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Supervisor, Dept. of Electrical and Electronics Engineering, METU

Examining Committee Members:

Prof. Dr. Mete Severcan
Dept. of Electrical and Electronics Eng., METU

Assoc. Prof. Dr. Elif Uysal-Bıyıkoğlu
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Dept. of Electrical and Electronics Eng., METU

Assist. Prof. Dr. Tolga Girici
Dept. of Electrical and Electronics Eng., TOBB ETU

Date: 12.12.2011



I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results that
are not original to this work.

Name, Last Name: HAKAN ERKAL

Signature :

iii



ABSTRACT

OPTIMIZATION OF ENERGY HARVESTING WIRELESS COMMUNICATION
SYSTEMS

Erkal, Hakan

M.Sc., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Elif Uysal-Bıyıkoğlu

December 2011, 69 pages

In an energy harvesting communication system, energy is derived from outside sources and

becomes partially available at different points in time. The constraints induced by this prop-

erty on energy consumption plays an active role in the design of efficient communication

systems. This thesis focuses on the optimal design of transmission and networking schemes

for energy harvesting wireless communication systems. In particular, an energy harvesting

transmitter broadcasting data to two receivers in an AWGN broadcast channel assuming that

energy harvests and data arrivals occur at known instants is considered. In this system, optimal

packet scheduling that achieves minimum delay is analyzed. An iterative algorithm, DuOpt,

that achieves the same structural properties as the optimal schedule is proposed. DuOpt is

proved to obtain the optimal solution when weaker user data is ready at the beginning. A

dual problem is defined and shown to be strictly convex. Taking advantage of the dual prob-

lem, uniqueness of the solution of the main problem is proved. Finally, it is observed that

DuOpt is almost two orders of magnitude faster than the SUMT (sequential unconstrained

minimization technique) algorithm that solves the same problem.
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ÖZ

ENERJİ HARMANLAYAN KABLOSUZ HABERLEŞME SİSTEMLERİN
OPTİMİZASYONU

Erkal, Hakan

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Elif Uysal-Bıyıkoğlu

Aralık 2011, 69 sayfa

Enerji harmanlayan haberleşme sistemlerinde, enerji dış ortamdaki kaynaklardan elde edilir

ve belirli zamanlarda parça parça kullanıma hazır hale gelir. Bu özellikle birlikte gelen enerji

harcama sınırlamaları verimli haberleşme sistemlerinin dizaynında önemli bir rol almaktadır.

Bu tez enerji harmanlayan kablosuz haberleşme sistemlerinde en iyi iletim ve ağ iletişimi

tasarımı üzerine odaklanmaktadır. Enerji harmanlama ve veri geliş zamanları önceden belli

olan, toplanır beyaz Gauss gürültülü tüme gönderim kanalına yayın yapan, enerji harman-

layan bir verici ele alınmıştır. Bu sistemde, minimum iletim zamanını elde eden en iyi paket

çizelgeleme incelenmiştir. Bu çizelgelemenin özelliklerini elde eden döngülü bir algoritma,

DuOpt, önerilmiştir. Güçsüz kullanıcı verisinin en başta hazır olduğu durumda DuOptun en

iyi çözüme ulaştığı gösterilmiştir. Eşlek problemin kesin surette dışbükey olduğu gösterilmiş

ve eşlek problemden faydalanılarak ana problemin çözümünün tekliği ispat edilmiştir. Son

olarak, DuOptun aynı problemi çözen SUMT (ardışık sınırlandırılmamış enküçültme yor-

damı) algoritmasına göre neredeyse iki mertebe daha hızlı olduğu gözlenmiştir.
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CHAPTER 1

INTRODUCTION

A recent study estimates that the energy consumption of ICT is nearly 4% of the worldwide

energy consumption and this percentage is rising each year [1]. Energy efficiency of ICT plays

an important role in the worldwide energy consumption and it has been an active research

area since last two decades. With the emergence of battery limited wireless devices, i.e.,

cell phones, sensor nodes etc., energy efficiency become more and more important. These

energy-limited devices can be used until the batteries run out of energy, then we need to

recharge them. Recent improvements in energy harvesting techniques have made it feasible to

recharge battery limited wireless devices by harvesting ambient energy from the environment.

For example, many cell phone producers released solar energy powered cell phones so that

users do not need to charge phones very frequently. Energy harvesting is even more critical

for the sensor networks because in most cases recharging operation is very hard as it needs

redeployment and in some cases it is even impossible, i.e., a sensor network deployed into an

enemy territory.

Transmission delay is an important factor that determines the quality of service. Although

energy efficiency is an important parameter to optimize, there is a fundamental trade-off be-

tween delay and energy [2, 3]. Energy minimization with respect to delay requirements has

been studied widely [4, 5, 6, 7, 8, 9]. In this thesis we consider the delay minimization

problem with respect to energy and data constraints. Specifically, we study the delay min-

imization problem in a two user broadcast channel with an energy harvesting transmitter.

Energy harvests and data arrivals are assumed to occur arbitrarily but initially known instants

and amounts. We have developed an efficient iterative algorithm , DuOpt, which is, under a

special case, shown to achieve optimal schedule by locally optimizing consecutive epochs.

We provide a detailed analysis on the local optimization problem. We have also solved the
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problem by a different approach using a dual problem in which energy is minimized given

a transmission deadline. Then we compare two algorithms in terms of performance. In the

following we present the outline of this thesis.

In Chapter 2, we provide background information on energy harvesting networks. We start

by surveying recent literature on energy harvesting [10]. First energy harvesting models are

presented and then information theoretic bounds on different channels are discussed. Since

we assumed that data arrivals and energy harvest are known initially, we give a recent survey

of offline studies in energy harvesting networks and state where our study lies in it. In Chap-

ter 2, we also briefly discuss the information theoretic broadcast channel and provide some

important properties on two user broadcast channel.

In Chapter 3, we begin with presenting the system model used throughout this thesis. Then,

we restudy the problem stated in [11]. Providing some additional properties we prove that

the solution of the problem is unique and algorithm proposed in [11] achieves the optimal

solution [12, 13]. Afterwards, we extend the problem in [11] and provide some further prop-

erties to it [14, 15]. We propose an efficient iterative algorithm, DuOpt, to solve the extended

problem. Under a special case we show that the solution of problem is unique and it can be

obtained by DuOpt algorithm. We present numerical examples and discuss the results. Then,

we study the dual of the extended problem. We prove that the dual problem is strictly convex

and using this property we show that the solution of the extended problem is unique. We then

present a variety of sequential unconstrained minimization technique [38] to solve the dual

problem. Using the solution of dual problem, we propose an different algorithm to solve the

extended problem. Finally, we compare the performance of this new algorithm and DuOpt.

In Chapter 4, we give final remarks and conclusions. We also briefly state the future work.
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CHAPTER 2

BACKGROUND INFORMATION

2.1 Recent Developments in Energy Harvesting Networks

Energy efficiency has been considered as an important issue in the design of network archi-

tectures since the emergence in the last decade of sensor networks composed of small energy-

limited autonomous units with wireless communication capability. Nodes of such networks

are generally assumed to have limited energy supplies. When energy of a sensor node is

depleted, it may not be replenished again, and commonly the node is assumed to be dead.

Therefore, the lifetime of such a network is seriously dependent on the initial energies stored

at nodes as well as the energy efficiency of network protocols. There is a vast body of lit-

erature [16] of transmission schemes and network protocols that strive to maximize network

lifetime or related objective functions.

Recent developments in ambient energy harvesting technologies allow battery-limited devices

to bear their own energy cost, so that network can sustain itself. In this case, as each energy

harvest extends the network lifetime, the lifetime can in principle be unbounded. However,

while the total energy available to the network may be unbounded, the amount harvested

during each finite time interval may be erratic, which can make it challenging to maintain a

continuous communication rate or quality, respecting delay constraints. Usually, energy is

assumed to become available in time as harvested and the energy harvest process is a major

factor determining the energy consumption schedules. This new set of constraints which

introduce a new twist on communication as well as network problems have sparked active

research effort in recent years. This section makes a short review of this very recent body

of literature. We shall start by describing commonly used energy harvesting models and
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assumptions. Next, we shall review information theoretic studies considering the capacity of

energy harvesting single- and multi-user channels, before turning our attention to scheduling

problems. We will then review offline transmission scheduling formulations with different

objectives, and the solutions of these problems.

2.1.1 Energy Harvesting Models

Various energy harvesting methods have been proposed in the literature [17, 18, 19, 20].

Solar and piezoelectric energy harvesting are among the most promising due to their high

power densities. Different harvesting technologies lead to entirely different energy harvesting

profiles. For example, in solar energy harvesting, the profile may follow a daily period where

the peaks occur during midday, and the minima at night.

In conjunction with the harvesting profile, battery technology, in particular battery capacity

and efficiency of energy storage circuitry are among significant parameters affecting the uti-

lization of harvested energy. For example, when the battery capacity is small with respect to

energy expected to be harvested during a peak harvest, some or perhaps most of the energy

will be wasted. In this respect, regardless of the energy harvesting profile, bigger batteries

mean better exploitation of energy harvests. In practice, battery size is limited. Since in-

creasing battery size means increased node cost, it should be carefully optimized according

to the needs of the system [21]. Inefficiencies in the storage circuitry also directly affect the

utilization of harvested energy. With current battery technologies a portion of the harvested

energy is lost due to leakage or other inefficiencies in the charging circuitry.

Although physically energy harvesting is typically continuous in time, in some works in the

literature, it has been found convenient to model harvests that occur at discrete points in

time, which corresponds to codeword or packet durations being much longer compared to the

recharging durations.

2.1.2 Information Theoretic Bounds

Information-theoretic capacity of a point-to-point communication system with energy har-

vesting transmitter in AWGN channel has been considered in [22] and [23]. Assuming an

energy harvesting transmitter with infinite capacity battery and a constant average energy
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harvest rate over large time scale, [22] and [23] show that by essentially introducing suffi-

cient delay, the information-theoretic AWGN channel capacity of the communication system

is equal to the capacity of a single transmitter under AWGN channel with an average power

constraint, which is equal to the average energy harvest rate. Two different capacity achiev-

ing schemes, save-and-transmit and best-effort-transmit, are presented in [22]. The former

scheme waits and stores energy initially for some time such that no energy scarcity will be

experienced once transmission at the calculated average power, P, starts. On the other hand,

the latter scheme acts more aggressively such that it transmits whenever enough energy is

available in the battery to transmit a codeword at power P, and stays idle otherwise. The case

where energy harvest rate varies with time is also considered and a capacity achieving power

management scheme is proposed in [22].

While many studies focused solely on transmission energy, in practical systems other types of

energy consumption, such as that occurs in the processor, sensor unit etc., can be significant.

Information-theoretic analysis of an energy harvesting device with energy consuming compo-

nents has been considered in [23] and the AWGN channel capacity of the system is found to

be equal to the AWGN channel capacity of the ideal system with average energy harvest rate

reduced by the average processor power consumption. A randomized sleep policy is found to

be useful under processor energy consumption assumption.

As pointed out in subsection 2.1.1, batteries have limited capacity and not perfectly efficient

in using that finite capacity. In [23], the capacity of an AWGN channel with an energy har-

vesting transmitter with an imperfect battery is shown to be equal to that of a system with

average energy harvest rate P, where P is the maximum average transmission power that the

battery can supply. The capacity of a fading Gaussian channel with energy harvests is inves-

tigated in [24], where the analysis starts with the following idealized assumptions: (1) energy

is consumed solely by transmission, (2) battery capacity is infinite, (3) there is perfect CSI

at the transmitter (CSIT), (4) there are no inefficiencies in storage. The harvesting process

is modelled as stationary ergodic process, and the ergodic capacity is shown to be equal to

that of the AWGN fading channel with average power constraint equal to the mean energy

harvest rate. The capacity achieving scheme is instantaneous power allocated according to

“water filling”. Assumptions (2)-(4) are then relaxed and corresponding capacity expressions

are derived. Assumption (4) is relaxed to include the following energy-harvesting architec-

tures: HSU: Harvest-Store-Use (infinite/finite buffer), HUS: Harvest-Use-Store (infinite/finite
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buffer) and HU: Harvest-Use (no buffer). It is observed that HSU performs bad as compared

to HUS when buffer size is small due to fact that in HSU, the harvested energy can be stored

only up to the maximum buffer size and the rest is wasted. As the buffer size increases, the

performance gap between the two architectures is shown to decrease, and they both approach

the ideal. Moreover, as the inefficiency in storage increases, it is observed that HUS performs

better than HSU without CSIT. But when there is no CSIT and energy store efficiency is very

poor, the authors claim that the HU architecture is superior.

It is worth emphasizing that the above mentioned capacity results require coding over long

blocks of data and harvests, and the delay required to approach these in practice may be ex-

cessive. The energy harvest profile plays an important part in determining how relevant the

capacity results are in a given finite time horizon. The next subsection is devoted to schedul-

ing algorithms that consider delay as an objective or constraint and we shall review offline

approaches that model the harvest sequence as an arbitrary, but deterministic and known se-

quence.

2.1.3 Offline Problems

Definition of scheduling problems in energy harvesting networks are highly based on energy

harvesting profiles. The profile of energy replenishment, and the relationship of this to the

other problem parameters is a major factor determining the characteristics of optimal trans-

mission policies for energy harvesting networks. In this subsection, we shall review studies

that have assumed an energy harvest profile that is known in an offline manner.

In [25], the problem of minimizing transmission time of a given finite number of bits on a

point-to-point energy harvesting link with AWGN noise is considered. Energy is assumed to

be harvested in discrete units at arbitrary yet known points in time and infinite battery capacity

is assumed. Some notable features of the unique optimal power/rate policy is found to be as

follows

1. The transmission power is monotone non-decreasing in time, over the duration of the

schedule.

2. The transmission power is held constant in between two packet arrival or energy harvest

events.

6



3. Whenever transmission power increases, either the total harvested energy up to that

instant has been consumed or all the number of packets arrived up to that instant has

been transmitted.

An example of the optimal policy has been shown in Fig.2.1. An offline iterative algorithm

that finds the optimal schedule has also been described in [25].

t

t

P

Figure 2.1: An optimal power schedule for a point-to-point energy harvesting AWGN link
with infinite battery capacity. Top arrows show energy harvests and the bottom solid arrows
indicate bit arrival times. Numerical values are omitted for simplicity [25].

A variation of this problem with finite battery capacity is considered in [26]. This practically

motivated additional constraint complicates the problem and changes the structure of the so-

lution, as it is not possible to replenish energy more than the battery capacity. The optimal

transmission power profile is different from that described above, for example power may

decrease in time. As expected, this decrease can only occur if the battery is fully depleted.

Assuming no more amount of energy is available to be harvested than the battery size, it has

also been shown that any schedule causing overflow of the battery is suboptimal. Assuming

enough data available at the beginning, an algorithm which maximizes the throughput given

a deadline is presented. Using the duality relationship between throughput maximization and

transmission completion time minimization, a modified version of the algorithm which mini-

mizes the transmission completion time is proposed.

Assuming that all the user data are ready at the beginning of transmission, the transmission

completion time minimization problem has been extended to the energy harvesting broadcast

channel in the concurrent works [13, 27]. Under a set of properties about the broadcast chan-

nel achievable rate region also satisfied by the AWGN broadcast channel, [13] has obtained

the structure of the optimal policy, which is the unique optimal policy derived for the AWGN

broadcast channel in [27]. It is shown that both the total transmit power as well as individual
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power levels allocated to each of the two users exhibit the same properties as in the single-user

case. Again it is proven that the optimal schedule completes transmissions to both users at

same time. In [27], the problem is shown to reduce to a problem of finding a cut-off power

level for the strong user that splits power schedules of users for optimal power allocation and

an iterative algorithm to attain optimal schedule has been proposed. The main objective in

the algorithm is to reduce the problem to the single user problem as much as possible. In [13]

the offline broadcast channel scheduling problem has been solved with a polynomial-time it-

erative algorithm, a slightly modified version of the FlowRight algorithm [28]. FlowRight

gradually reaches the globally optimal schedule by computing a local optimization on two

consecutive epochs at a time, and passes through all consecutive epoch pairs in each itera-

tion. Each iteration strictly improves the schedule, and the algorithm can be stopped when the

difference between iterations is sufficiently small.

The offline assumption about harvests (and data arrivals) facilitates the finding of optimal

schedules by formulating the problem as an optimization problem. While the offline assump-

tion may not be practical in some scenarios, where energy harvests or data arrive in an un-

controlled fashion, the offline approaches at least provide benchmarks and bounds to the best

performance that can be achieved. Also, it may be possible to extend these to obtain online

algorithms through the use of look-ahead buffers [5].

