for each node, ζ(f)
i ∈ (F1 ∪ F2), ∀sj . Hence, L ⊂ (F1 ∪ F2).

Theorem 8. (Efficiency Bounds of UROP) Final departure time of the node sj which

satisfies ζ(f)
j ≤ ζ

(f)
i ∀si ∈ S − {sj} is denoted by ζ(f)

j = T0. In problem horizon T ,

efficiency of UROP is bounded as

1− k(T − T0)∑m
i=1 V

∗
i (T )

≤ ηUROP ≤ 1, (3.16)

where V ∗i (T ) is the number of data packets which could be transmitted by node the

si up to TS t under an optimal policy π∗.

Proof. Due to space constraints, the proof is omitted here. Please see the proof of

Theorem 4 in previous chapter.

Considering the worst case, efficiency of UROP is bounded as shown in Theorem 8.

k is known and V ∗i (T ) can be found for each node si by Remark 5. However, T0

cannot be determined unless all details of scheduling in problem horizon is known.

Due to the uncertainty of T0, Theorem 8 does not provide sufficient information about

efficiency of UROP. Remember that average reward is a suitable performance measure

for the scheduling policy over finite or infinite horizon [51]. Considering T0 (and the

other departure times of nodes) as ergodic processes depending on energy harvesting

and data arrival processes, efficiency of UROP is bounded in expectation manner.

Theorem 9. For 0 < D < 1, expected efficiency of UROP is bounded as

1− 2m

(1−D)DTk
≤ E {ηUROP} ≤ 1, (3.17)

where T,m, k and D are problem horizon length, number of nodes, number of mutu-

ally orthogonal channels and density, respectively.
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Proof. Recall that V ∗(T ) =
∑m

i=1 V
∗
i (T ). By Theorem 8, efficiency of UROP can be

written as

1− k(T − T0)

V ∗(T )
≤ ηUROP ≤ 1. (3.18)

1− kE {T − T0}
V ∗(T )

≤ E {ηUROP} ≤ 1. (3.19)

We denote by τar,i and τdep,i, elapsed time between two consecutive selection of same

node si and elapsed time between two consecutive departure of same node si. For

long problem horizons, E {τar,i}=E {τdep,i} ∀i. By Lemma 8, L ⊂ (F1 ∪ F2). By

Lemma 7, if none of nodes si ∈ S − Sk can be selected (started to schedule) more

than twice by the FC in the interval [T0, T ]; therefore, E {T − T0} < 2E {τar}. None

of the nodes si ∈ Sk can be left (stopped to schedule) more than once by the FC in

time interval
[
ζ

(f)
i , T

]
; therefore, the inequality 3.20 can be written all nodes:

E
{
T − ζ(f)

i

}
< 2E {τdep}

< 2E {τar} (3.20)

Hence, (3.19) turns into

1− 2kE {τar}
V ∗(T )

≤ E {ηUROP} ≤ 1 (3.21)

By definition of D in the system model, the total throughput by an optimal policy,

V ∗(T ), can be written as

V ∗(T ) = DTk (3.22)

and also the density can be found as

D =
kE {τar} −m
kE {τar}

. (3.23)

Thus, one obtains

E {τar} =
m

(1−D)k
. (3.24)
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By putting (3.24) into (3.21),

1−
2k m

(1−D)k

DTk
< E {ηUROP} ≤ 1,

1− 2m

(1−D)DTk
< E {ηUROP} ≤ 1. (3.25)

Note: As D = 0 means no harvested energy in the whole communication network, it

is trivial case and not considered in our calculations. D = 1 means that there is no

idle TS if the fusion center apply the 100% efficient policy (πfe). However, UROP

benefits from idle TSs to schedule the sensors as mentioned in Section 3.4. From

Theorem 6, no πfe exists for D > 1. Therefore, we investigate 0 < D < 1.

As you may notice that the expected lower bound becomes negative for the case

m ≥ (1−D)DTk
2

. However, we know that expected efficiency is nonnegative.

3.4.3 Extension to the Infinite-Horizon Case

By (3.25), as 1−D, D, k, and m ∈ R+, E{ηUROP} → 1 as T →∞. Hence, UROP

is asymptotically optimal in infinite horizon for a broad class of energy harvesting

and data arrival processes.

3.5 Numerical Results

In this section, efficiencies of RR and UROP are compared for independent and

Markov energy harvesting (EH) and data arrival (DA) processes under high and low

density energy harvesting and data arrival processes. As D ≤ 1, η∗ = ηfe = 1. In

each case, we compare these policies under both infinite and finite battery assump-

tion. To make a realistic scenario, we take m = 100, k = 10, T = 2000 for both

policies. Note that we compare efficiency of UROP with a RR which is not neces-

sarily MP proposed in [47], [49], [53] since ηRR ∼= ηMP for long problem horizons

[38]. We investigate efficiency of both policies under nonuniform EH and DA pro-

cess (Both have nearly 100% efficiency under uniform EH and DA processes). High
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Figure 3.2: Efficiencies of UROP, RR with infinite battery, infinite buffer and finite buffer Qi =
50, finite battery Bi = 50 for high density (D = 0.975) Independent energy harvesting and data
arrival processes under m/k integer assumption. Efficiency of UROP is also shown for m/k taking a
noninteger value.

density energy harvesting and data arrival processes are formed by taking Di = 3 for

25 nodes and Di = 0.3 for remaining nodes. Also, low density energy harvesting and

data arrival processes are formed by taking Di = 2.1 for 5 nodes and Di = 0.1 for

remaining nodes. Independent EH and DA processes are modelled as Poisson distri-

bution for each node separately. Markov EH and DA processes are modelled for each

node si by a state vector Mi=[0 Di 2Di] and a 3 × 3 transition matrix P such that

pkk = 0.9 and pjk = 0.05 for j 6= k.

Considering Figure 2 (a) and (b) (Independent EH and DA process), UROP has nearly

100% efficiency whereas RR has 80% efficiency for low density and below 50%

efficiency for high density. Considering Figure 3 (a) and (b) (Markov EH and DA

process), UROP has more than 95% efficiency whereas RR has 70% efficiency for

low density and below 60% efficiency for high density. Simulations show that UROP

is asymptotically optimal as proved in previous section. By Theorem 7, as the number

of nodes satisfying Di > 1 increases, efficiency of RR decreases. Therefore, the

results are expected. Notice that efficiency of UROP is almost same under finite
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Figure 3.3: Efficiencies of UROP, RR with infinite battery, infinite buffer and finite buffer Qi = 50,
finite battery Bi = 50 for low density (D = 0.2) Independent energy harvesting and data arrival pro-
cesses under m/k integer assumption. Efficiency of UROP is also shown for m/k taking a noninteger
value.

battery Bi = 50 and finite buffer Qi = 50 assumption as that under infinite battery

and infinite buffer assumption.

We also investigate the efficiency of UROP by taking m = 103 and k = 10. UROP

achieves nearly 100% throughput for the case that m/k is not an integer for quite

general energy harvesting and data arrival processes. Therefore, UROP does not need

m/k integer assumption which RR-based myopic policies in [47], [49], [53] need.
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Figure 3.4: Efficiencies of UROP, RR with infinite battery, infinite buffer and finite buffer Qi =
50, finite battery Bi = 50 for high density (D = 0.975) Markovian energy harvesting and data
arrival processes under m/k integer assumption. Efficiency of UROP is also shown for m/k taking a
noninteger value.
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Figure 3.5: Efficiencies of UROP, RR with infinite battery, infinite buffer and finite buffer Qi = 50,
finite battery Bi = 50 for low density (D = 0.2) Markovian energy harvesting and data arrival pro-
cesses under m/k integer assumption. Efficiency of UROP is also shown for m/k taking a noninteger
value.
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CHAPTER 4

ACHIEVING NEAR OPTIMALITY WITHOUT FEEDBACK IN

COMMUNICATION NETWORKS

In this chapter, we investigate a dual network scheduling problem with the scheduling

problem in the second chapter. In the network, a centralized controller (CC) schedules

a set of nodes to collect data from them. Centralized controller does not know the

instantaneous buffer states of nodes or the statistics of random data arrival processes.

Centralized controller only knows the history of previous transmission attempts. The

buffers of the nodes have infinite buffer capacity.

This chapter is organized as follows. The problem formulation is made precise in

Section 4.1. In Section 4.2, we investigate the scheduling capacity of the system. In

Section 4.3, we show that RR-based policies are suboptimal under many non-uniform

data arrival processes. In Section 4.4, we describe and generalize the Uniformizing

Random Ordered Policy (UROP) to operate under arbitrary data arrival processes un-

der an infinite buffer assumption. In Section 4.5, we compare UROP and the myopic

policy in [53] through simulations.