In general, arrivals of data and harvests may be modelled as stochastic processes. The analysis

of such models is known to be less tractable, yet several different approaches have appeared

to date [21, 29, 30, 31, 32, 33, 34, 35]. Online algorithms are out of the scope of this thesis;

hence, they are not included in this chapter.

The contributions to the literature made by this thesis are as follows: In chapter 3 of [11], M.

Akif Antepli has considered the transmission completion time minimization of a transmitter in

AWGN broadcast channel assuming that all the packets to be transmitted are ready at the be-

ginning of the schedule. Several important properties of the optimal schedule and an iterative

algorithm, FlowRight, that solves the problem has also given in [11]. In this thesis, we first

revisit the problem in [11] and providing some additional results about the optimal schedule

and FlowRight, prove that the optimal schedule is unique. Uniqueness of the optimal schedule

can be inferred from the idea in [27] that there is a cut-off level for the total transmit power,

below which no transmission is made to the user with the smaller channel gain. However,
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the proof of uniqueness in this thesis is based on the structural properties of an optimal two

epoch schedule; hence, it can be inferred that if every two consecutive epochs of a schedule is

optimal, then the schedule is the unique global optimal schedule. As FlowRight optimize ev-

ery consecutive epoch pair, with an analytical approach, we prove that the FlowRight returns

the optimal schedule. After that, we extend the problem considering the case that packet ar-

rivals occur during transmission, which is the main contribution of this thesis. The structural

properties of the optimal schedule when data arrivals occur during transmission is studied

in [14, 15]. The local optimizations that respect these properties are analyzed. Then, under a

special case, no packet arrival occurs for the 2nd user during transmission, the uniqueness of

the optimal schedule is proved. And an iterative algorithm, DuOpt, is proposed and proved

that it obtains the optimal schedule under specified special case. Then, we define a dual

problem that minimize energy given a transmission deadline. The dual problem turns out to

be strictly convex and has a unique solution. Using the dual problem we prove that main

problem has also a unique solution. We describe another algorithm, which utilize sequential

unconstrained minimization technique (SUMT), to solve the main problem and compare the

performance of this algorithm with DuOpt. We observed that DuOpt runs nearly two orders

of magnitude faster than the other algorithm.

In the next section, some important properties of the broadcast channel that characterize the

problem are provided.

2.2 Broadcast Channel

Broadcasting is one of the earliest communication methods throughout the history. Consid-

ering the simplest example, talking is a way of broadcasting information if there are more

than one listeners. In a formal definition, broadcast channel is a communication channel that

distributes information from one sender to at least two receivers [36]. A two-user broadcast

channel is illustrated in Figure 2.2.

Suppose that we have a two-user additive white Gaussian noise broadcast channel (AWGN

BC). The received signals at the receivers are,

Y1 =
√

s1X + Z1 (2.1)

Y2 =
√

s2X + Z2, (2.2)

9



Tx

Rx Rx

Figure 2.2: A broadcast channel with two receivers.

where X is the signal transmitted with average power constraint P,
√

s1 and
√

s2 are the

channel gains, Z1 and Z2 are zero mean Gaussian noise with variance σ2. Assuming s1 >

s2 > 0, the receiver with the greater channel gain,
√

s1, is defined as the stronger user where

the receiver with the smaller channel gain,
√

s2, is defined as the weaker user. The capacity

region of this AWGN broadcast channel is defined by

r1 ≤
1
2

log2

(
1 +

s1αP
σ2

)
(2.3)

r2 ≤
1
2

log2

(
1 +

s2(1 − α)P
s2αP + σ2

)
, (2.4)

where α is the fraction of power reserved for the stronger user by the transmitter [36]. Trans-

mitter first encodes the stronger user data with rate r1 and power P1 = αP, and the weaker

user data with rate r2 and power P2 = (1 − α)P, then combines encoded data and transmits it

to the receivers. The stronger receiver initially decodes the weaker user data and subtracts it

from the received signal Y1. However, the weaker receiver does not decode the stronger user

data due to its bad channel gain and treats it as noise. Figure 2.3 illustrates the capacity region

of the AWGN broadcast channel.

Using capacity achieving codes, rate pair (r1, r2) can be selected from the boundary of the

rate region, where inequalities (2.3) and (2.4) become equalities. Now, substituting (2.3) into

(2.4) we can express the power level P in terms of rate pair as follows [11, 28]:

P = g(r1, r2) = σ2
(
(22r2 − 1)

s2
+

(22r1 − 1)22r2

s1

)
. (2.5)

By rearranging (2.5), the maximum achievable rate of a user can also be expressed in terms
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of average power P and the rate of the other user.

r1 = h1(P, r2) =
1
2

log2

(
s1(s2P + σ2)

s2σ222r2
−

s1 − s2

s2

)
(2.6)

r2 = h2(P, r1) =
1
2

log2

 s2P
σ2 + 1

s2
s1

(22r1 − 1) + 1

 . (2.7)

Figure 2.3: Capacity region of the AWGN BC

Proposition 1 outlines the properties satisfied by these rate functions at the boundary of the

AWGN broadcast capacity region.

Proposition 1 Given s1 > s2, the functions h1 and h2, defined in (2.6),(2.7) on <+ × <+

satisfy the following properties:

1. Nonnegativity: h1(P, r) ≥ 0, h2(P, r) ≥ 0.

2. Monotonicity: h1(P, r), h2(P, r) are both monotone decreasing in r, and monotone in-

creasing in P.

3. Concavity: h1(P, r) and h2(P, r) are concave in P and r.

4. The rate of the user with the weaker channel satisfies the following: ∂2h2(P,r)
∂r∂P = 0,

∂2h2(P,r)
∂P∂r = 0.

Proof of Proposition 1 is given in Appendix A.

This thesis concentrates on a broadcast channel that carries properties given in Proposition 1.
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CHAPTER 3

OPTIMAL OFFLINE BROADCAST SCHEDULING WITH AN

ENERGY HARVESTING TRANSMITTER

Over a decade ago, energy efficiency became an important property with the emergence of

mobile battery limited wireless devices. In order to mitigate battery limitations, the offline

problem of energy efficient packet scheduling [6, 7, 8, 9] is to find code rates to a set of

packets that minimize the total energy consumption while transmitting all the packets before

a predetermined deadline. Along with the recent developments in energy scavenging tech-

niques, the problem is recast via addition of energy harvesting capability to the system where

the objective is to minimize the transmission completion time of packets arrived within a time

window [25]. The problem is extended to a multiuser model and considering that the packets

to be transmitted are ready at the beginning of the schedule, the transmission duration in an

AWGN broadcast channel is minimized [13, 27].

In this chapter, we first give a general system model. Then, in Section 3.2 we reformulate the

problem in [11] and improve the performance of the algorithm given in [11] while provid-

ing a mathematical proof of convergence to optimal solution. In Section 3.3, we extend the

problem by relaxing the assumption that all the data packets are available at the beginning of

transmission.

3.1 System Model

Consider a broadcast channel with one transmitter and two receivers as described in Sec-

tion 2.2. Arbitrary amounts of energy, {Ei < ∞, i = 1, 2, . . .}, as well as data for each user

{B(1)
i , B(2)

i < ∞, i = 1, 2, . . .} become available to the sender at arbitrary times ti. A possible
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sequence of data and energy arrivals is illustrated in Fig. 3.1. E(t) denotes the total amount

of energy that has been harvested in [0, t] (regardless of how much of it has been used.) Sim-

ilarly, B1(t) and B2(t) denote the total number of bits destined to the first and second user

respectively, that arrived to the sender in [0, t]. The interval between any two sequential ar-

rival events (regardless of energy or data) will be called an epoch. The length of the ith epoch

is ξi = ti+1 − ti.

t

t

E(t)

W

(b)

(c)

1t  =0 2t 3t 4t 5t 6t k-1t kt k+1t 

E1

B1

ξ
1

ξ
2

ξ
3

ξ
4

ξ
5

ξ
k-1

ξ
k

t

(1) B1
(2) B2

(1) B2
(2) Bm

(1)

E2 E3 El El+1

(a)

B (t)

t

1

B (t)2

W(d)

Figure 3.1: An example for energy harvest and data arrivals. In (a) a sequence of energy and
data arrivals, in (b) the total harvested energy, in (c) and (d) the total data arrivals destined to
first and second users respectively are shown.

In this offline problem, all the future arrival times and amounts of energy and bits are known

by the sender at t = 0. It is also assumed that harvested energy and data are available for use

instantaneously as they arrive, and code rate and transmission power decisions can be changed

instantaneously. However, codeword block lengths will be chosen such that each codeword

is sent completely within a single epoch (note that starting and ending times of epochs are

known ahead of time), so that no arrival event occurs during a codeword. Consequently, the
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power and rate pair decision will be fixed throughout each codeword.

We are interested in minimizing the total transmission time for packets arriving by a certain

time W < ∞, so W.L.O.G., set Bi(t) = Bi(W) for t ≥ W, i = 1, 2. A schedule, which is

a sequence of power and rate allocations, is feasible if it sends B1(W) < ∞ bits to the 1st

(stronger) user and B2(W) < ∞ to the 2nd (weaker) user (with a certain level of reliability1),

without violating causality (at any time, using available energy and data by that time). We

are interested in finding among all feasible schedules one with the smallest completion time,

T opt.

In the next section we examine the structural properties that need to be satisfied by any optimal

schedule that completes the transmission by T opt.

3.2 Broadcast Channel Packet Scheduling Revisited

In this section we reconsider the problem in [11] and assume that all the information bits

destined to each user are ready at the beginning of transmission and no further data arrival

occurs during transmission, i.e., B1(t) = B1(0) = B1 and B2(t) = B2(0) = B2 for t > 0.

In Lemma 3.3.1 of [11] it has been shown that if there is a change in the total power level

of a transmitter, then bringing the power level closer to each other gives a better schedule.

In Corollary 1 of [11] it is stated that in between energy harvests changing the total power

level of the transmitter is suboptimal. In Lemma 3.3.2 of [11] it has also been shown that it

is suboptimal to change the rate assignments in between energy harvests. In Lemma 3.3.5

in [11] it has been shown that an optimal schedule, that minimizes the transmission duration,

ends its transmission to both users at the same time if all the data for both users are available

at the beginning. In Theorem 3.3.6 of [11] it has been shown that in an optimal schedule,

powers assigned to epochs are monotonically nondecreasing, i.e., P1 ≤ P2 ≤ ... ≤ Pnopt , and

the energy harvested in a constant power region is consumed in that region. Next, we claim

in Lemma 3.2.1 that power assignment of the transmitter in an optimal schedule is unique.

Lemma 3.2.1 In an optimal schedule, the power assignment to epochs, Popt = [P1, P2, ...,

Pnopt], is unique.

1 The achievable rate regions will be implicitly assumed to correspond to a certain constant tolerable error
probability respecting which it is possible to transmit a finite number of bits with a finite amount of energy per bit.
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Proof. Suppose that there are two different optimal power allocation vectors, PA and PB,

where PA
k = PB

k for k = 1, 2, .., i − 1 and PA
i < PB

i . From Part-1 of the Theorem 3.3.6 in [11],

power levels are monotonically nondecreasing in the optimal schedule. In this case, if PA
k for

k ≥ i stays constant, we have
∑n

k=i+1 PA
k ξk <

∑n
k=i+1 PB

k ξk, else ∃ j : {PA
i < PA

i+ j, 1 ≤ j ≤ n − i}

and we have
∑ j−1

k=i+1 PA
k ξk <

∑ j−1
k=i+1 PB

k ξk, both contradicting Part-2 of the Theorem 3.3.6

in [11].

Considering the properties of the optimal schedule (See Lemmas 3.3.1 and 3.3.2 of [11]) the

problem in [11] is defined by the epoch rates and powers in Problem 1. In order to bound the

number of constraints in Problem 1, we shall assume that there is some kup < ∞ such that

there is at least one feasible schedule that ends within the first kup epochs, i.e., at t = T up < ∞.

In other words, kup is an upper bound for epochs to be considered. Similarly T up is an upper

bound on the transmission completion time.

Problem 1 Minimization of Transmission Time on an Energy Harvesting Broadcast

Channel When Data is Available at the Beginning:

Minimize: T = T ({Pi, r2i}1≤i≤kup )

Subject to:

Pi ≥ 0 , 0 ≤ r1i ≤ h1(Pi, 0) , r2i = h2(Pi, r1i) , 1 ≤ i ≤ kup , 0 ≤ T ≤ T up

k∑
i=1

Piξi ≤ E(tk) ∀k ∈ {1, .., k∗ = max{i :
i∑

j=1

ξ j ≤ T }} (3.1)

k∗∑
i=1

Piξi + P(k∗+1)(T −
k∗∑

i=1

ξi) = E(T ) (3.2)

k∗∑
i=1

r1iξi + r1(k∗+1)(T −
k∗∑

i=1

ξi) = B1(T ) (3.3)

k∗∑
i=1

r2iξi + r2(k∗+1)(T −
k∗∑

i=1

ξi) = B2(T ) (3.4)

The constraint set in (3.1) guarantee that the energy causality is respected. If inequality in

(3.1) is met with equality at some tk, then we will refer to this case by saying the energy

constraint is met (or active) at tk. The constraint in (3.2) ensures that all the energy harvested

is consumed at the end of the schedule. Also, transmission of all the bits is guaranteed, B1

and B2 bits to stronger and weaker user respectively, by the constraints in (3.3) and (3.4).

Problem 1 is not a simple optimization problem since the parameter to be optimized, T , ap-

pear in the constraints. In order to solve this problem an iterative algorithm, FlowRight has

15



been proposed in [11]. Before moving to the solution, in Theorem 3.2.3 we present a fi-

nal observation on the structure of the optimal schedule using the general result presented in

Lemma 3.2.2. These have originally been essentially shown in Lemma 4 and Corollary 1 of

[27], through the observation therein that there is a cut-off level for the total power, below

which the weaker user is assigned zero rate in the final optimal schedule. Thus the obser-

vations in Theorem 3.2.3 and Lemma 3.2.2, while not original to this thesis, will be stated

and proved in the following form to preserve the flow of the thesis and be able to explicitly

show (using Lemma 3.2.2) properties of the schedule returned by FlowRight in Theorem 3.2.4

which is not proven to be optimal until Theorem 3.2.5.

Lemma 3.2.2 Suppose the sender uses different rates for the stronger user in the intervals

(τ1, τ
∗), (τ∗, τ2), such that τ1 < τ∗ < τ2. Keeping power levels and the number of bits

transmitted to the stronger user in (τ1, τ2) constant, a larger number of bits can be sent to

the weaker user in (τ1, τ2) by bringing the rates of the stronger user closer to each other if

feasible.

Proof. As illustrated in Fig.3.2, suppose that we have a schedule with two slots and total

transmission duration t = τ2 − τ1. The slot lengths are βt and (1 − β)t. P1 and P2 denote the

total power consumed in the first and second slot respectively. ri j is the rate assigned to the

ith user at the jth slot. Now consider the case r11 < r12. Keeping the avg. rate of user 1, r̄1,

constant, set r11 to r
′

11, r12 to r
′

12 s.t. r11 ≤ r
′

11 ≤ r
′

12 ≤ r12 by transferring a certain amount

of bits belonging to stronger user are transferred from the 2nd slot to the 1st. This is feasible

unless r11 is already maximal for the given power level (i.e. r21 = 0).

Figure 3.2: Illustration of the transmission scheme used in Lemma 3.2.2.
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Average rate of the weaker user over the whole duration is increased from its original level,

r̄2, to:

¯̄r2 = h2(P1, r
′

11)β + h2(P2, r
′

12)(1 − β)

> h2(P1, r11)β + h2(P2, r12)(1 − β) = r̄2 (3.5)

(3.5) follows from the fact that

h2(P1, r
′

11)β + h2(P2, r
′

12)(1 − β)

− h2(P1, r11)β − h2(P2, r12)(1 − β) ≥ 0 (3.6)

for all β , {0, 1} (with equality achieved at β = 0, 1), unless r21 = 0, as proved in App. B. In

the remaining case, r11 > r12, set r12 ≤ r
′

12 ≤ r
′

11 ≤ r11, which is feasible unless r22 = 0, and

strictly improves the average rate for the weaker user.

Theorem 3.2.3 In an optimal schedule,

1. [cf. Corollary 1 in [27]] the stronger user’s rate is monotone nondecreasing, i.e., r11 ≤

r12 ≤ ... ≤ r1nopt ;

2. [cf. Corollary 1 in [27]] if r1(i+1) , r1i for some 0 < i < nopt, then r2i = 0, i.e., if the

stronger user’s rate changes at the start of the (i + 1)th epoch, the weaker user’s rate was

zero during the ith epoch;

3. [cf. Corollary 1 in [27]] the weaker user’s rate is monotone nondecreasing, i.e., r21 ≤

r22 ≤ ... ≤ r2nopt ;

4. The vector of rate pairs, Ropt = [(ropt
11 , r

opt
21 ), ..., (ropt

1nopt , ropt
2nopt)], is unique.

Proof. The first three parts essentially follow from Corollary 1 in [27] but are proved here for

completeness.

1. Suppose the rate of the stronger user decreases at some point, i.e., r1i > r1(i+1) for some

i. From Part-1 of the Theorem 3.3.6 in [11] and Lemma 3.2.2, at least the same number

of bits can be sent to each user (and more to at least one) in epochs (i, i+1) by assigning

the strong user the average rate r̄1.
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2. Suppose that in an optimal schedule the weaker user’s rate changes at the (i + 1)th

epoch and r2i , 0. If the rate of the stronger user changes, it can only increase, i.e.,

r1i < r1(i+1), by Part-1. From Lemma 3.2.2, the schedule could only be improved by

bringing r1i and r1(i+1) closer to each other using the energy available for the weaker

user at the ith epoch, if possible. Hence, the only reason why the rate of the stronger

user can increase at the (i + 1)th epoch is that there is no feasible energy available to

equalize r1i and r1(i+1), which contradicts r2i , 0.

3. Suppose that in an optimal schedule r2i > r2(i+1). From Part-2, r1i = r1(i+1) = r̄1 if

r2i , 0. By Part-1 of the Theorem 3.3.6 in [11] and 2nd property of the rate region,

r2i = h2(Pi, r̄1) ≤ h2(Pi+1, r̄1) = r2(i+1) which contradicts initial rate assumption.

4. Suppose that there are two distinct optimal rate-pair vectors, RA and RB, where (rA
1k, r

A
2k) =

(rB
1k, r

B
2k) for k = 1, 2, .., i − 1 and rA

1i < rB
1i. Using Lemma 3.2.1, we have rA

2i =

h2(Pi, rA
1i) > h2(Pi, rB

1i) ≥ 0. From Part-2, rA
1 j = rA

1i < rB
1i ≤ rB

1 j ∀ j ∈ {i + 1, ..., n}.

Hence, fewer bits will be transmitted by RA than RB, which contradicts the optimality

of RA.

From Lemma 3.2.1 and 3.2.3, we conclude that the optimal schedule is unique (henceforth

abbreviated as OPT.) Next, we give the solution of Problem 1 by FlowRight algorithm which

is be proved to obtain the unique optimal schedule.

3.2.1 Optimal scheduling with the FlowRight algorithm

FlowRight starts from a feasible initial schedule, and progresses iteratively. Each iteration

strictly improves the schedule (decreases T ), which ultimately converges to the unique opti-

mal T opt. Given an initial schedule FlowRight performs local optimizations on pairs of epochs

sequentially, i.e., on epochs (1, 2), (2, 3), (3, 4), ... , until all epoch pairs are processed and

it is called one iteration of the algorithm (Local optimizations on epoch pairs are studied in

details in App. C). Afterwards, FlowRight starts from the first epoch pair and does another

iteration over the schedule. After each iteration FlowRight obtains a schedule S n = {rn
1i, r

n
2i}

with transmission completion time T n, where n is the iteration count from the beginning. It

has been shown in Theorem 3.4.1 of [11] that each iteration of the FlowRight strictly im-

proves the schedule decreasing the transmission completion time. FlowRight stops when an
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iteration cannot decrease the transmission completion time anymore, which happens when

iteration count goes to infinity, and returns the schedule {r∞1i , r
∞
2i } with transmission comple-

tion time T fr = T ({r∞1i , r
∞
2i }) and energy consumption E∞i at each epoch i ∈ {1, 2, ..., n∞}. In

Theorem 3.4.1 of [11] it has also been shown that the power of the transmitter in the schedule

returned by FlowRight is monotonically nondecreasing which is one of the properties of the

optimal schedule. Next, we will show that FlowRight also satisfies some other properties of

the optimal schedule and we will prove that the schedule returned by FlowRight is the optimal

schedule. In [11] the optimality of the schedule returned by FlowRight has been proved, yet

in this thesis we will provide a mathematical proof of the optimality using Lemma 3.2.2.

Theorem 3.2.4 When FlowRight stops,

1. Energy consumed during any constant power allocation band equals the total energy

harvested in that band.

2. The stronger user’s rate is monotone nondecreasing, i.e., r11 ≤ r12 ≤ ... ≤ r1n,

3. If the stronger user’s rate changes at the (i + 1)th epoch, the weaker user’s rate is zero at

the ith epoch,

4. The weaker user’s rate is monotone nondecreasing, i.e., r21 ≤ r22 ≤ ... ≤ r2n.

Proof.

1. Suppose that Pi = Ps , Ps+1, s − m ≤ i ≤ s < n∞ for some band of length m < s

such that
∑s

i=s−m Piξi <
∑s

i=s−m Ei. From Theorem 3.4.1 of [11] we know power is a

monotone nondecreasing function, then we should have Ps < Ps+1. But we can transfer

up to
∑s

i=s−m Ei −
∑s

i=s−m Piξi units of energy from epoch s + 1 to s, only improving the

schedule (cf. Lemma 3.3.1 in [11]). This contradicts the assumption that FlowRight

has stopped.

2. Suppose ∃ i ∈ {1, .., n∞ − 1} s.t. r1i > r1(i+1). From Part-3 of Theorem 3.4.1 in [11] and

Lemma 3.2.2, by assigning the average rate r̄1 = (r1iξi + r1(i+1)ξi+1)/(ξi + ξi+1) to the

stronger user in epochs, more bits can be transmitted to the weaker user which means

further local improvement on these epochs is ensured. This contradicts the assumption

that FlowRight stopped.
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3. Suppose that the stronger user’s rate changes at the (i + 1)th epoch and r2i , 0. The

stronger user’s rate can only increase, i.e., r1i < r1(i+1), by Part-2. From Lemma 3.2.2,

by bringing r1i and r1(i+1) closer to each other using the energy available for the weaker

user at the ith epoch, overall transmission duration is decreased which contradicts the

assumption that FlowRight stopped.

4. Suppose that r2i > r2(i+1). From Part-3, r1i = r1(i+1) since r2i , 0. From Part-2,

the power is monotone increasing. Since h2(P, r) is monotone increasing in P by the

properties of rate region, r2(i+1) = h2(Pi+1, r1i) ≥ h2(Pi, r1i) = r2i, which contradicts

r2i > r2(i+1).

Theorem 3.2.5 The schedule returned by FlowRight is optimal, i.e., T ({r∞1i , r
∞
2i }) = T opt.

Proof. Suppose that FlowRight stops and returns a schedule {r∞1i , r
∞
2i } , S fr, with completion

time T ({r∞1i , r
∞
2i }) , T fr.

As a matter of fact, T fr can not be smaller than T opt. Suppose T fr > T opt. Consider the case

that T opt is in the mth epoch and T fr is in the nth epoch with n ≥ m.

There must be a schedule {ropt
1i , r

opt
2i } , S opt that achieves T opt. Suppose that S opt and S fr are

equal up to epoch s, which is the first time they differ either in terms of power level or rates, or

both. Let us denote the power allocated in epoch s in S opt as Popt
s and in S fr as Pfr

s . Consider

the following.

1. Pfr
s > Popt

s : From Part-2 of Theorem 3.3.6 in [11], all the harvested energies are con-

sumed within any constant power band of S opt. Then, starting from epoch s when S opt

consumes all the energy at the end of that constant power region, S fr would have con-

sumed more energy than S opt by Part-3 of Theorem 3.4.1 in [11], contradicting the fact

that FlowRight always respects energy causality.

2. Pfr
s < Popt

s : Suppose that Pfr
s increases to Pfr

s+m at some further epoch s + m before T opt.

From Lemma 3.3.1 in [11], by bringing power levels Pfr
s+m−1 = Pfr

s and Pfr
s+m of the

epoch pair (s + m − 1, s + m) closer to each other (this never violates energy causality),

further local improvement on these epochs is ensured which contradicts the fact that

FlowRight has stopped.
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Hence, S fr cannot have higher power level than S opt until T opt. Moreover, if power level of

S fr becomes lower than that of S opt, then it should stay constant until T opt. These results are

shown in the general case in Fig. 3.3.
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Figure 3.3: Illustration of the general case (in the proof of Theorem 3.2.5) that S fr and S opt

differ in power at k constant power bands and differs in both power and rate at l constant
power bands.

Now, suppose that the first change occurs when Pfr
s = Popt

s and the rate pairs, {ropt
1s , r

opt
2s } and

{rfr
1s, r

fr
2s}, differ from each other in the general case. Consider the following.

1. ropt
1s < rfr

1s: Since ropt
2s = h2(Popt

s , ropt
1s ) > h2(Pfr

s , rfr
1s) ≥ 0, rate of stronger user in

the S opt should stay constant after epoch s by Theorem 3.2.3. Since T fr ≥ T opt and

rfr
1s ≤ rfr

1u ∀u ∈ {s + 1, ..., n}, S fr should have transmitted more bits to stronger user than

S opt, which contradicts the fact that FlowRight always respects bit feasibility, i.e., S fr

transmits exactly the same number of bits to each user as S opt by the time T fr.

2. ropt
1s > rfr

1s: We have rfr
2s = h2(Pfr

s , r
fr
1s) > h2(Popt

s , ropt
1s ) ≥ 0; therefore, rfr

1u = rfr
1s ∀u ∈ {s +

1, ...,m} by Theorem 3.2.4. Then, bit feasibility requires rfr
1

(∑k+l+1
i=1 ti

)
≤

∑k+l
i=1 tir

opt
1(i),

where ropt
1(i) ≥ ropt

1s is the rate of stronger user for the ith constant power band whereas

ti is the duration of that band. Rearranging the terms we have rfr
1 ≤

∑k+l
i=1 γir

opt
1(i), where

γi = ti
/∑k+l+1

i=1 ti ∈ (0, 1), ∀i ∈ {1, 2, .., k + l}. Moreover, from Part-1 of Theorem 3.2.4

we have Pfr
(∑k+l+1

i=k+1 ti
)
≥

∑k+l
i=k+1 tiPi, where Pi is the power of the ith constant power

band (see Fig.3.3). Rearranging the terms we have Pfr ≥ β
∑k+l

i=k+1(αi/β)Pi where αi =

ti
/∑k+l+1

i=k+1 ti ∈ (0, 1), ∀i ∈ {1, 2, .., k + l} and β =
∑k+l

i=k+1 ti
/∑k+l+1

i=k+1 ti ∈ (0, 1). Now, let b̃fr
2

and b̃opt
2 be the number of bits transmitted to the 2nd user from epoch s till T opt+tk+l+1 by
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S fr and till T opt by S opt, respectively. Let C = (
∑k+l+1

i=k+1 ti). Then, we have b̃fr
2 − b̃opt

2 > 0

from (3.13). Eq (3.7), Eq (3.8) and Eq (3.13) follows from the 2nd property of the rate

region while Eq (3.9) and Eq (3.10) follows from the 3rd. Hence, S fr transmits more

bits to the 2nd user than S opt, contradicting the fact that FlowRight always respects bit

feasibility.

b̃fr
2 − b̃opt

2 =

k∑
i=1

tih2(Pi, rfr
1 ) + Ch2(Pfr, rfr

1 ) −
k+l∑
i=1

tih2(Pi, r
opt
1(i))

= C{
k∑

i=1

αih2(Pi, rfr
1 ) + h2(Pfr, rfr

1 ) −
k+l∑
i=1

αih2(Pi, r
opt
1(i))}

= C{
k∑

i=1

αi(h2(Pi, rfr
1 ) − h2(Pi, r

opt
1(i)︸                       ︷︷                       ︸

>0

)) + h2(Pfr, rfr
1 ) −

k+l∑
i=k+1

αih2(Pi, r
opt
1(i))}

> C{h2(Pfr, rfr
1 ) −

k+l∑
i=k+1

αih2(Pi, r
opt
1(i))} (3.7)

≥ C{h2(β
k+l∑

i=k+1

(αi/β)Pi, rfr
1 ) −

k+l∑
i=k+1

αih2(Pi, r
opt
1(i))} (3.8)

> C{βh2(
k+l∑

i=k+1

(αi/β)Pi, rfr
1 ) −

k+l∑
i=k+1

αih2(Pi, r
opt
1(i))} (3.9)

> C{β
k+l∑

i=k+1

(αi/β)h2(Pi, rfr
1 ) −

k+l∑
i=k+1

αih2(Pi, r
opt
1(i))} (3.10)

= C{
k+l∑

i=k+1

αi(h2(Pi, rfr
1 ) − h2(Pi, r

opt
1(i))︸                        ︷︷                        ︸

>0

)}

> 0 (3.11)

Then, power allocation and rate pairs of S opt and S fr cannot differ, so S fr = S opt and T fr =

T opt.

In the next section, we will relax the assumption that all the bits are available at the beginning

of the schedule. In other words, arbitrary amount of data destined to each user arrive at

arbitrary points in time as well as the transmitter gets replenished with arbitrary amounts of

energy at arbitrary points in time.
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3.3 Broadcast Channel Packet Scheduling Extended

Consider the system model in Section 3.1. In the previous section, it is assumed that all the

data bits are available at the beginning of the schedule. However, a more realistic system

model would consider data arrivals during transmission. In this section, we extend Problem 1

to Problem 2 by considering the case that the data arrivals occur during transmission.

Problem 2 Minimization of Transmission Time on an Energy Harvesting Broadcast

Channel When Data Arriving at Arbitrary Points:

Minimize: T = T ({(Pi, r1i)}1≤i≤kup)

Pi ≥ 0 , 0 ≤ r1i ≤ h1(Pi, 0) , r2i = h2(Pi, r1i) , 1 ≤ i ≤ kup , 0 ≤ T ≤ T up

∀k ∈ {1, .., k∗ = max{i :
i∑

j=1

ξ j ≤ T }}

k∑
i=1

Piξi ≤ E(tk)

k∑
i=1

r1iξi ≤ B1(tk) ,
k∑

i=1

r2iξi ≤ B2(tk) (3.12)

k∗∑
i=1

Piξi + P(k∗+1)(T −
k∗∑

i=1

ξi) = E(T )

k∗∑
i=1

r1iξi + r1(k∗+1)(T −
k∗∑

i=1

ξi) = B1(T )

k∗∑
i=1

r2iξi + r2(k∗+1)(T −
k∗∑

i=1

ξi) = B2(T )

In addition to the constraints in Problem 1, the set of constraints (3.12) is added to Prob-

lem 2. Constraint set (3.12) ensure that no information is transmitted to the users before it

becomes available at the sender. Similar to the energy causality constraint, the equality case

of inequalities in (3.12) for some tk will be referred as the constraint is met (or active) at tk.

The structural properties of an optimal schedule with arbitrary data arrivals are studied in [15].

It has been shown that in an optimal schedule with arbitrary data arrivals, transmit power of a

sender is monotonically nondecreasing and can only rise if at least one of the specific condi-

tions hold (cf. Lemma 2 and Lemma 3 in [15]). Also, it has been shown in Lemma 5 of [15]

that in an optimal schedule, all the harvested energies during transmission should be con-
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sumed until the end of the schedule. In the following, we study the structure of optimal sched-

ule if weaker user data is ready at the beginning of schedule, i.e., B2(t) = B2(0) ∀t ∈ [0,W].

We shall abbreviate this condition as follows:

Definition 3.3.1 Weaker User Full Buffer Condition (WUFBC) is said to be satisfied when-

ever all of the data of the weaker user is available at the beginning of transmission. That is,

B2(t) = B2(0) ∀t ∈ [0,W].

In Lemma 3.3.2 we will show that stronger user’s rate is monotonically nondecreasing under

WUFBC and may increase only certain conditions satisfied. Then, in Theorem 3.3.3 we will

prove that optimal schedule is unique under WUFBC.

Lemma 3.3.2 Consider two consecutive epochs i and i + 1 of a given schedule, ending at ti+1

and ti+2 by definition, and suppose WUFBC holds for the problem instance. The following

is necessary for the rate and power allocation to these two epochs of the given schedule to

be locally optimal: The stronger user’s rate is constant throughout [ti, ti+1), and [ti+1, ti+2).

Furthermore, the rate may jump up at t = ti+1 (staying constant otherwise) if at least one of

the below is true:

1. There is data arrival to the stronger user at t = ti+1 and all the data that arrived before

t = ti+1 has been transmitted by ti+1.