4.1 System Model and Problem Formulation

We consider a single-hop communication network in which a centralized controller

(CC) collects data packets from m nodes surrounding it. The wireless network oper-

ates in a TDMA fashion over time slots (TSs) of equal duration, and can schedule up

to k nodes in each TS.
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When a node is scheduled for transmission, it transmits if it has at least one data

packet in its buffer. For simplicity, data is sent in the form of unit sized packets and

each transmission is successful with probability 1. Data becomes available at nodes

according to an arbitrary process, corresponding to the nodes collecting measure-

ments from their environment and encoding them as data packets to be sent to the

centralized controller.

We denote by S = {s1, s2, .., sm} the set of nodes. The data arrival processes are

assumed to be independent for each node. The number of new data packets becoming

available at node si in slot t is denoted by Da
i (t), and the total number of packets

collected at node si up to TS t by Qtot
i (t). Both buffer sizes are assumed to be unlim-

ited. Moreover, we denote by Qi(t), the number of packets remaining in the buffer of

node si at TS t. The number of packets transmitted by node si in TS t is denoted by

Wi(t) = I(si ∈ Ssc(t))I(Qi(t) ≥ 1) ∈ {0, 1} where I(A) is indicator function and

the set of k nodes scheduled by CC in TS t, are Ssc(t) ⊂ S. In each TS t, Ssc(t) are

determined by a policy π.

In the communication network, V (t) is the total number of data packets which CC

received from nodes from TS 1 to TS t. In general (consistently with previous lit-

erature [47], [49], [53]), the objective is to maximize the total throughput (expected

discounted reward when considering decision theory literature) over the problem hori-

zon:

max
Ssc(t),t=1,..,T

V (t) = max
Ssc(t),t=1,..,T

E

[
T∑
t=1

βt−1
∑
si∈S

I(si ∈ Ssc(t))I(Qi(t) ≥ 1)

]
(4.1)

where 0 < β ≤ 1 is the discount factor. The discount factor corresponds to placing

lower value on data that is delayed. Additionally in this case, as the CC schedules the

nodes according to the number of their packets, β could be considered to correspond

to delay. Ignoring delay and focusing purely on throughput, we shall set β = 1

and convert problem (4.1) to problem (4.2) (average reward, a suitable performance

measure for delay-insensitive communication problems [51]):

max
Ssc(t),t=1,..,T

V (t)

T
= max
Ssc(t),t=1,..,T

E

[
1

T

T∑
t=1

∑
si∈S

I(si ∈ Ssc(t))I(Qi(t) ≥ 1)

]
(4.2)
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Several definitions are in order: A fully efficient policy (alternatively, 100% efficient

policy) ensures that the nodes transmit all of their packets such that Qi(T ) = 0 ∀si ∈
S. Efficiency of a policy π (η) is defined as the ratio of total throughput achieved

by π and the throughput achieved by a fully efficient policy πfe within the problem

horizon (ηfe = 1). An optimal policy π∗ is the scheduling policy that maximizes

throughput. It is important to our study to understand, for a given case of data arrivals,

whether there exists an both optimal and fully efficient policy (to find the region where

π∗ = πfe = 1).

This paper shows near optimality of Uniformizing Random Ordered Policy, proposed

in [32], for a broad class of data arrival processes. UROP goes through nodes by self-

adapting to their data arrival rate, and in this way stands in contrast to Round Robin

(RR) policies. In particular, a RR policy with quantum=1 TS is a policy that goes

through nodes in a cyclic order, giving each node one time slot at a round (cycle). By

[32], efficiency of any RR policy with quantum=1 TS πRR (ηRR) is almost the same

as that of myopic policies πMP (ηMP ) proposed in [47], [49], [53]. Then, efficiency

of UROP πUROP will be compared with that of an arbitrary RR Policy with quan-

tum=1 TS πRR in Section 4.5. Recall that a Round Robin Policy with quantum=1

TS is a policy which allocates each node 1 TS during a round (cycle). A RR Policy

with quantum=2 TSs allocates each node 2 TSs during a round. A RR Policy with

quantum=3 TSs allocates each node 3 TSs during a round, so on.

Before moving on to Section 4.2, it will be useful to introduce some more terminology

that will be used in the rest of paper. Density of node i (Di) is the number of packets

transmitted by the node si with πfe normalized by kT
m

during problem horizon T .