2. An energy harvest occurs at t = ti+1 and all of the power has been used for the stronger

user during epoch i.

Proof. Suppose that r1i ≤ r1(i+1). One can find a better schedule by bringing the rates of

the stronger user closer by Lemma 3.2.2. Therefore, the stronger user’s rate cannot decrease.

However, the stronger user’s rate may increase because it may be against to either bit or en-

ergy causality to transfer some stronger user bits from epoch i + 1 to i. Firstly, it is against

bit causality to transfer some stronger user bits from epoch i + 1 to epoch i, if the first condi-

tion holds. Secondly, if the second condition is satisfied we cannot bring stronger users rates

closer to each other as it would violate energy causality.
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We investigate the unique solution of Problem 2 in the next section.

Theorem 3.3.3 There is a unique optimum schedule under WUFBC, i.e., a unique power-rate

allocation achieving T opt.

Proof. Suppose that there are two distinct optimal schedules, S A and S B, which have equal

power and rate assignments until ts and differ for the first time at epoch s. Consider that

the corresponding power allocation vectors, PA and PB, also differ at epoch s such that

PA
i = PB

i ,∀i ∈ {1, 2, .., s− 1} and PA
s < PB

s . First, assume that PA remains constant after epoch

s, i.e., PA
i = PA

s ,∀i > s. By definition, both schedules end at T opt. The total energy con-

sumption of S A would be less than that of S B by T opt, i.e.,
(∑k∗

i=1 PA
i ξi + (T opt − tk∗+1)PA

k∗+1

)
<(∑k∗

i=1 PB
i ξi + (T opt − tk∗+1)PB

k∗+1

)
, which contradicts Lemma 5 of [15]. Hence, total transmit

power of S A cannot remain constant after ts. Since total transmit power is nondecreasing

(See Lemma 2 of [15]), it should increase after epoch s and before the end of transmission,

i.e., PA
u < PA

u+1 , ∃u ∈ {s, s + 1, ..., k∗}. Since there are no data arrivals for the weaker user,

the increase in total transmit power is either due to energy constraint being met or due to

all the packets arrived by the time tu+1 having been transmitted (cf. conditions (a) or (c) in

Lemma 3 of [15]). As
∑u

i=s PA
i ξi <

∑u
i=s PB

i ξi, S A has not consumed all the available energy

at the end of epoch u. Hence, S A must have transmitted all the bits arrived until tu+1, which

means that S A has transmitted at least the same number of bits to both users while consuming

less energy than S B between t0 and tu+1, which contradicts the optimality of S B. Therefore, if

there are two distinct optimal schedules, S A and S B, their power allocation vectors cannot be

different, i.e., PA = PB.

Now, consider two rate pair vectors, RA and RB, where (rA
1i, r

A
2i) = (rB

1i, r
B
2i) , ∀i ∈ {1, 2, .., s−1}

and rA
1s < rB

1s. Let the rate of the stronger user in S A, {rA
1 j} stay constant after ts+1. By

Lemma 3.3.2 rate of the stronger user cannot decrease, hence the rate of the stronger user

in S B would be larger than that of S A after epoch s, i.e., rA
1( j+1) = rA

1s < rB
1s ≤ rB

1 j , ∀ j ∈

{s, s + 1, ..., k − 1}. Since both schedules end transmission at the same time, S A transmits

fewer bits to the stronger user than S B does, which contradicts the fact that optimal schedule

transmits all the packet arrivals by the end of transmission. Therefore, the rate of the stronger

user in S A cannot stay constant after epoch s. Now suppose that rate of the stronger user in S A

increases at the end of epoch u, i.e., rA
1u < rA

1(u+1) , ∃u ∈ {s, s + 1, ..., k∗}. This increase cannot

be due to (1) in Lemma 3.3.2 because S B has transmitted more bits to the stronger user by
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tu+1, i.e.,
∑u

i=1 rA
1iξi <

∑u
i=1 rB

1iξi. Moreover, this increase cannot be due to (2) in Lemma 3.3.2

since rate of the weaker user in S A is greater than zero in epoch u, i.e., rA
2u = h2(Pu, rA

1u) >

h2(Pu, rB
1u) ≥ 0. Hence rate of stronger user in S A cannot increase after epoch s. Finally, rate

of the stronger user in S A cannot decrease (See Lemma 3.3.2) as this would also contradict

optimality. Hence, there cannot be two optimal schedules with different rate pair vectors.

As both the power allocation vector and the rate pair vector of an optimal schedule are unique,

we conclude that the optimal schedule is unique under WUFBC.

Next, we give the solution of Problem 2 with the DuOpt algorithm which is proved to obtain

the unique optimal schedule iteratively under WUFBC.

3.3.1 Optimal Scheduling with the DuOpt Algorithm

The Problem 1 which is a special case of Problem 2, where both users’ data is available at the

beginning, was shown to be solved by the FlowRight algorithm [28]. Along similar lines, we

develop an algorithm that we call DuOpt for solving Problem 2 in its general form. As a matter

of fact, DuOpt simply reduces to FlowRight when the given problem instance has all the data

arriving at t = 0. DuOpt starts with any feasible schedule and reduces the transmission

completion time iteratively. Let the number of epochs and the transmission completion time

of the initial schedule be kup and T up respectively. In each iteration, DuOpt sequentially

updates rates and powers of two consecutive epochs at a time, i.e., epochs (1, 2), (2, 3), ...,

until all epochs are updated. Then, starting from the first epoch pair, DuOpt continues with

the next iteration. DuOpt stops after N iterations such that N = min{n : T n−1 − T n ≤ ε, i =

1, ..., kn, j = 1, 2}, where T n ≤ T up is the transmission completion time, kn ≤ kup is the number

of epochs used at the end of nth iteration and ε is a predefined threshold.

Hereafter, we will briefly outline the local optimizations over epoch pairs. In Theorem 3.3.4,

it will be shown that local optimizations can only improve the schedule. We will also prove

that under WUFBC, successive iterations strictly improves the schedule unless it is optimal.

26



Local Optimizations

Let En
i denote the energy used during the ith epoch and bn

ji denote the number of bits trans-

mitted to the jth user during epoch i at the end of nth iteration. Suppose that DuOpt is at the

nth iteration and running a local optimization over epoch pair (i, i + 1). The values of bn
jz and

En
z , ∀z ∈ {1, 2, ..., i − 1} have already been found by previous local optimizations. At the end

of this optimization, En
i and bn

ji will be determined; En−1
i+1 , En−1

i+2 and bn−1
j(i+1) will be reset to new

values that conserve total energy consumption and data transmission in these epochs. The

goal of the local optimization is surely to minimize the total transmission completion time

of all the packet arrivals. Hence, it is logical to minimize the transmission time in the local

optimization problem, which results in a gap2 if transmission ends before the end of (i + 1)th

epoch. This gap is used in the next local optimization to further reduce the transmission time

via transferring bits or energy between epochs (i + 1) and (i + 2); hence, a new gap occurs at

the end of the next local optimization. This new gap propagates to the end of the transmission

resulting a reduction in the total transmission completion time [13]. However, in some cases

an epoch long gap occurs and this gap is useless for the next local optimization, i.e., energy

or data transfer between epochs in the next local optimization is impossible because of con-

straints. In that case, it is better to just spread the data out till the end of the second epoch

in the local problem and minimize the energy consumption so that the excess energy can be

used to further reduce the transmission time in the next local optimization. This leads to two

different local optimization functions: time minimization and energy minimization. These

functions both support the global objective in different ways. Time minimization aims to find

the minimum amount of time, T n
(i,i+1), to transmit bn

j(i,i+1) = bn−1
ji + bn−1

j(i+1) bits to each user

using the energy available in epoch pair (i, i + 1), i.e., En−1
(i,i+1) = En−1

i + En−1
i+1 . On the other

hand, energy minimization aims to find the minimum energy, En
(i,i+1), to transmit bn

j(i,i+1) bits

to each user in two epoch durations, i.e., ξi + ξi+1, and excess energy, En−1
i + En−1

i+1 − En
(i,i+1), is

transferred to the (i+2)th epoch in order to conserve energy. Both of the optimizations respect

energy and bit causalities, i.e., En
i ≤ E(ti) −

∑i−1
s=1 En

s and bn
ji ≤ B j(ti) −

∑i−1
s=1 bn

js, j ∈ {1, 2}.

For details of the local optimization, see App. C.

Suppose that all the feasible packets have been transmitted until the end of the ith epoch

and there are still packets to arrive after ti. Then, further minimization of transmission com-
2 A gap is a time period with zero power allocation.
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All the data arrived 
have been transmitted

Epoch1 Epoch2  Epoch3  Epoch4  Epoch5  Epoch6  Epoch7 Epoch8

Energy Minimization                     Time Minimization

Flag

Figure 3.4: Illustration of the Flag and local optimizations, where all the feasible bits have
been transmitted until the end of 5th epoch; hence, a Flag is set to 4th epoch pair, i.e., (4, 5).
Energy minimization is performed upto epoch pair with the Flag and time minimization is
performed for the rest.

pletion time of sequential epochs before ti will be suboptimal. On the other hand, we can

minimize the energy consumption until ti and use the excess energy to minimize the transmis-

sion completion time. Therefore, utilization of energy minimization for local optimizations

in Problem 2 is very crucial. If it is guaranteed that current schedule uses at least the same

amount of energy as optimal schedule until ti, DuOpt uses the energy minimization function

up to ith epoch pair and the time minimization function for the rest. In order to determine

when to switch from energy minimization to time minimization, a Flag is placed at ith epoch

pair. Initially, the Flag is set to zero and DuOpt starts with performing time minimization on

epoch pairs. During nth iteration, if all the feasible bits are transmitted by the ith epoch for

∃i ∈ {1, 2, ..., kn−1}, then the Flag is set to i (Flag < i). In the following iterations, energy

minimization function is used up to ith epoch pair. Fig. 3.4 illustrates the Flag usage and

the pseudo-code in Algorithm 1 outlines the DuOpt algorithm. We have also observed that

utilization of the energy minimization function after Flag is also useful when an epoch long

gap occurs.

Theorem 3.3.4 Following statements hold:

1. Successive iterations of DuOpt can only improve the schedule.

2. DuOpt stops and returns a schedule with {r∞1i , r
∞
2i }.

Proof.

1. Suppose that DuOpt is running its nth iteration. After the local optimization on ith
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Algorithm 1 DuOpt Algorithm
1: Initialize();

2: n← 0, Flag← 0, T 0 ← T up

3: repeat

4: n++

5: for i = 1 to (kn − 1) do

6: en
i,max ← E(ti) −

∑i−1
m=1 en

m

7: bn
1i,max ← B1(ti) −

∑i−1
m=1 bn

1m

8: bn
2i,max ← B2(ti) −

∑i−1
m=1 bn

2m

9: bn
1 ← bn−1

1i + bn−1
1(i+1)

10: bn
2 ← bn−1

2i + bn−1
2(i+1)

11: if i ≤ Flag then

12: [bn
1i,b

n−1
1(i+1),b

n
2i,b

n−1
2(i+1),E

n
i ,E

n−1
i+1 ,E

n−1
i+2 ] =

Minimize_Energy(En−1
i ,E

n−1
i+1 ,E

n−1
i+2 ,b

n
1,b

n
2,e

n
i,max,b

n
1i,max,b

n
2i,max)

13: else

14: [bn
1i,b

n−1
1(i+1),b

n
2i,b

n−1
2(i+1),E

n
i ,E

n−1
i+1 ] =

Minimize_Time(En−1
i ,E

n−1
i+1 ,b

n
1,b

n
2,e

n
i,max,b

n
1i,max,b

n
2i,max)

15: end if

16: if bn
1i,max == bn

1i && bn
2i,max == bn

2i && Flag < i && i < kn − 1 then

17: Flag = i

18: end if

19: end for

20: Calculate_T(&T n ) {Calculate current transmission completion time.}

21: until T n == T n−1
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epoch pair, we obtain {(rn
1i, r

n
2i), E

n
i } and reset the values of {(rn−1

1(i+1), r
n−1
2(i+1)), E

n−1
i+1 , E

n−1
i+2 }.

If the Flag is not placed before ith epoch pair, i.e., Flag ≥ i, then the aim of the local

optimization will be energy minimization. Following the local optimization on ith epoch

pair, the excess energy will be transferred to En−1
i+2 . In the next local optimization this

excess energy is either further transferred or is used to reduce the transmit time. On the

other hand, if Flag < i, then the aim of the local optimization on ith epoch pair will

be time minimization. After the local optimization the transmission completion time of

the bits in epochs (i, i + 1) will either be equal to or before the end of the epoch (i + 1).

That is, a gap may occur within ith epoch pair. In the next local optimization, this gap

would propagate to the (i + 2)th epoch [13]. During the nth iteration of DuOpt, if a gap

occurs or excess energy is transferred during local optimizations, then the gap (or the

excess energy respectively) will propagate to the last epoch pair resulting in an ultimate

reduction the transmission completion time at the end of the iteration, i.e., T (rn
1i, r

n
2i) <

T (rn−1
1i , rn−1

2i ). If neither excess energy nor a gap occurs during local optimizations, then

transmission completion time cannot be decreased and DuOpt will stop by definition.

Both local optimizations are in favor of the next local optimization. Therefore, if in

either one of the local optimizations a gap occurs or excess energy is transferred then

it would propagate till the last epoch pair and finally the transmission completion time

would decrease at the end of nth iteration, i.e., T (rn
1i, r

n
2i) < T (rn−1

1i , rn−1
2i ). If neither

excess energy nor gap occurs during local optimizations, then transmission completion

time would not be decreased and DuOpt would stop.

2. In Part-1 we have shown that transmission completion time, T (rn
1i, r

n
2i), is strictly de-

creasing in each iteration; meanwhile it is bounded below by T OPT . Therefore, the

iterations of DuOpt stop and return a schedule {r∞1i , r
∞
2i }.

Theorem 3.3.5 If WUFBC is guaranteed, the schedule returned by DuOpt is optimal, i.e.,

T ({r∞1i , r
∞
2i }) = T opt.

Proof. Suppose that DuOpt stopped and returned a schedule {r∞1i , r
∞
2i } , S Du, with completion

time T ({r∞1i , r
∞
2i }) , T Du. Let S opt be the unique optimal schedule with transmission com-

pletion time T opt. We will now prove that S Du = S opt. Let us suppose S Du , S opt, then

these schedules have to differ in either the power allocation or rate allocation (or both). First,

suppose PDu
i = Popt

i , i ∈ {1, 2, ..., s−1} and PDu
s , Popt

s for some s. We will show that this case
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is impossible. There are two possible cases for epoch s: (i) PDu
s > Popt

s , (ii) PDu
s < Popt

s . Let

us begin with the first case.

(i) We assumed PDu
s > Popt

s . If Popt stays constant after epoch s till the end of transmission,

this would mean that S Du consumes more energy than S opt until T opt, which would

contradict the fact that optimal schedule consumes all the harvested energy till the end

of transmission. Therefore the power of the optimal schedule must increase at the end of

epoch (s+m) for some m ≥ 0 before the end of transmission. As S Du has been able to use

more energy than the optimal schedule until ts+m+1, the optimal schedule cannot have

run into an energy constraint at ts+m+1, hence the rise in the power can only be due to

a data constraint at ts+m+1, i.e., all the bits arrived have been transmitted by the optimal

schedule until ts+m+1. In order to contradict the assumption that PDu
s > Popt

s , we will

now analyze the rate assignments for both schedules. First let us focus on the case that

both schedules use exactly the same rates for the stronger user up to ts+m+1, i.e., rDu
1i =

ropt
1i , ∀i ∈ {s, ..., s + m}. As we have shown above, S opt should have transmitted all the

bits available until ts+m+1. However, if we compare the weaker user bits transmitted by

both schedules until ts+m+1, we observe that S Du transmits more bits to the weaker user

than S opt does, because
∑s+m

i=1 (rDu
2i − ropt

2i )ξi =
∑s+m

i=s (rDu
2i − ropt

2i )ξi =
∑s+m

i=s (h2(PDu
i , rDu

1i ) −

h2(Popt
i , ropt

1i ))ξi > 0. On the other hand, DuOpt respects bit causality, i.e., DuOpt does

not transmit bits that have not arrived yet, so we reach contradiction. That is, rates

cannot stay constant up to ts+m+1, i.e., there is some k ∈ {1, 2, ..., s + m − 1} such that

rDu
1i = ropt

1i for i < k and rDu
1k , ropt

1k . But we shall now show that this is not possible. First

consider the case that rDu
1k < ropt

1k . From Lemma 3.3.2, the stronger user’s rate cannot

decrease under WUFBC. If rDu
1i = rDu

1k , i ∈ {k, ..., s + m}, then S Du transmits more bits to

the weaker user than S opt does by ts+m+1, i.e.,
∑s+m

i=1 (rDu
2i −ropt

2i )ξi =
∑s+m

i=k+1(rDu
2i −ropt

2i )ξi =∑s+m
i=k+1(h2(PDu

i , rDu
1i ) − h2(Popt

i , ropt
1i ))ξi > 0. However, at the end of (s + m)th epoch, S Du

cannot send more bits to weaker user because S opt should have transmitted all the weaker

user bits. Therefore, rDu
1 should increase before ts+m+1, i.e., at the end of epoch k + n,

where 0 < n < (s + m − k). We have rDu
1(k+n) < rDu

1(k+n+1), hence either one of the two

conditions in Lemma 3.3.2 must hold. Since
∑k+n

i=1 (ropt
1i − rDu

1i )ξi > 0, until tk+n+1, S opt

has transmitted more bits to the stronger user than S Du does; therefore, all the stronger

user’s bits arrived have not been transmitted by S Du at the end of epoch (k + n). Also,

rDu
2(k+n) = h2(PDu

k+n, r
Du
1(k+n)) > h2(Popt

k+n, r
opt
1(k+n)) ≥ 0. Hence neither of the two conditions
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in Lemma 3.3.2 holds and stronger user’s rate cannot increase at tk+n+1, which implies

rDu
1k ≮ ropt

1k . Thus, we are left with the case rDu
1k > ropt

1k . If ropt
1i = ropt

1k , i ∈ {k, ..., s+m}, then∑s+m
i=1 (rDu

1i − ropt
1i )ξi > 0 , which contradicts the fact that DuOpt respects bit feasibility.

Hence, stronger user’s rate in S opt cannot remain constant after epoch k. Then we should

have ropt
1i = ropt

1k , i ∈ {k, ..., k + n} and ropt
1(k+n) < ropt

1(k+n+1). Since there is an increase in the

stronger user rate, at least one of the conditions in Lemma 3.3.2 should hold at tk+n+1.

However, we have
∑k+n

i=1 (PDu
i −Popt

i )ξi > 0 and
∑k+n

i=1 (rDu
1i − ropt

1i )ξi > 0, which tells us that

neither one of the conditions in Lemma 3.3.2 holds, which implies that this final case is

also not possible. Hence, we conclude that the case PDu
s > Popt

s is not possible.

(ii) Now consider the case PDu
s < Popt

s . We will prove that this case is also not possible

by following a similar method to the one in case (i). First, suppose that the power

of S Du increases after sth epoch. This increase cannot be due to an energy constraint,

since S opt consumes more energy than S Du does until the increase in power. Hence, it

should be due to data constraint and under WUFBC both user data constraints should

be active. That is, S Du transmits all the feasible data until the increase in power. This

implies that while consuming less energy, S Du transmits at least the same number of

bits than S opt does, which contradicts the optimality of S opt. Thus, power of S Du cannot

increase after epoch s. Also, it cannot decrease in time, otherwise a local optimization

results in either a gap or excess energy that propagates till the end of the schedule and

transmission duration decreases. Therefore, we power of S Du should stay constant after

epoch s until T opt. Now, we will analyze the rate assignments for both schedules. Let

the transmission of S opt end in epoch (s+m) for m ≥ 0 and suppose that rDu
1i = ropt

1i ∀i <

k, 0 < k < (s + m). At the kth epoch there are three possible cases: rDu
1k > ropt

1k , rDu
1k <

ropt
1k and rDu

1k = ropt
1k . We will first consider the case rDu

1k > ropt
1k and prove that this is

not possible. Let rDu
1k > ropt

1k and consider the rate of the stronger user in S opt after

kth epoch. It cannot stay constant until T opt, because it contradicts the fact that S opt

transmits all the feasible bits before T opt, i.e.,
∑s+m

i=1 (rDu
1i − ropt

1i )ξi > 0. Since the stronger

user’s rate in S opt cannot decrease by Lemma 3.3.2, it should increase at the end of

epoch (k + n) for 0 ≤ n < (s + m − k), i.e., ropt
1(k+n) < ropt

1(k+n+1). However, we have∑k+n
i=1 (rDu

1i − ropt
1i )ξi > 0 and ropt

2(k+n) = h2(Popt
k+n, r

opt
1(k+n)) > h2(PDu

k+n, r
Du
1(k+n)) ≥ 0 which

implies that none of the conditions in Lemma 3.3.2 holds and the stronger user’s rate

in S Du cannot increase after epoch k. Hence, we conclude that rDu
1k ≯ ropt

1k . Now we
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consider the case rDu
1k < ropt

1k . Suppose that the stronger user’s rate in S opt increase at

epoch (k + n) for 0 ≤ n < (s + m − k). This increase in stronger user’s rate requires

that at least one of the conditions in Lemma 3.3.2 should hold. However, we have∑k+n
i=1 (rDu

1i − ropt
1i )ξi > 0 and ropt

2(k+n) = h2(Popt
k+n, r

opt
1(k+n)) > h2(PDu

k+n, r
Du
1(k+n)) ≥ 0, so the

stronger user’s rate in S Du cannot increase, i.e., rDu
1k ≯ ropt

1k . Since the stronger user’s

rate in S opt cannot decrease by Lemma 3.3.2, it should stay constant until T opt.

Thus far we have shown that if S Du is different than S opt, then S Du cannot have higher

power level than S opt until T opt. Moreover, if power level of S Du becomes lower than

that of S opt, then it should stay constant until T opt and if the stronger user’s rate of S Du

becomes lower than that of S opt, then it should stay constant until T opt. These results

are shown in the general case in Fig. 3.5.

t

Power ...

...

Same rate schedule
in this region

Optimal
Same power schedule

in this region

T
opt

TDu

PDu

First R1 differerence  
occurs at kth epoch 

First power difference 
occurs at sth epoch

s-1

s+m+l

Pk

P
s-1

... s+m

s

Ps

Ps+m
...

ξs

DuOpt

ξ
ξ

ξ ξ

Figure 3.5: Illustration of the general case (in the proof of Theorem 3.3.5) that at the first
change between OPT and the schedule returned by DuOpt, power level of OPT is greater than
that of the schedule returned by DuOpt.

Now, let b̃Du
2 and b̃opt

2 be the number of bits transmitted to the weaker user till ts+m+l by

S Du and till T opt by S opt, respectively. Then, we have
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b̃Du
2 − b̃opt

2 =

s+m+l∑
i=1

ξih2(PDu
i , rDu

1 ) −
s+m+l∑

i=1

ξih2(POpt
i , rOpt

1 )

=

s−1∑
i=k

ξi (h2(PDu
i , rDu

1 ) − h2(POpt
i , rOpt

1 ))︸                                 ︷︷                                 ︸
>0

+

s+m+l∑
i=s

ξi

 h2(PDu
s , rDu

1s ) −
s+m∑
i=s

ξih2(POpt
i , ropt

1i )

>

s+m+l∑
i=s

ξi

 h2(PDu
s , rDu

1s ) −
s+m∑
i=s

ξih2(POpt
i , ropt

1i )

≥

s+m+l∑
i=s

ξi

 h2(
s+m∑
i=s

ξi∑s+m+l
i=s ξi

POpt
i , rDu

1s ) −
s+m∑
i=s

ξih2(POpt
i , ropt

1i )

>

s+m+l∑
i=s

ξi


s+m∑

i=s

ξi∑s+m+l
i=s ξi

h2(POpt
i , rDu

1s )

 − s+m∑
i=s

ξih2(POpt
i , ropt

1i )

=

s+m∑
i=s

ξih2(POpt
i , rDu

1s ) −
s+m∑
i=s

ξih2(POpt
i , ropt

1i )

=

s+m∑
i=s

ξi (h2(POpt
i , rDu

1s ) − h2(POpt
i , ropt

1i )︸                                ︷︷                                ︸
>0

> 0 (3.13)

From (3.13), S Du transmits more bits to the weaker user than S opt does, then this final

case also cannot happen. Therefore, we conclude that the schedule returned by DuOpt

cannot be different than the unique optimal schedule, i.e., S Du = S opt.

3.3.2 Numerical Examples

In this section we consider a two-user AWGN BC with B = 1KHz bandwidth and noise

spectral density of N0 = 10−12 Watts/Hz. Path loss factors on the links of stronger and weaker

user are assumed to be s1 = 70dB and s2 = 75dB, respectively. Choosing from the boundary

of the capacity region of the BC, rate of each user is calculated as follows:

R1 = B · log2

(
1 +

s1P1

BN0

)
R2 = B · log2

(
1 +

s2P2

s2P1 + BN0

)

Let us first consider a problem with all of the weaker user data ready at the beginning. As

depicted in Fig.3.6, [3, 10, 4, 7, 13, 3, 5, 8, 6, 12] joules of energy is harvested at [0, 3, 5, 8,

9, 10, 11, 13, 15, 17] seconds. 25 Kbits data for the weaker user arrives at the beginning of
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the schedule whereas data arrivals occur for the stronger user at [0, 2, 4, 8, 10] seconds with

amounts [8, 25, 12, 20, 15] Kbits. Under these circumstances DuOpt algorithm is run and the

final schedule is calculated, as drawn in Fig. 3.6.

Decrease of transmission duration after each iteration is used as the stopping criterion. DuOpt

stops whenever the change in the transmission duration is within εξav where ε = 10−14 and

ξav = 1
k∗

∑k∗
i=1 ξi is the average epoch duration. With this criterion, DuOpt runs for 61 itera-

tions for a duration of 0.316 seconds on a computer with a 3GHz Core2Duo processor.

t (s)

t (s)

P(W)

(a)

(b)0            2     3                                  8                                 12.903 

0.15
1 0.708

1.399

2.8

5.711
____ Pt

____ Ps

Topt = 12.903

0     1     2     3     4     5     6      7     8     9     10   11   12    13   14   15   16    17 

Figure 3.6: (a) An illustration of energy harvest and bit arrival sequences with the weaker
user data is ready at the beginning of schedule. Ei is the ith energy arrival and B( j)

i is the ith

data arrival to jth user. (b) Final schedule calculated by DuOpt, where Ps is the power used
for transmission to stronger user and Pt is the total transmit power of the transmitter.

As shown in 3.6, the transmission duration of the final schedule returned by DuOpt is T Du =

12.9027 seconds. The power allocation vector is calculated as

P = {(P1i, P2i)} = [(0.15 , 0.85) , (0.708 , 0.292) , (0.708 , 2.092) , (1.399 , 4.312)] watts with

durations [2 , 1 , 5 , 4.903] seconds. This power allocation vector at the transmitter corre-

sponds to SNR levels of [11.7609 , 18.5026 , 18.5026 , 21.4593] dB at the stronger user and
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effective SNR (or SINR) levels of [6.7025 , −4.0441 , 4.5125 , 4.7902] dB at the weaker user.

Corresponding rate allocation vector of this schedule is can be calculated as:

r = {(r1i, r2i)} = [(4.000 , 2.506) , (6.166 , 0.480) , (6.166 , 1.937) , (7.138 , 2.005)] Kbps.

The power, hence the rate, of the stronger user in this example is an increasing function of

time. On the other hand power (or rate) function of the weaker user in this example decreases

at t = 2s as shown in Fig. 3.6. Only the stronger user data constraint is active at t = 2s;

hence, the total transmission power does not change. At t = 3s an energy constraint is met

with equality and total transmission power increases. Both stronger user data and energy

constraints are active at t = 8s, hence, we observe an increase in both stronger user and the

total power.

Next we consider an example with both user data arrive during transmission. As shown in

Fig.3.7, [11, 8, 6, 1, 6, 4, 4, 13, 6] joules of energy is harvested at [0, 2, 5, 6, 9, 12, 13, 14, 16]

seconds. Stronger user data arrivals occur at [0, 1, 2, 3, 6] seconds with amounts [11, 15, 19,

15, 15] Kbits totaling 75 Kbits of data. A total of 26 Kbits weaker user data arrives at [0, 3, 6,

7, 8] seconds with amounts [5, 3, 6, 3, 9] Kbits. With these data arrivals and energy harvests,

DuOpt algorithm is run and less than one second DuOpt stops with 330 iterations.

As shown in Fig. 3.7, the final schedule returned has a transmission completion time of

T Du = 12.4906 seconds. The power allocation vector of this schedule is

P = {(P1i, P2i)} = [(1.023 , 1.603) , (0.404 , 2.304) , (0.404 , 7.749)] watts with durations [6,

6, 0.4906] seconds. This power allocation vector at the transmitter corresponds to SNR levels

of [20.0988 , 16.0595 , 16.0595] dB at the stronger user and effective SNR (or SINR) levels

of [1.8180 , 7.2374 , 12.5055] dB at the weaker user. Corresponding rate allocation vector of

this schedule is can be calculated as:

r = {(r1i, r2i)} = [(6.6907 , 1.3333) , (5.3702 , 2.6539) , (5.3702 , 4.2331)] Kbps.

Contrary to the first example, in this example the power of the stronger user is not an increas-

ing function of time. When we let packet arrivals for both users, power function for both users

do not have monotonicity anymore and they can both increase and decrease in time. Another

important observation in this example is that, at t = 6s the weaker user data constraint is
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t (s)

t (s)

0     1     2     3     4     5     6      7     8     9     10   11   12    13   14   15   16    17 
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(b)0                                     6                                     12  12.4906 

0.404

2.707
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8.153

2.626
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____ Ps

Topt = 12.4906s

Figure 3.7: (a) An illustration of energy harvest and bit arrival sequences for the second
example where Ei is the ith energy arrival and B( j)

i is the ith data arrival to jth user. (b) Final
schedule calculated by DuOpt, where Ps is the power used for transmission to stronger user
and Pt is the total transmit power of the transmitter.

active hence the weaker user power increases while the stronger user power decreases. We

know from 3.2.2 that bringing rates of stronger user we can have a better schedule. Also,

from Lemma 3.3.1 of [11] bringing the power levels closer to each other improves the sched-

ule. However, bringing rates of stronger user closer to each other in this example will increase

the difference in the total power level. Therefore we have a trade-off here. And the optimum

point in this problem is to find the schedule that preserve its sum of rates. For example, at

t = 6s, the rates of the stronger and the weaker user changes but the sum of the weaker and

the stronger user rates remain constant at 8.024 Kbps.

3.4 Dual Problem & Solution

In the previous section, we have shown in Theorem 3.3.3 that solution of Problem 2 is unique

under WUFBC. It is very difficult to prove the uniqueness of the problem in the general case

with the same method. To circumvent this difficulty, we shall analyze a dual problem. Prob-

lem 3 presents a dual of Problem 2 that minimizes transmitter energy consumption for a given
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transmission duration T with both energy and data constraints. We note that Problem 3 is not

the Lagrangian dual of Problem 2. However, we will show in Lemma 3.4.2 that their solutions

are identical. Consequently, we refer Problem 3 as the dual problem.

Problem 3 Energy Consumption Minimization of an Energy Harvesting Transmitter

with Data and Energy Arriving at Arbitrary Points on a Broadcast Channel:

Minimize: E =

k∗∑
i=1

g(r1i, r2i)ξi + g(r1(k∗+1), r2(k∗+1))(T −
k∗∑

i=1

ξi) , k∗ = max{i :
i∑

j=1

ξ j ≤ T }

subject to: ∀k ∈ {1, .., k∗}

r1k ≥ 0 , r1(k∗+1) ≥ 0 , r2k ≥ 0 , r2(k∗+1) ≥ 0 (3.14)

k∑
i=1

g(r1i, r2i)ξi ≤ E(tk) (3.15)

k∑
i=1

r1iξi ≤ B1(tk) ,
k∑

i=1

r2iξi ≤ B2(tk) (3.16)

k∗∑
i=1

r1iξi + r1(k∗+1)(T −
k∗∑

i=1

ξi) = B1(T ) ,
k∗∑

i=1

r2iξi + r2(k∗+1)(T −
k∗∑

i=1

ξi) = B2(T ) (3.17)

Non-negativity constraints in (3.14) ensure that rates do not take negative values. Set of con-

straints (3.15) guarantee that no energy is consumed before it is harvested. We note that there

is no energy constraint for the last epoch, so that there will always be a solution to the prob-

lem. If the energy constraint for the last epoch had been included, the problem could have had

no solution because it may be impossible to find a schedule that can transmit all the data with

the given data and energy consumption constraints. The set of constraints (3.16) guarantee

that no data is transmitted before it arrives and constraints in (3.17) assure that all the data

arrivals are transmitted by T .