Partial Density of node si (D(t)
i ) is the total number of packets transmitted by the

node si with πfe normalized by k(T−t)
m

in the time interval (t, T ]. Density (D) is the

average of densities of all nodes during problem horizon T . Partial Density (D(t))

is the average of partial densities of all nodes in the interval (t, T ]. By definition,

D,D(t) ≤ 1.
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4.2 Scheduling Capacity

As the CC has access to k channels, it can schedule at most k nodes in each TS. If data

arrival to the system becomes too much, then the scheduling capacity of the system is

exceeded and no 100% efficient policy exists. We denote by V (t)
i and V (t) the number

of packets which could be transmitted by node si and by all nodes, respectively in the

interval (t, T ]. V (t)
i and V (t) can be represented as

V
(t)
i = Qi(t) +

T∑
j=t+1

Da
i (j), (4.3)

V (t) =
∑
si∈S

V
(t)
i . (4.4)

In the following, we record the condition on the value of the total number of arrived

packets so that a 100% efficient policy is possible.

Theorem 10. (Scheduling Capacity) Assume 0 ≤ t < T ,

i. If V (t) > k(T − t), no policy can achieve 100% efficiency, all possible policies

have efficiency below 100%.

ii. If V (t) ≤ k(T − t), a 100% efficient policy that maximizes throughput exists.

Proof. i.

V (t) > k(T − t) (4.5)

As scheduling capacity of the centralized controller (CC) is k packets per time slot,

CC can receive at most k(T − t) packets from the nodes in the interval (t, T ]. Assume

a policy π which can achieve up to scheduling capacity. Then, efficiency of π equals

the maximum efficiency in the condition (4.5), and it is represented as below:

η∗ =
min

{
k(T − t), V (t)

}
V (t)

=
k(T − t)
V (t)

(4.6)
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If (4.5) is satisfied, the scheduling capacity is exceeded. By (4.5) and (4.6), η∗ < 1.

This means that optimum policy cannot achieve 100% (fully) efficiency. Therefore,

there is no 100% efficient policy which makes CC receive all V (t) packets from the

nodes.

ii.

V (t) ≤ k(T − t) (4.7)

As scheduling capacity of the centralized controller (CC) is k data packets per time

slot, CC can accumulate at most k(T − t) data packets from the nodes in the time

interval (t, T ]. Consider an omniscient offline policy: it will not leave an idle TSs as

long as there is a node with data available, who is currently not scheduled. Hence,

if there is an idle TS, this is because all available data packets are being transmitted.

Trivially, this scheduling policy achieves 100% efficiency if D(t) ≤ 1:

η∗ =
min

{
k(T − t), V (t)

}
V (t)

=
V (t)

V (t)

= 1 (4.8)

If (4.7) is satisfied, the scheduling capacity of the centralized controller is not ex-

ceeded. By (4.8), there is an 100% efficient policy which makes the centralized con-

troller accumulate all V (t) data packets from the nodes.

4.3 Efficiency of RR-based Policies

The scheduling problem is also investigated in [53] for certain scenarios. This paper

propose myopic policy (MP) which is a kind of RR-based policies with quantum=1

TS and show that the RR-based myopic policy is optimal in certain specific cases as

mentioned in introduction.

First, we will investigate the efficiency of RR-based policies with quantum=1 TS
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in Theorem 11. There is only a slight difference between the efficiencies of any

two RR-based policies in long problem horizon T (m
k
� T ) (as proven in Theorem

3 in Chapter 2). [32] Hence, the efficiency of RR-based myopic policy in [53] is

investigated. It is shown that the policy in [53] is generally suboptimal.

For the case that each node has a buffer larger than one packet size, there is no known

myopic policy in the literature. Therefore, we will compare UROP only with myopic

policy in [53] in terms of efficiency.

Theorem 11. Suppose that T � m
k
∈ Z and the scheduling capacity of the FC is

not exceeded by Theorem 1 (V (t)
i ≤ (T − t) ∀si ∈ S,∀t and V (t) ≤ k(T − t) ∀t).

If there are some sensors si ∈ S such that V (t)
i > k(T−t)

m
, all RR-based policies with

quantum=1 TS will have efficiency below 100% although a fully efficient policy (πfe)

exists. Moreover, buffers of some sensors will be unstable.

Proof. In this proof, RR policy implies RR policies with quantum=1 TS. We study

efficiency of RR in two possible cases:

i. If σ = kT
m
/∈ Z, RR allocates some nodes bσc+ 1 TSs and other nodes bσc TSs for

data transmission.

ii. If σ = kT
m
∈ Z, RR allocates each node σ TSs for data transmission.

Assume that V (t)
i > k(T−t)

m
for some si ∈ S and H is the set of these nodes. By

definition of density, D(t)
i > 1 ∀si ∈ H .

i. If the CC schedules m nodes by RR policy in the problem horizon T , RR policy

allocates some nodes bσc + 1 TSs and other nodes bσc TSs for data transmission

where σ = kT
m

/∈ Z and {σ} , σ − bσc. To maximize efficiency of RR policy, we

assume that each node si ∈ H can transmit at most bσc + 1 data packets. However,

each node cannot transmit V (t)
i − bσc − 1 data packets although V (t) ≤ k(T − t)

which means that a both optimum and 100% efficient policy exists. On the other

hand, each node si ∈ S − H can transmit all V (t)
i data packets. Efficiency of RR
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policy is represented as

ηRR =

∑
si∈Smin

{
V

(t)
i , σ

}
∑

si∈S V
(t)
i

(4.9)

=

∑
si∈H(bσc+ 1) +

∑
si∈S−H V

(t)
i∑

si∈S V
(t)
i

(4.10)

= 1−
∑

si∈H(V
(t)
i − bσc − 1)∑
si∈S V

(t)
i

. (4.11)

By definition of D(t)
i , ηRR is also stated as

ηRR = 1−
∑

si∈H(D
(t)
i σ − bσc − 1)∑
si∈S D

(t)
i σ

(4.12)

= 1−
∑

si∈H(D
(t)
i − 1)σ − (1− {σ}))∑

si∈S D
(t)
i σ

. (4.13)

As D(t)
i > 1 for si ∈ H and σ � 1−{σ}, (1−{σ}) < (D

(t)
i −1)σ. Hence, ηRR < 1,

i.e., RR is suboptimum.

ii. As σ ∈ Z, RR allocates each node σ = bσc TSs for data transmission. None of

nodes can use bσc+1 TSs for data transmission. Therefore, efficiency of RR policies

in this case can be represented as

ηRR = 1−
∑

si∈H(V
(t)
i − σ)∑

si∈S V
(t)
i

(4.14)

instead of (4.11).

By definition of D(t)
i , ηRR is stated as

ηRR = 1−
∑

si∈H(D
(t)
i − 1)∑

si∈S D
(t)
i

. (4.15)

As D(t)
i > 1 and D(t) ≤ 1 ∀si ∈ H , ηRR < 1. Hence, RR policies with quantum=1

TS are suboptimum because an optimal policy achieves fully efficiency (π∗ = πfe)

when D(t) ≤ 1 by Theorem 10.
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4.4 A Near-Optimal Online Solution

The following Lemma forms the basis of our scheduling policy which is described in

last subsection.

Lemma 9. (Partial Optimality) If Qi(t) = 0 for a node si at TS t, it can be said that

an optimal policy π∗ has been applied for the node si and efficiency is 100% for the

node si up to TS t.

Proof. For a data packet transmission, buffer of a node si must not be empty. If

Qi(t) = 0, si has no data packet to send. Efficiency is 100% for the node si up to TS

t.

D < 1 implies that there exists always idle TSs over a problem horizon even if πfe

is applied. Lemma 9 states that if a scheduled node cannot transmit data in TS t (idle

TS occurs), a 100% efficient policy is applied to that node until TS t. By Lemma 9,

UROP will be proposed based on this observation: UROP uses idle TSs to determine

the buffer states of scheduled nodes.

4.4.1 Uniformizing Random Ordered Policy (UROP)

Considering that the data arrival process may be unpredictable, UROP orders the

nodes randomly before starting to schedule them. The first k nodes in the ordering are

scheduled to transmit. If a scheduled node can transmit a packet to the CC (because

it has enough data to transmit) in one TS, then it will continue to be scheduled in

the next TS. Otherwise, CC schedules the next node in the ordering in its place.

CC completes a scheduling round when all m nodes are scheduled once. In part B,

efficiency of UROP is studied for finite horizon case. In part C, it is shown that UROP

is asymptotically optimal under a broad set of data arrival process.
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4.4.2 Efficiency of UROP in Finite Horizon Case

In this part, the worst case and expected efficiency of UROP is studied in quite general

data arrival process. First, several lemmas are stated. Then, these lemmas are used to

prove Theorem 12 and Theorem 13.

Remark 6. If Qtot
i (t) is the total arrived packets in node si up to TS t and V ∗i (t)

is the number of data packets which could be sent by node si until TS t under π∗,

V ∗i (t) = Qtot
i (t).