In the following lemma we will state that the solution of Problem 3 is strictly convex. By

using Lemma 3.4.1, we will state in Corollary 1 that the solution of Problem 3 is unique.

Then, we will declare in Lemma 3.4.2 that solutions of Problems 2 and 3 are identical. And

using Lemma 3.4.2 and Corollary 1, we will state in Corollary 2 that Problem 2 also has a

unique solution. Finally, we will state in Lemma 3.4.3 that the solution of Problem 3 is a

strictly decreasing function of total transmission duration.
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Lemma 3.4.1 Problem 3 is strictly convex.

Proof. g(r1, r2) is a strictly convex function of rates (See Appendix A of [11]). A non-negative

weighted sum of strictly convex functions is also a strictly convex function [37]. Since the

objective function E in Problem 3 is the weighted sum of g(r1i, r2i) where i ∈ {1, 2, ..., k∗ + 1},

E should also be a strictly convex function. The set of constraints (3.15) is composed of

strictly convex functions by the same reasoning. And the rest of the constraints are linear

functions. Since objective function is strictly convex and constraints are either strictly convex

or linear, Problem 3 is strictly convex.

Let us prove this lemma with a different approach. Suppose that we have two different sched-

ules, S A = (rA
1 , r

A
2 ) and S B = (rB

1 , r
B
2 ) with energy consumptions EA and EB respectively, that

satisfy all the constraints in Problem 3. Let S ? = θ(rA
1 , r

A
2 ) + (1 − θ)(rB

1 , r
B
2 ) be any linear

combination of S A and S B where 0 ≤ θ ≤ 1. In order to prove the strict convexity of problem

we have to show that S ? satisfies all constraints of Problem 3 and consumes less energy than

θEA + (1 − θ)EB. The energy consumption of S ?, E?, is

E? =

k∗∑
i=1

g(r?1i, r
?
2i)ξi + g(r?1(k∗+1), r

?
2(k∗+1))(T −

k∗∑
i=1

ξi)

=

k∗∑
i=1

g(θrA
1i + (1 − θ)rB

1i , θrA
2i + (1 − θ)rB

2i)ξi

+g(θrA
1(k∗+1) + (1 − θ)rB

1(k∗+1) , θrA
2(k∗+1) + (1 − θ)rB

2(k∗+1))(T −
k∗∑

i=1

ξi)

≤

 k∗∑
i=1

θg(rA
1i, r

A
2i)ξi + θg(rA

1(k∗+1), r
A
2(k∗+1))(T −

k∗∑
i=1

ξi)


+

 k∗∑
i=1

(1 − θ)g(rB
1i, r

B
2i)ξi + (1 − θ)g(rB

1(k∗+1), r
B
2(k∗+1))(T −

k∗∑
i=1

ξi)

 (3.18)

= θEA + (1 − θ)EB,

where (3.18) follows from the strict convexity of g(r1, r2) and becomes equality only if S A =

S B or θ ∈ {0, 1}. Hence, we have E? < θEA + (1 − θ)EB. Now, let us check whether S ?

satisfies constraints or not. The energy consumption of S ? at tk, k ∈ {1, 2, ...k∗} is as follows:
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k∑
i=1

g(r?1i, r
?
2i)ξi =

k∑
i=1

g(θrA
1i + (1 − θ)rB

1i, θr
A
2i + (1 − θ)rB

2i)ξi

≤

k∑
i=1

θg(rA
1i, r

A
2i)ξi +

k∑
i=1

(1 − θ)g(rB
1i, r

B
2i)ξi (3.19)

≤ θE(tk) + (1 − θ)E(tk)

= E(tk). (3.20)

(3.20) indicates that S ? satisfies energy constraints, i.e., (3.15). Transmitted data for the jth

user by S ? at tk is as follows:

min

 k∑
i=1

rA
jiξi,

k∑
i=1

rB
jiξi

 ≤

k∑
i=1

(θrA
ji + (1 − θ)rB

ji)ξi ≤ max

 k∑
i=1

rA
jiξi,

k∑
i=1

rB
jiξi

 (3.21)

and at T , we have

k∗∑
i=1

(θrA
ji + (1 − θ)rB

ji)ξi + (θrA
j(k∗+1) + (1 − θ)rB

j(k∗+1))(T −
k∗∑

i=1

ξi)

=

θ k∗∑
i=1

rA
jiξi + θrA

j(k∗+1)(T −
k∗∑

i=1

ξi)

 +

(1 − θ) k∗∑
i=1

rB
jiξi + (1 − θ)rB

j(k∗+1)(T −
k∗∑

i=1

ξi)


= θB j(T ) + (1 − θ)B j(T )

= B j(T ). (3.22)

(3.21) and (3.22) imply that S ? satisfies (3.16) and (3.17). Since rates of S A and S B are both

non-negative, rates of S ? should also be non-negative and satisfy (3.14).

All of the constraints are satisfied by S ? and the cost function of S ?, E?, is always less than

respective linear combination of the cost functions of S A and S B. Hence, we conclude that

Problem 3 is strictly convex.

Corollary 1 The solution of Problem 3 is unique.

Proof. Proof is due to convexity. Since Problem 3 is strictly convex, solution of it should be

unique [37].
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Let the transmission completion time of the solution of Problem 2 be T opt and consider that

transmission deadline of Problem 3 is taken as T opt. In Lemma 3.4.2, we claim that the solu-

tion of Problem 3, which has a transmission deadline T opt, consumes exactly the same amount

of energy, Eopt, as the solution of Problem 2 consumes. Then, for the same harvest and data

arrivals, optimal schedule resulting from solution of Problem 3 for a given T opt is also a solu-

tion of Problem 2. We propose in Lemma 3.4.3 that the energy consumption of the solution of

Problem 3 strictly decreases as the transmission deadline increases. Lemmas 3.4.2 and 3.4.3

allow us to solve Problem 2 by solving Problem 3 for varying transmission deadlines.

Lemma 3.4.2 Suppose that the solution of Problem 2 has a transmission completion time of

T opt and consider Problem 3 with transmission deadline T opt. Any solution of Problem 2 is

also a solution to Problem 3 and vice versa.

Proof. Since Problem 2 is probably non-convex, we will prove this lemma by contradiction.

Consider that S opt is the optimal solution of Problem 2 with transmission completion time

T opt. Suppose that we have a dual problem in which transmission deadline is selected as T opt

and the optimal solution to this problem is Ŝ opt. Let us assume that Ŝ opt is not equal to S opt

and the energy consumption of Ŝ opt is different than that of S opt. If Ŝ opt consumes less en-

ergy than S opt, then we can always find a schedule that has a transmission duration less than

T opt. As energy is strictly decreasing function of time for one epoch (See App. C.1), we can

increase the energy consumption in the last epoch of Ŝ opt while ending the transmission be-

fore T opt, which would contradict the optimality of S opt. On the other hand, if Ŝ opt consumes

more energy than S opt, then presence of S opt contradicts the optimality of Ŝ opt. Therefore,

S opt and Ŝ opt should consume exactly same amount of energy. As the solutions of Problem 2

and 3 has the same transmission completion time and same energy consumption, the solution

of Problem 2 is also a solution to Problem 3 and vice versa.

Corollary 2 The solution of Problem 2 is unique.

Proof. By Lemma 3.4.2 the solutions of Problem 2 and 3 should consume exactly same

amount of energy, which implies that every solution of Problem 2 should also be a solution to

Problem 3. On the other hand, the solution of Problem 2 is unique by Corollary 1. Hence, the
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solution of Problem 2 should also be unique.

In the following lemma we present a final observation that guide us to construct another

algorithm that achieve the optimal solution of Problem 2.

Lemma 3.4.3 The total energy consumption of an optimal schedule is a strictly decreasing

function of total transmission time.

Proof. Suppose that we have a unique optimal solution S opt = (r1, r2) to Problem 3. Let us

modify the problem by increasing the duration of last epoch by ε. In order to find a schedule

that satisfy all the constraints of this modified problem, let us increase duration of last epoch

in S opt by ε. In App. C.1 we have shown that the energy consumption is strictly decreasing

function of transmit duration for one epoch. Energy consumption of this new schedule, which

is strictly less than that of S opt, becomes an upper bound for the solution of the new prob-

lem. Hence we conclude that the total energy consumption of an optimal schedule strictly

decreases as the total transmission time increases.

3.4.1 Solution of the Dual Problem with SUMT Algorithm

Gradient descent and Newton’s method are a commonly used techniques for solving linear

equality constrained convex problems. Problem 3 is strictly convex, but has both linear

equality and convex inequality constraints. Interior-point methods are utilized for solving

inequality constrained convex problems [37]. Specifically, in this thesis, we use the sequen-

tial unconstrained minimization technique (SUMT) which has been proposed by Fiacco and

McCormick [38]. Today, SUMT is also called as the Barrier Method [37].

SUMT algorithm converts a constrained convex problem into an unconstrained problem by

adding penalty terms into objective function. For example, we transform Problem 3 into Prob-

lem 4 by adding penalty terms that increase the objective function if constraints are not met.

42



Problem 4 Unconstrained Convex Optimization Problem for Energy Consumption Min-

imization of an Energy Harvesting Transmitter with Data and Energy Arriving at Arbi-

trary Times on a Broadcast Channel:

Minimize: F(r) =

k∗∑
i=1

g(r1i, r2i)ξi + g(r1(k∗+1), r2(k∗+1))(T −
k∗∑

i=1

ξi) + µP(r),

where k∗ = max{i :
∑i

j=1 ξ j ≤ T } and

P(r) =

k∗+1∑
i=1

(max(0,−r1i))2 +

k∗+1∑
i=1

(max(0,−r2i))2 (3.23)

+

k∗∑
k=1

max(0,
k∑

i=1

g(r1i, r2i)ξi − E(tk))


2

(3.24)

+

k∗∑
k=1

max(0,
k∑

i=1

r1iξi − B1(tk))


2

+

k∗∑
k=1

max(0,
k∑

i=1

r2iξi − B2(tk))


2

(3.25)

+

 k∗∑
k=1

r1iξi + r1(k∗+1)(T −
k∗∑

i=1

ξi) − B1(T )


2

(3.26)

+

 K∑
k=1

r2iξi + r2(k∗+1)(T −
k∗∑

i=1

ξi) − B2(T ).


2

(3.27)

Penalty terms (3.23), (3.24) and (3.25) are due to constraints (3.14), (3.15) and (3.16) respec-

tively. Penalties (3.26) and (3.27) are due to (3.17). If all the constraints are met, then the

penalty will be equal to zero. The penalty terms actually force the solution to satisfy all the

constraints. In order to control the effect of the penalty terms, a penalty parameter µ is defined.

The larger the parameter µ, the bigger the effect of the penalty terms. Selecting a sufficiently

large µ, we can reach the optimal solution with an arbitrarily small error. However, choosing

a very large µ might also have some computational disadvantages and choosing a very small

µ might also lead to a slow convergence or early termination [39]. Hence, an arbitrary small

penalty parameter, i.e., µ = 1, is selected at the beginning of algorithm and doubled after

each iteration of the SUMT algorithm until a predefined maximum value, i.e., µmax = 1010, is

reached.

SUMT algorithm starts with an initial rate vector: r0 = [r0
11, r

0
21, ..., r

0
1(k∗+1), r

0
2(k∗+1)]

T . We

know that if no constraints are present, the optimal schedule will transmit to both users at

constant rates. With this idea in mind (without considering the constraints (3.15) and (3.16)

for simplicity) we aim to transmit B1(T ) and B2(T ) at constant rates to the stronger and the

weaker user respectively. Initial rate vector is obtained by
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r0
1i =

B1(T )
T

, r0
2i =

B2(T )
T

∀i ∈ {1, 2, .., k∗ + 1}.

After the initialization step, we update the rate vector in each iteration by an inner method

and then increase the penalty parameter. The SUMT algorithm terminates if either µ reaches

maximum value or P(r) is smaller than a predefine threshold εS . Algorithm 2 summarize the

SUMT algorithm.

Algorithm 2 SUMT Algorithm
1: r1i ←

B1(T )
T , r2i ←

B2(T )
T , µ← 1

2: repeat

3: r← InnerMethod(r)

4: µ← 2µ

5: until µ ≥ µmax ∨ P(r) ≤ εS

Generalized Newton’s method is used as the inner method of the SUMT algorithm. Newton’s

method iteratively decrease the objective function F(r) by utilizing first and second order

partial derivatives of F(r). Given an initial rate vector from SUMT algorithm, Newton’s

method revise the rate vector iteratively. At the nth iteration, rate vector rn is updated as

follows

rn+1 = rn − [HF(rn)]−1∇F(rn),

where [HF(rn)]−1 = [∇2F(rn)]−1 is inverse of the Hessian matrix, ∇F(rn) is the gradient and

rn+1 is the updated rate vector after nth iteration. The update term ∆rn = −[HF(rn)]−1∇F(rn)

is called Newton step and λ(rn) =
(
∇F(rn)T [HF(rn)]−1∇F(rn)

) 1
2 is named as Newton decre-

ment. λ(r) is found to be useful as a stopping criterion [37]. The aim of this algorithm is

to decrease the objective function in each iteration; however, we observed that fixed point

implementation of this algorithm may induce an increase in the objective function after an

iteration. Hence, we choose two stopping criteria. We finalize the algorithm if either λ(r)

is smaller than a predefined threshold εN or the objective function increases. Algorithm 3

outlines Newton’s method.

So far we have seen that an iterative method, SUMT algorithm, can be used to solve Problem 3

that minimizes the energy consumption given a transmission deadline. In the next subsection,
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Algorithm 3 Newton’s Method
1: repeat

2: FPrevious ← F(r)

3: ∆r = −[HF(r)]−1∇F(r)

4: λ(r) =
(
∇F(r)T [HF(r)]−1∇F(r)

) 1
2

5: r← r + ∆r

6: until FPrevious ≤ F(r) ∨ λ(r) ≤ εN

we present a new algorithm , which use SUMT algorithm, to solve Problem 2.

3.4.2 Solution of Problem 2 with SUMT Algorithm

Given a transmission deadline, we can find the minimum energy consumption by solving

Problem 3 using SUMT algorithm. And Lemma 3.4.3 states that energy consumption of an

optimal schedule strictly decreases as the transmission completion time increases. So, using

the SUMT algorithm, we first find lower and upper bounds on the transmission completion

time of Problem 2. Then, we iteratively narrow down the distance between the bounds and

finally obtain the solution of Problem 2 within some error, i.e., ε > 0.

Let us define the last epoch with data arrival as

N = argmin
k∈{1,2,...kup}

(B1(tkup) = B1(tk) ∨ B2(tkup) = B2(tk)) .

As we cannot transmit a data before it arrives, we choose the last data arrival time tN as a

(loose) lower bound on the transmission completion time. After having a lower bound, we

start searching for an upper bound. Using SUMT algorithm, we first calculate the minimum

energy consumption when we select the deadline as the end of the last data arriving epoch,

i.e., tN+1. If the energy consumption is smaller than the energy harvested till tN+1, then tN+1

becomes an upper bound on the transmission duration. Otherwise, it is not feasible to trans-

mit all the data with the given constraints and tN+1 becomes a lower bound. We continue

this search with the next epoch until we find an upper bound. We should note that as the

number of epochs increases, the total harvested energy increases and the total energy con-

sumption decreases (see Lemma 3.4.3); hence we will eventually find an upper bound. After

we find a lower and an upper bound, we proceed the search for the minimum transmission

duration by using the bisection method. Note that we can use the bisection method because

45



minimum energy consumption is an decreasing function of the transmission completion time

(see Lemma 3.4.3). At each iteration we set the transmission completion time to the middle

point in between the upper and lower bounds and then check whether this point is feasible

in terms of total energy consumption. If the calculated minimum energy consumption is less

than the total harvested energy, we use the current transmission duration to update the upper

bound; otherwise it is used to update the lower bound. By this method the the time difference

between the lower and the upper bound halved at each iteration. We stop the algorithm when

the possible range of the minimum transmission duration is smaller than a predefined thresh-

old ε. Algorithm 4 outlines the method to solve Problem 2.