Now, we will define some new parameters related to idle time slots and these will

be used in Lemma 10, Lemma 11 and Theorem 13. Aidle(j, l) is the pair of the jth

channel of the FC and lth idle TS for the jth channel. Aidle(j, l) occurs in TS γjl . In

this TS γjl , FC drops a node using jth channel and start to schedule another node in

same channel. In the idle TSs, FC drops some of the k nodes and starts to schedule

other nodes in their place. TI is the set which consists of all pairs Aidle(j, l). Figure

4.1 represents the transmission channel-idle time slot pairs in an example scheduling

table.

Let’s denote by ξ(f)
i and ξ(f−1)

i the idle TSs when FC starts to schedule node si for

the last time and for the second last time, respectively. F1 and F2 are the set of all

pairs Aidle(u, v) such that γuv = ξ
(f)
i for a si ∈ S and the set of all pairs Aidle(u, v)

such that γuv = ξ
(f−1)
i for a si ∈ S. As there are m nodes, |F1| = |F2| = m. G1 is the

set of all pairs Aidle(p, q) such that γpq 6= ξ
(f)
i for si ∈ S. Moreover, G2 is the set of

all pairs Aidle(p, q) such that γpq 6= ξ
(f)
i and γpq 6= ξ

(f−1)
i for si ∈ S. In other words,

G1 = TI − F1 and G2 = TI − (F1 ∪ F2).

Lemma 10. If Aidle(u, v) ∈ (F1 ∪ F2),

i) There does not exist such a pairAidle(p, q) ∈ G1 that γpq > γuv for someAidle(u, v) ∈
F1.

ii) There does not exist such a pairAidle(p, q) ∈ G2 that γpq > γuv for someAidle(u, v) ∈
(F1 ∪ F2).

Proof. Part i) Assume that there is such a pairAidle(p, q) ∈ G1 that γpq > γuv for some
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Figure 4.1: An example scheduling table kept by the centralized controller (CC) for all k channels
over problem horizon T = N time slots. Dark colored TSs represent busy time slots, and the white
ones represent idle ones.

Aidle(u, v) ∈ F1. Since γpq 6= ξ
(f)
i ∀si ∈ S, the node sr which is selected by the FC

in TS γpq will be selected by the FC at least once more (γpq < ξ
(f)
r ). According to

UROP, a node sr which is selected in TS T1 cannot be selected by the FC in TS T2

unless ∀si ∈ S − sr are selected in the time interval [T1, T2]. Since γpq > γuv = ξ
(f)
i

for some si, these nodes cannot be selected by the FC in the time interval [γpq , ξ
(f)
j ].

Therefore, there does not exist such a pair Aidle(p, q) ∈ G1 that γpq > γuv for some

Aidle(u, v) ∈ F1.

Part ii) G1 = TI − F1 and G2 = TI − (F1 ∪ F2) = (TI − F1) − F2. Replacing

TI − F1 and F2 with TI and F1 , respectively, in Part i, we can said that there exists

no Aidle(p, q) ∈ G2 such that γpq > γuv for some Aidle(u, v) ∈ F2. By Part i, there

exists no Aidle(p, q) ∈ F2 such that γpq > γuv for some Aidle(u, v) ∈ F1. Therefore,

there does not exist such a pair Aidle(p, q) ∈ G2 that γpq > γuv for some Aidle(u, v) ∈
(F1 ∪ F2).

Lemma 11. If ζ(f)
j is the idle TS when CC stops to schedule node sj for the last time

and L is set of ζ(f)
j s, L ⊂ (F1 ∪ F2).

Proof. Recall that (F1∪F2) ⊆ TI . It can be said that CC starts to schedule a node iff it

leaves (stops to schedule) another node. (F1∪F2) includes two consecutive time (the

last and second last time) when CC starts to schedule a node for all nodes. Assume
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that CC schedules a node si. Unless CC stops to schedule the node si, it cannot start

to schedule the node si again. Therefore, (F1 ∪ F2) includes at least one departure

time for each node. Since (F1 ∪ F2) includes the latest 2m idle TSs and at least one

departure time for each node, ζ(f)
j ∈ (F1 ∪ F2), ∀sj . Hence, L ⊂ (F1 ∪ F2).

Theorem 12. (Efficiency Bounds of UROP) Final departure time of the node sj

which satisfies ζ(f)
j ≤ ζ

(f)
i ∀si ∈ S − {sj} is denoted by ζ(f)

j = T0. In problem

horizon T , efficiency of UROP is bounded as

1− k(T − T0)∑m
i=1 V

∗
i (T )

≤ ηUROP ≤ 1, (4.16)

where V ∗i (T ) is the number of data packets which could be transmitted by node the

si up to TS t under an optimal policy π∗.

Proof. Due to space constraints, the proof is omitted here. Please see Theorem 4 in

previous chapter.

Considering the worst case, efficiency of UROP is bounded as shown in Theorem 12.

k is known and V ∗i (T ) can be found for each node si by Remark 6. However, T0

cannot be determined unless all details of scheduling in problem horizon is known.

Due to the uncertainty of T0, Theorem 12 does not provide sufficient information

about efficiency of UROP. Remember that average reward is a suitable performance

measure for the scheduling policy over finite or infinite horizon [51]. Considering

T0 (and the other departure times of nodes) as ergodic processes depending on data

arrival process, efficiency of UROP is bounded in expectation manner.

Theorem 13. For 0 < D < 1, expected efficiency of UROP is bounded as

1− 2m

(1−D)DTk
≤ E {ηUROP} ≤ 1, (4.17)

where T,m, k and D are problem horizon length, number of nodes, number of mutu-

ally orthogonal channels and density, respectively.
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Proof. Recall that V ∗(T ) =
∑m

i=1 V
∗
i (T ). By Theorem 12, efficiency of UROP can

be written as below:

1− k(T − T0)

V ∗(T )
≤ ηUROP ≤ 1 (4.18)

1− kE {T − T0}
V ∗(T )

≤ E {ηUROP} ≤ 1 (4.19)

We denote by τar,i and τdep,i, elapsed time between two consecutive selection of same

node si and elapsed time between two consecutive departure of same node si. For

long problem horizons, E {τar,i}=E {τdep,i} ∀i. By Lemma 11, L ⊂ (F1 ∪ F2). By

Lemma 10, if none of nodes si ∈ S − Sk can be selected (started to schedule) more

than twice by the CC in the interval [T0, T ]; therefore, E {T − T0} < 2E {τar}. None

of the nodes si ∈ Sk can be left (stopped to schedule) more than once by the CC in

time interval
[
ζ

(f)
i , T

]
; therefore, the inequality 4.20 can be written for all nodes:

E
{
T − ζ(f)

i

}
< 2E {τdep}

< 2E {τar} (4.20)

Hence, (4.19) turns into

1− 2kE {τar}
V ∗(T )

≤ E {ηUROP} ≤ 1. (4.21)

By definition of D in the system model, the total throughput by an optimal policy,

V ∗(T ), can be written as

V ∗(T ) = DTk (4.22)

and also the density is

D =
kE {τar} −m
kE {τar}

. (4.23)

Thus, E {τar} is obtained as

E {τar} =
m

(1−D)k
. (4.24)
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By putting (4.24) into (4.21), one concludes

1−
2k m

(1−D)k

DTk
< E {ηUROP} ≤ 1,

1− 2m

(1−D)DTk
< E {ηUROP} ≤ 1. (4.25)

Note: As D = 0 means no harvested energy in the whole communication network, it

is trivial case and not considered in our calculations. D = 1 means that there is no

idle TS if the fusion center apply the 100% efficient policy (πfe). However, UROP

benefits from idle TSs to schedule the sensors as mentioned in Section 4.4. From

Theorem 10, no πfe exists for D > 1. Therefore, we investigate 0 < D < 1 in this

paper.

As you may notice that the expected lower bound becomes negative for the case

m ≥ (1−D)DTk
2

. However, we know that expected efficiency is nonnegative.

4.4.3 Extension to the Infinite-Horizon Case

By (4.25), as 1−D, D, k, and m ∈ R+, E{ηUROP} → 1 as T →∞. Hence, UROP

is asymptotically optimal in infinite horizon for a broad class of data arrival process.

4.5 Numerical Results

In this section, efficiencies of RR and UROP are compared for independent and

Markov data arrival processes under high and low density data arrival process. As

D ≤ 1, η∗ = ηfe = 1. In each case, we compare these policies under both infi-

nite and finite buffer assumption. To make a realistic scenario, we take m = 100,

k = 10, T = 2000 for both policies. Note that we compare efficiency of UROP

with a RR which is not necessarily MP proposed in [53] since ηRR ∼= ηMP for long

problem horizons [38]. We investigate efficiency of both policies under nonuniform

data arrival process (Both have nearly 100% efficiency under uniform data arrival pro-

cesses). High density data arrival process is formed by taking Di = 3 for 25 nodes
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Figure 4.2: Efficiencies of UROP, RR with infinite buffer and finite buffer Qi = 50 for high density
(D = 0.975) Independent data arrival processes under m/k integer assumption. Efficiency of UROP
is also shown for m/k taking a noninteger value.

and Di = 0.3 for remaining nodes. Also, low density data arrival process is formed

by taking Di = 2.1 for 5 nodes and Di = 0.1 for remaining nodes. Independent data

arrival process is modelled as Poisson distribution for each node separately. Markov

data arrival process is modelled for each node si by a state vector Mi=[0 Di 2Di] and

a 3× 3 transition matrix P such that pkk = 0.9 and pjk = 0.05 ∀j 6= k.