Algorithm 4 Time Minimization with SUMT Algorithm
1: N ← argmin

k∈{1,2,...kup}

(B1(tkup ) = B1(tk) ∨ B2(tkup ) = B2(tk))

2: repeat

3: N ← N + 1

4: Emin ← SUMT Algorithm(tN)

5: until Emin ≤ E(tN)

6: T min ← tN−1 , T max ← tN

7: repeat

8: T ← (T min + T max)
/
2

9: Emin ← SUMT Algorithm(T )

10: if Emin < E(T ) then

11: T max ← T

12: else

13: T min ← T

14: end if

15: until T max − T min ≤ ε

16: Tmin ← T

3.5 Comparison of DuOpt and SUMT Algorithms

In order to solve Problem 2, we have proposed two different algorithms, DuOpt and time

minimization with SUMT. The main difference in between these two algorithms is the pa-

rameter update procedure. DuOpt algorithm acts like a block coordinate descent algorithm

and optimize only a portion of parameters (rates and powers in consecutive epochs) at a time.
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Suppose that we have a K epoch problem. In every step of DuOpt algorithm, two consecutive

epochs are optimized. Each iteration of DuOpt has roughly K steps, thus complexity of an

iteration is linear with the number of epochs. It has been observed that iteration count indeed

increases linearly with the number of epochs. On the other hand, SUMT algorithm optimizes

all the parameters at the same time. In each iteration a 2K × 2K Hessian matrix is constructed

and inverse of this matrix is found. We have simulated DuOpt and SUMT algorithms with

different number of epochs and observed that simulation time for both algorithms increase

quadratically as the number of epochs increase. However, the termination time of DuOpt al-

gorithm is almost two orders of magnitude shorter than the SUMT algorithm, as the number

of epochs is varied (see Fig. 3.8). In the simulation, energy harvest and data arrival amounts

are chosen as zero with a probability of 0.25 and otherwise chosen from Pareto distribution

with probability 0.75. Probability density function of Pareto distribution is as follows.

f (x) =
α

b

(
b
x

)(α+1)

, x ≥ b.

We should also compare the memory requirements of algorithms. In each step of DuOpt

algorithm only two consecutive epochs are considered; therefore, memory requirement of an

iteration is constant across varying number of epochs. But, SUMT algorithm constructs a

2K × 2K Hessian matrix in each iteration and the size of this matrix increases quadratically

with the increasing epoch numbers.

The only drawback of DuOpt algorithm seems to be the termination process. In SUMT algo-

rithm we always know the ultimate distance of the optimal schedule and halve this distance at

each iteration. However, transmission time reduction of DuOpt algorithm can be erratic and

may induce an early termination. We have observed that controlling total power levels before

termination is very useful in DuOpt algorithm. If the total power level decreases greater than

a predefined threshold, i.e., an ε of average power level, then we should not let the algorithm

terminate.

47



Figure 3.8: Average computation time (log scale) versus number of epochs for the optimal
solutions of Problem 2 with DuOpt and SUMT Algorithms: Solid blue line is the average
computation time of the optimal schedule with DuOpt and black dashed line represents the
computation time of SUMT algorithm. A two user AWGN BC with 1KHz bandwidth and
noise spectral density of N0 = 10−12 Watts/Hz is considered. Path loss factors on the links of
stronger and weaker user are assumed to be s1 = 70dB and s2 = 75dB, respectively. There is
a probability of 0.25 that no energy harvest occurs at the start of an epoch. With probability
0.75 energy harvest amounts (in Watts) are chosen from a Pareto distribution with parameters
b = 2 and α = 2. Similarly, there is a probability of 0.25 that no data arrival occurs, otherwise
data arrival amounts (in Kbits) are selected from a Pareto distribution with parameters b = 4,
α = 2 and then rounded to the nearest integer.
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CHAPTER 4

CONCLUSIONS

In this thesis, we studied the AWGN broadcast channel transmission completion time min-

imization problem of an energy harvesting transmitter with two-users. It has been shown

that the solution of the problem is unique. In order to obtain the unique optimal schedule,

transmitter should aim to have a nondecreasing transmit power level. In fact, transmitting at a

constant power level to both users is the best strategy if all the data and energy is present at the

beginning of transmission. However, energy constraints due to energy harvesting procedure

may hinder this operation. If energy harvests at the early part of schedule are insufficient,

then transmitter starts from a lower sustainable power level and increase it as more energy

is harvested from the environment. On the other hand, if energy harvests diminish as time

passes, then transmitter will save the harvested energy from the earlier parts of the schedule

for later use and achieve a constant power level.

Data arrivals also affect the transmission strategy. For example under WUFBC the rate of the

stronger user is nondecreasing in an optimal schedule. In the general case, this statement is

not correct and weak user data arrivals may induce a decrease in the rate of the stronger user

in an optimal schedule. In fact, the stronger user’s rate decrease so that the sum of rates do not

decrease. If we analyze the solution of two epoch problem we will observe that in all possible

solutions the sum of rates is nondecreasing.

We have showed that under WUFBC, an efficient iterative algorithm, DuOpt solves the delay

minimization problem. DuOpt optimize two consecutive epochs at a time and decrease the

transmission completion time in each iteration. With a slightly different approach, we also

developed a second algorithm that solves the problem. Second algorithm converge to the

optimal schedule by solving the dual problem with SUMT algorithm in each iteration. The
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difference between these two algorithms underlie in their approach to the solution. DuOpt

optimize selected variables at a time, whereas the second algorithm optimize all the variables

at a time. DuOpt does more iterations, yet it an iteration takes much less time than an iteration

of the second algorithm. Hence, DuOpt achieves the optimal schedule faster. Another issue

is the memory requirements of algorithms. DuOpt needs nearly no additional memory since

it optimize two epochs at a time. However, the memory requirement of second algorithm

increase quadratically since for a K epoch problem 2K × 2K Hessian matrix is constructed in

each iteration.

There are several future directions from this work. We have assumed that the battery has

infinite capacity. Extending the problem with a finite capacity battery would be interesting.

In single user problem it has been shown that with finite battery, transmission power is no

longer non-decreasing and power may decrease whenever the battery is fully charged [26].

We expect a similar result for the broadcast channel. In fact, if power does not decrease, some

of the harvested energy would be wasted due to battery overflow.

In this thesis we have assumed that all the harvested energy is consumed for transmission.

However, in practice transmitter would also use its energy for other purposes, i.e., processor

energy consumption. An extension of the problem with a more realistic model, which consid-

ers a constant processor power consumption whenever transmission occurs, is also interesting

and may help us in development of practical algorithms.

In this thesis, we have considered the AWGN broadcast channel. Another future work is to

reconsider the problem in a fading broadcast channel. In a fading channel the channel gains

vary in time; hence, the stronger and the weaker users may interchange during transmission.

And a further extension to the problem, which considers no channel state information at the

transmitter side, makes the transmitter unaware of the stronger/weaker user at the moment.

We have considered an offline problem in this thesis. In many practical scenarios, times and

amounts of energy harvests as well as data arrivals are not known in advance, which makes

the online approach to the formulation of problem more relevant. Online approaches range

from dynamic programming to machine learning algorithms. Our results give lower bound

on transmission completion time (or total energy consumption) to online problems. Finally,

online algorithms that utilize the results of this study is thought to achieve better performance.
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Appendix A

PROOF OF PROPOSITION 1

First and second order derivatives of h1(P, r) and h2(P, r) for the AWGN broadcast channel

can easily be found from (2.6) and (2.7) as follows

∂h1(P, r)
∂P

=
1
2

(log2 e)
s1s2

s1s2P + s1σ2 − (s1 − s2)σ222r ≥ 0 (A.1)

∂h1(P, r)
∂r

= −
s1s2P + s1σ

2

s1s2P + s1σ2 − (s1 − s2)σ222r ≤ 0 (A.2)

∂2h1(P, r)
∂P2 = −

1
2

(log2 e)
(s1s2)2

(s1s2P + s1σ2 − (s1 − s2)σ222r)2 ≤ 0 (A.3)

∂2h1(P, r)
∂r2 = −

(2 ln 2)(s1 − s2)(s1s2P + s1σ
2)σ222r

(s1s2P + s1σ2 − (s1 − s2)σ222r)2 ≤ 0 (A.4)

∂2h1(P, r)
∂P∂r

= −
s1s2(s1 − s2)σ222r

(s1s2P + s1σ2 − (s1 − s2)σ222r)2 ≤ 0

∂2h1(P, r)
∂r∂P

=
(s1 − s2)(s1 − s2)σ222r

(s1s2P + s1σ2 − (s1 − s2)σ222r)2 ≥ 0

∂h2(P, r)
∂P

=
1
2

(log2 e)
s2

s2P + σ2 ≥ 0 (A.5)

∂h2(P, r)
∂r

= −
22r1

22r1 +
s1−s2

s2

≤ 0 (A.6)

∂2h2(P, r)
∂P2 = −

1
2

(log2 e)
s2

2

(s2P + σ2)2 ≤ 0 (A.7)

∂2h2(P, r)
∂r2 = −

(2 ln 2)22r1 s1−s2
s2

(22r1 +
s1−s2

s2
)2
≤ 0 (A.8)

∂2h2(P, r)
∂P∂r

=
∂2h2(P, r)
∂r∂P

= 0 (A.9)

Rate functions h1(P, r) and h2(P, r) are nonnegative by definition. h1(P, r) and h2(P, r) are

monotone increasing with power by (A.1) and (A.5) and monotone decreasing with rate by

(A.2) and (A.6) respectively. h1(P, r) and h2(P, r) are concave in power by (A.3) and (A.7) as

well as in rate by (A.4) and (A.8) respectively. (A.9) proves the last property of Proposition 1.
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Appendix B

PROOF OF LEMMA 3.2.2

Substituting r
′

11 = r11 + (1 − β)∆r and r
′

12 = r12 − β∆r in to (3.6), we have the following.

f (β) = h2(P1, r11 + (1 − β)∆r)β + h2(P2, r11 − β∆r)(1 − β) − h2(P1, r11)β − h2(P2, r12)(1 − β).

The 2nd order derivative of f with respect to β is the following

∂2 f
∂β2 = 2{h2y (P1, r11 + (1 − β)∆r)(−∆r) − h2y (P2, r12 − β∆r)(−∆r)︸                                                                    ︷︷                                                                    ︸

≤0

}

+{β(∆r)2h2yy (P1, r11 + (1 − β)∆r)︸                                  ︷︷                                  ︸
≤0

+ (1 − β)(∆r)2h2yy (P2, r12 − β∆r)︸                                  ︷︷                                  ︸
≤0

} ≤ 0 (B.1)

According to the properties of the rate region (1)-(4), (B.1) always holds. Hence f is concave

in β.
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Appendix C

TWO EPOCH OPTIMIZATIONS

In this appendix, we study the optimization of a schedule with just two epochs. Since both

FlowRight and DuOpt algorithms rely on the optimization of two consecutive epochs, the

results given in appendix provide a basis for solutions of Problem 1 and Problem 2.

Suppose that we have two epochs as shown in Fig. C.1, where Bi j is the data arrival for the ith

user, E j is the energy harvest at the beginning of jth epoch for i, j ∈ {1, 2}. T1 and T2 are the

length of the first epoch and second epoch respectively.

T1 T2

E2

B12 , B22

E1

B11 , B21

Figure C.1: Illustration of local optimization problem.

Let Pi j and ri j be the power and rate assigned to the ith user during jth epoch. All schedules

should respect three causality constraints given below.

E1 ≥ (P11 + P12) · T1 (C.1)

B11 ≥ r11 · T1 (C.2)

B21 ≥ r21 · T1, (C.3)

where (C.1) is called the energy constraint, (C.2) and (C.3) are referred as the stronger and

weaker user data constraints respectively.
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Given these energy harvest and data arrivals (hence the constraints), we have derived two

different problems:

Problem 5 Minimization of Total Energy Consumption in Local Optimization:

Minimize : E =

2∑
i=1

TiPi

Subject To: 0 ≤ r1i ≤ h1(Pi, 0) , 0 ≤ Pi , r2i = h2(Pi, r1i) , i ∈ {1, 2}

T1P1 ≤ E1 , T1r11 ≤ B11 , T1r21 ≤ B21

T1r11 + T2r12 = B11 + B12 , T1r21 + T2r22 = B21 + B22

Problem 6 Minimization of Transmission Time in Local Optimization:

Minimize : T ({r1i, r2i}) , i ∈ {1, 2}

Subject To: 0 ≤ r1i ≤ h1(Pi, 0) , 0 ≤ Pi , r2i = h2(Pi, r1i) , i ∈ {1, 2}

min(T,T1)(P1) ≤ E1

min(T,T1)r11 ≤ B11 , min(T,T1)r21 ≤ B21

min(T,T1)r11 + (T − T1)r12 = B11 + B12

min(T,T1)r21 + (T − T1)r22 = B21 + B22

Problem 5 and Problem 6 are dual in the sense that solution to one of them provides a basis

for the solution to other one. In this section, we will provide methods to obtain solutions of

Problem 5 and 6.

The total transmit power and the rate of the stronger user should be as close as possible for

the optimal schedule (see 3.2.2 and Lemma 3.3.1 of [11]). If no constraint oppose, the op-

timal schedule would use the same transmit power (and rates) at the first and second epoch.

However, the structure of the solutions to the local optimizations changes if either one of the

constraints satisfied with equality. Since there are 3 different constraints, after optimization

one will encounter with one of the 23 = 8 local optimization results. We have studied all 8

cases and came up with solutions to each case for both energy minimization and time mini-

mization methods. In each case, the solution to the problem can be calculated analytically for

energy minimization and it can be found iteratively for time minimization. Before starting a
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local optimization, if we have known which constraints would be active, then the result would

be obtained solving just that case. However, we do not know which event would occur before

optimization, hence we find the results for each case and then pick the best one1 that respects

energy and data causalities.

Before moving to the solutions, let us define bi j as the data sent to ith user in jth epoch in

any schedule. Both delay optimal and energy optimal schedules operate at the boundary of

AWGN BC. We will find the data sent to each user by the following equations:

b11 =
T1

2
log2(1 +

s1P11

σ2 ) (C.4)

b21 =
T1

2
log2(1 +

s2P21

s2P11 + σ2 ) (C.5)

b12 =
T2

2
log2(1 +

s1P12

σ2 ) (C.6)

b22 =
T2

2
log2(1 +

s2P22

s2P12 + σ2 ), (C.7)

where Pi j is the power reserved for the ith user in the jth epoch by the transmitter and s j is the

channel gain for the jth epoch and σ2 is the variance of the AWGN noise.

Next we will analyze all 8 cases and give algorithms that obtain optimum results for both

energy and time minimization.

C.1 Local optimization when no constraint is active

The first case to be considered is the one that has no active constraints. Since no constraint

is active in this problem, the total transmit power and the rate of the stronger user should

be unchanging through two epochs (c.f. 3.2.2 and Lemma 3.3.1 of [11]). The solution to

this problem is illustrated in Figure C.2. Since transmission parameters (power and rates) do

not change in between epochs, it is reasonable to treat this problem as one epoch problem

with transmission duration (T1 + T2). The minimum energy to transmit B1 = B11 + B12 and

B2 = B21 + B22 bits in T = (T1 + T2) can be obtained by the following equation:

E(T ) = Tσ2

2
2B2

T − 1
s2

+
(2

2B1
T − 1)2

2B2
T

s1

 . (C.8)

1 Best result is the one that consumes minimum energy for the energy minimization method and one that has
the minimum transmit time for the time minimization method.
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0 T1 T1+T2
t

P

P11

P21

P12

P22

Figure C.2: Optimal power allocation for the stronger and weaker user when no constraint is
active.

Taking first and second order partial derivative of Emin with respect to T we have

∂E
∂T

= σ2

2
2B2

T − 1
s2

+
(2

2B1
T − 1)2

2B2
T

s1


−
σ2 ln 2

T

2
2B2

T 2B2(s1 − s2)
s1s2

+
2

2(B1+B2)
T 2(B1 + B2)

s1


∂2E
∂T 2 =

σ(ln 2)2

T 3

 (s1 − s2)4B2
22

2B2
T

s1s2
+

2
2(B1+B2)

T (2(B1 + B2))2

s1


> 0 (C.9)

From (C.9), E(T ) is a strictly convex function. As T goes to infinity, E is as follows

lim
T→∞

E(T ) = lim
T→∞

σ2 ln 2

2
2B2

T 2B2(s1 − s2)
s1s2

+
2

2(B1+B2)
T 2(B1 + B2)

s1


= σ2 ln 2

(
2B1

s1
+

2B2

s2

)
< ∞. (C.10)

(C.9) and (C.10) together proves that E is a strictly decreasing convex function of T .

Given E = E1 + E2, B1 , and B2 , minimum transmission time for all the data, Tmin, can be

obtained by solving a nonlinear equation. (C.8) is a strictly decreasing convex function of

transmission time T , which implies that for a given E, there is always a unique T value that

can be found iteratively by using bisection method (see Algorithm 5). In the bisection method,

the objective is to find the single root of the equation E(T ) − (E1 + E2) = 0. Assuming an

upper bound for the transmission time Tupper > Tmin and taking lower bound as 0, bisection

method starts from initial domain interval [T min = 0 , T max = Tupper] and narrows down this

interval by bisecting it in each iteration. Algorithm converges to the unique solution as E(T )
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is a continuous function of T and can be terminated within a certain arbitrarily small tolerance

ε > 0 in a practical implementation.