Considering Figure 4.2 and 4.3 (Independent data arrival process), UROP has nearly

100% efficiency whereas RR has 80% efficiency for low density and below 50% effi-

ciency for high density. Considering Figure 4.4 and 4.5 (Markov data arrival process),

UROP has more than 95% efficiency whereas RR has 70% efficiency for low density

and below 60% efficiency for high density. Simulations show that UROP is asymptot-

ically optimal as proved in previous section. By Theorem 11, as the number of nodes

satisfying Di > 1 increases, efficiency of RR decreases. Therefore, the results are

expected. Notice that efficiency of UROP is almost same under finite buffer Qi = 50

assumption as that under infinite buffer assumption.

We also investigate the efficiency of UROP by taking m = 103 and k = 10. UROP
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Figure 4.3: Efficiencies of UROP, RR with infinite buffer and finite buffer Qi = 50 for low density
(D = 0.2) Independent data arrival processes under m/k integer assumption. Efficiency of UROP is
also shown for m/k taking a noninteger value.

achieves nearly 100% throughput for the case thatm/k is not an integer for quite gen-

eral data arrival processes. Therefore, UROP does not need m/k integer assumption

which the RR-based myopic policy in [53] needs.
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Figure 4.4: Efficiencies of UROP, RR with infinite buffer and finite buffer Qi = 50 for high density
(D = 0.975) Markovian data arrival processes under m/k integer assumption. Efficiency of UROP is
also shown for m/k taking a noninteger value.
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Figure 4.5: Efficiencies of UROP, RR with infinite buffer and finite buffer Qi = 50 for low density
(D = 0.2) Markovian data arrival processes under m/k integer assumption. Efficiency of UROP is
also shown for m/k taking a noninteger value.
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CHAPTER 5

CONCLUSION

In this thesis, three variations of a scheduling problem are studied. First, we in-

vestigated a scheduling problem for a single-hop wireless network, where a fusion

center (FC) schedules a set of energy harvesting nodes to receive data from them.

Fusion center does not know the instantaneous battery states of nodes. Batteries get

recharged according to random energy harvesting processes, whose statistics are not

available to the FC, and there is no leakage from the batteries. Under an infinite bat-

tery capacity assumption, we exhibit a near-optimal online scheduling policy for a

broad set of energy harvesting processes (Markovian, independent, uniform, nonuni-

form, etc).

Secondly, we investigated a scheduling problem for a single-hop wireless network,

where a fusion center schedules a set of EH nodes to collect data from them without

feedback. By making infinite battery, buffer and no leakage assumptions, we consider

this scheduling problem. In fact, this problem is the same with the first scheduling

problem except the assumption that there is no data backlog in the system.

Thirdly, we studied a scheduling problem for a single-hop wireless network, where a

centralized controller schedules a set of nodes to collect data from them without feed-

back. By making infinite buffer assumption, we investigated this scheduling problem.

In fact, this problem is a dual version of first scheduling problem.

The scheduling problems are set up as an average reward maximization problem. It is

shown that Round Robin (RR) based policies are generally suboptimal (do not guar-

antee 100% throughput) for nonuniform energy harvesting and data arrival processes.
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It is also shown that policies proposed in previous literature (namely, myopic poli-

cies in [47], [49], [53]) have almost equal efficiency as any other RR policy with

quantum=1 time slot.

Next, a low-complexity scheduling policy, Uniformizing Random Ordered Policy

(UROP), is proposed for these scheduling problems. It is shown that UROP is asymp-

totically optimal regardless of energy harvesting and data arrival process, in the in-

finite problem horizon. Even in the finite horizon, UROP achieves nearly 100%

throughput without requiring feedback about battery and buffer states of nodes.

As this problem can be considered as a type of restless multi-armed bandit (RMAB)

problem, the simple self-adapting scheduling technique of UROP could find potential

applications in problems other than communication networks, whenever the perfor-

mance measure is average reward and the queues store a flexible resource such as

energy and data.
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