Algorithm 5 Local Time Minimization Algorithm for the Case: No Constraint is Active
1: T max ← Tupper, T min ← 0

2: repeat

3: T̂ ← (T max + T min)/2

4: Ê ← T̂σ2
(

2
2B2

T̂ −1
s2

+
(2

2B1
T̂ −1)2

2B2
T̂

s1

)
5: if Ê > E then

6: T min ← T̂

7: else

8: T max ← T̂

9: end if

10: until Ê == E

11: Tmin ← T̂

C.2 Local optimization when only stronger user data constraint is active

Suppose P1 = P11 + P21 is the total power used by the transmitter at the first epoch whereas

P2 = P12 + P22 is the total power used at the latter epoch. If only stronger user data constraint

is active, then total power of the local optimal solution should stay constant (See Lemma 3 of

[15]), i.e., P1 = P2. Also, we should have P11 ≤ P12, otherwise stronger user data constraint

would not be active. Fig. C.3 illustrates the optimal power allocation for this case.

0 T1 T1+T2
t

P

P11

P21

P12

P22

Figure C.3: Optimal power allocation for the stronger and weaker user when only stronger
user data constraint is active.

60



Optimum schedule that minimize energy can be found as follows

P11 =
σ2

s1
(2

2B11
T1 − 1) , P12 =

σ2

s1
(2

2B12
T2 − 1) and P22 = P11 + P21 − P12 (C.11)

B2 = B21 + B22 =
T1

2
log2(1 +

s2P21

s2P11 + σ2 ) +
T2

2
log2(1 +

s2P22

s2P12 + σ2 ). (C.12)

From (C.11) and (C.12) we derive

P21 = −P11 +
1
s2

[(
22B2(s2P11 + σ2)T1(s2P12 + σ2)T2

) 1
T1+T2 − σ2

]
. (C.13)

Then, total energy consumed in two epochs is calculated by

Emin = (P11 + P21)(T1 + T2). (C.14)

Substituting (C.11) into (C.12) and arranging terms we have

B2 =
T1

2
log2


E1+E2
T1+T2

+ σ2

s2

σ2

s1
(2

2B11
T1 − 1) + σ2

s2

 +
T2

2
log2


E1+E2
T1+T2

+ σ2

s2

σ2

s1
(2

2B12
T2 − 1) + σ2

s2

 (C.15)

First and second order derivatives of B2 with respect to T2 are as follows:

∂B2

∂T2
=

1
2

log2

(
E1 + E2

T1 + T2
+
σ2

s2

)
−

1

2 ln(2)
(
1 + σ2

s2

T1+T2
E1+E2

)
−

1
2

log2

(
σ2

s1
2

2B12
T2 + σ2 s1 − s2

s1s2

)
+

B12

T2

1

1 +
s1−s2

s2
2−

2B12
T2

(C.16)

∂2B2

∂T 2
2

= −
1

2 ln(2)(T1 + T2)
(
1 + σ2

s2

T1+T2
E1+E2

)2 −
2 ln(2)B2

12
s1−s2

s2
2−

2B12
T2

T 3
2

(
1 +

s1−s2
s2

2−
2B12

T2

)2 (C.17)

< 0

As shown in (C.17), second derivative of B2 is always negative for s1 > s2, which implies that

B2 is a strictly concave function of T2. As T2 goes to infinity, B2 is as follows,

lim
T2→∞

B2 = −
T1

2
log2

(
s2

s1
(2

2B11
T1 − 1) + 1

)
−

s2

s1
B12 +

(E1 + E2)s2

2 ln(2)σ2 (C.18)

> −∞

By (C.18), B2 goes to a finite number as T2 goes to infinity, which implies that B2 is a strictly

increasing concave function of T2. Since B2 given in (C.15) is a strictly increasing concave
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function of T2, for a given T2, there exist a unique B2 value. In order to find the minimum

time to transmit, we iteratively find the transmission duration in the second epoch, T̂2, that

sends exactly B2 bits to weaker user by using bisection method. Minimum time to transmit

B1 = B11 + B12 and B2 bits to users in these two epochs is found to be equal to Tmin = T1 + T̂2.

Algorithm 6 presents a pseudo-code of time minimization algorithm for the case that only

stronger user data causality event occurs.

Algorithm 6 Local Time Minimization Algorithm for the Case: Only Stronger User Data

Constraint is Active
1: T max ← Tupper, T min ← 0

2: repeat

3: T̂ ← (T max + T min)/2

4: B̂2 ←
T1
2 log2

 E1+E2
T1+T̂

+ σ2
s2

σ2
s1

(2
2B11

T1 −1)+ σ2
s2

 + T̂
2 log2

 E1+E2
T1+T̂

+ σ2
s2

σ2
s1

(2
2B12

T̂ −1)+ σ2
s2


5: if B̂2 < B2 then

6: T min ← T̂

7: else

8: T max ← T̂

9: end if

10: until B̂2 == B2

11: Tmin ← T̂ + T1

C.3 Local optimization when only weaker user data constraint is active

If only weaker user data constraint is active, then total power of the local optimal solution

may increase (See Lemma 3 of [15]), i.e., P1 ≤ P2. Also, we should have P21 ≤ P22, other-

wise weaker user data constraint would not be active. Fig. C.4 illustrates the optimal power

allocation for this case.

Optimum schedule that minimize energy can be found as follows
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0 T1 T1+T2
t

P

P11

P21 P22

P12

Figure C.4: Optimal power allocation for the stronger and weaker user when only weaker
user data constraint is active.

From (C.5) and (C.7) we have

P21 = (2
2b21
T1 − 1)(P11 +

σ2

s2
) (C.19)

P22 = (2
2b22
T2 − 1)(P12 +

σ2

s2
). (C.20)

And from (C.4) and (C.6) we have

P12 =
σ2

s1

2 2B1
T2

(
1 +

s1P11

σ2

)− T1
T2
− 1

 , (C.21)

where B1 = b11 + b12. The total energy consumed in two epochs can be calculated as follows

E = (P11 + P21)T1 + (P12 + P22)T2. (C.22)

By using (C.21), (C.19), (C.20) and (C.22) we can write E in terms of P11 as follows

E =
σ2

s2

(
T1(2

2b21
T1 − 1) + T2(2

2b22
T2 − 1)

)
−T2

σ2

s1
2

2b22
T2 +T12

2b21
T1 P11+T2

σ2

s1
2

2(B1+b22)
T2

(
1 +

s1P11

σ2

)− T1
T2

(C.23)

The first and second order derivatives of E with respect to P11 are as follows

∂E
∂P11

= T1

2 2b21
T1 − 2

2(B1+b22)
T2

(
1 +

s1P11

σ2

)− T1+T2
T2

 (C.24)

∂2E
∂P2

11

=
T1(T1 + T2)

T2

(
1 +

s1P11

σ2

)− T1+2T2
T2

2
2(B1+b22)

T2 > 0. (C.25)

Since (C.25) is always positive, E is strictly convex in P11. Therefore, the minimum value of

E occurs when ∂E
∂P11

= 0. By equating (C.24) to 0, we obtain P11 that minimize total energy
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as follows

P11 =
σ2

s1

(
2

2(T1(B1+b22)−T2b21)
T1(T1+T2) − 1

)
. (C.26)

From a different perspective, in order to find the local optimal schedule, one has to transmit

b11 =
T1

T1 + T2
(B1 + b22) −

T2

T1 + T2
b21 (C.27)

bits to stronger user in the first epoch. Rearranging the terms in (C.27) we have

b11 + b21

T1
=

b12 + b22

T2
,

which means that sum of the rates of stronger and weaker user in the first should be equal to

sum of the rates of stronger and weaker user in the second epoch.

Substituting (C.26) into (C.23), we obtain minimum transmission energy as follows

Emin =
σ2(s1 − s2)

s1s2

(
T12

2b21
T1 + T22

2b22
T2

)
−
σ2

s2
(T1 + T2) +

σ2

s1
(T1 + T2)2

2(B1+b21+b22)
T1+T2 . (C.28)

In order to find the minimum energy consumption, we first set b21 = B21 and b22 = B22 as

weaker user data constraint is active. Then, we obtain b11 from (C.27) and get b12 = B1 − b11.

Finally, we obtain Emin by (C.28).

Before moving to time minimization method, let us first examine (C.28) by taking first and

second order derivatives of with respect to T2.

∂Emin

∂T2
=

σ2

s2

[(
1 − 2 ln 2

B22

T2

)
(s1 − s2)

s1
2

2B22
T2 − 1

]
+
σ2

s1

(
1 − 2 ln 2

B1 + B2

T1 + T2

)
2

2(B1+B2)
T1+T2

∂2Emin

∂T 2
2

=
4(ln 2)2B2

22σ
2(s1 − s2)

T 3
2 s1s2

2
2B22

T2 +
4(ln 2)2(B1 + B2)2σ2

(T1 + T2)3s1
2

2(B1+B2)
T1+T2 > 0 (C.29)

As shown in (C.29), second derivative of Emin is always positive for s1 > s2, which implies

that Emin is a strictly convex function of T2. As T2 goes to infinity, Emin is as follows,

lim
T2→∞

Emin =

((
T12

2B21
T1 − 1

)
+ 2 ln 2B22

)
σ2(s1 − s2)

s1s2
+ 2(B1 + B2)

σ2

s1
(C.30)

< ∞

Since Emin is a strictly convex function of T2 and goes to a finite number as T2 goes to infin-

ity, Emin in (C.28) is a strictly decreasing convex function of T2 and there is a unique Emin for

64



each value of T2. In order to find the minimum transmission duration, we first set b21 = B21

and b22 = B22. Then, from (C.28) we iteratively search, by using bisection method, the

transmission duration in the second epoch, T̂ , that induce an exact energy consumption of

Emin = E1 + E2. Minimum time to transmit B1 and B2 bits to users in these two epochs is

found to be equal to Tmin = T1 + T̂ . Algorithm 7 presents a pseudo-code of time minimization

algorithm when only weaker user data constraint is active.

Algorithm 7 Local Time Minimization Algorithm for the Case: Only Weaker User Data

Constraint is Active
1: T max ← Tupper, T min ← 0

2: repeat

3: T̂ ← (T max + T min)/2

4: Ê ← σ2(s1−s2)
s1 s2

(
T12

2B21
T1 + T̂2

2B22
T̂

)
+ σ2

s1
(T1 + T̂ )2

2(B1+B2)
T1+T̂

5: if Ê > E1 + E2 then

6: T min ← T̂

7: else

8: T max ← T̂

9: end if

10: until Ê == E1 + E2

11: Tmin ← T̂ + T1

C.4 Local optimization when only energy constraint is active

In this section, we will analyze the solution of local optimization when only energy con-

straint is active. Theorem 3.2.3 tells us that if there are only energy causality constraints,

then stronger user rate is non-decreasing and may only increase if weaker user rate in the first

epoch is zero. Thus, we will encounter with two sub-cases:

1. The rate (hence the power) of stronger user remains constant during transmission, i.e.,

r11 = r12.

2. The rate of the stronger user increases at the end of the first epoch and the weaker user

rate in the first epoch is zero, i.e., r11 < r12 , r21 = 0.
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Figure C.5: Optimal power allocation for the stronger and weaker user when energy con-
straint is active. There are two sub-cases. (a): Rate of the stronger user is constant during
transmission. (b): Rate of the stronger user increases at the end of the first epoch and the
weaker user rate in the first epoch is zero.

These two sub-cases are illustrated in Fig. C.5. In the following, we provide the method to

find the optimum schedule that minimize energy.

First we have to check whether the rate of the stronger user changes or not.

σ2

s1
(22 B11+B12

T1+T2 − 1) ≤
E1

T1
= P1, (C.31)

If inequality in (C.31) holds, then we should have r11 = r12 and we can obtain the minimum

energy consumption as follows:

P11 = P12 =
σ2

s1
(22 B11+B12

T1+T2 − 1)

P21 =
E1

T1
− P11

b21 =
T1

2
log2

(
1 +

s2P21

s2P11 + σ2

)
b22 = B12 + B22 − b12

P22 =
s2P12 + σ2

s2
(2

b22
T2 − 1)

Emin = T1(P11 + P21) + T2(P12 + P22)

If the inequality in (C.31) does not hold, then rate of the stronger user cannot stay constant

and we should have r11 < r12 and r21 = 0. We analytically obtain the minimum energy

consumption in this case as follows:
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P11 = P1 =
E1

T1

b11 =
T1

2
log2

(
1 +

s1P11

σ2

)
b12 = B11 + B12 − b11

P12 =
σ2

s1
(2

2b12
T1 − 1)

b22 = B21 + B22

P22 =
s2P12 + σ2

s2
(2

b22
T2 − 1)

Emin = T1P11 + T2(P12 + P22)

With a similar method used in section C.2, it is easy to prove that the number of bits transmit-

ted to the weaker user is an increasing concave function of the transmission duration in the

second epoch for both sub-cases. The minimum total transmission duration is again obtained

by using bisection method. Algorithm 8 presents a pseudo-code for the time minimization

method when only energy constraint is active.

C.5 Local optimization when more than one constraint is active

Selecting the rates from the boundary of the AWGN BC region, transmission in an epoch can

be described by the parameters {P , r1 , r2}. Since any of these parameters can be calculated

from the others, i.e., r1 = h1(P, r2) , r2 = h2(P, r1) and P = g(r1, r2), transmission schedule

in one epoch can be uniquely identified by any two of these parameters. If the solution of

two epoch energy (or time) minimization problem has at least two active constraints, then the

power and rates of the first epoch in can be calculated from active constraints and problem

simplifies to finding parameters in one epoch.

Suppose that both energy and stronger user data constraints are active in the solution of Prob-

lem 5 (or Problem 6). Then, given the duration of the first epoch, T1, total power and the

stronger user’s rate in the first epoch can be calculated by simply dividing the constraints with

T1, i.e., P1 = E1/T1 and r11 = B11/T1. And the weaker user rate can also be calculated by

r2 = h2(P1, r1). Having identified the all the parameters in the first epoch, problem simplifies
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Algorithm 8 Local Time Minimization Algorithm for the Case: Only Energy Constraint is

Active
1: B1 ← B11 + B12 , B2 ← B21 + B22

2: P11 ←
E1
T1

, P12 ←
E1
T1

3: T̂ ← 2B1
/ (

log2(1 + s1E1
σ2T1

)
)
− T1

4: P22 ←
E2

T̂
− P11

5: B̂2 ←
T̂
2 log2

(
1 + s2P22

s2P12+σ2

)
6: if B̂2 < B2 then

7: {We should have a constant rate for the stronger user during transmission.}

8: T max ← Tupper, T min ← T̂

9: repeat

10: T̂ ← (T max + T min)
/
2

11: P11 ←
σ2

s1

(
2

2B1
T1+T̂ − 1

)
, P12 ← P11

12: P21 ← ( E1
T1
− P11) , P22 ← ( E2

T̂
− P12)

13: B̂2 ←
T1
2 log2

(
1 + s2P21

s2P11+σ2

)
+ T̂

2 log2

(
1 + s2P22

s2P12+σ2

)
14: if B̂2 < B2 then

15: T min ← T̂

16: else

17: T max ← T̂

18: end if

19: until B̂2 = B2

20: else

21: {Whole energy in the first epoch should be used for the stronger user and rate (power) of the

stronger user should increase at the end of the first epoch.}

22: T max ← T̂ , T min ← 0 , b11 ←
T1
2 log2(1 + s1E1

σ2T1
) , b12 ← B1 − b11

23: repeat

24: T̂ ← (T max + T min)/2

25: P12 ←
σ2

s1

(
2

2b12
T̂ − 1

)
, P22 ← ( E2

T̂
− P12)

26: B̂2 ←
T̂
2 log2

(
1 + s2P22

s2P12+σ2

)
27: if B̂2 < B2 then

28: T min ← T̂

29: else

30: T max ← T̂

31: end if

32: until B̂2 = B2

33: end if

34: Tmin ← T̂ + T1
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to finding the parameters in the second epoch.

In order to minimize transmission energy, we can simply calculate rates in the second epoch

by dividing the remaining bits to the duration of second epoch, T2, i.e., r12 = B12/T2 and

r22 = (B21 + B22− r21T1)/T2. Then we calculate the transmission power of the second epoch

from rates, i.e., P2 = g(r12, r22). Finally, by using (C.8) we can find Emin that minimize energy

consumption.

Delay minimization problem, Problem 6, also simplifies to minimization of transmission

duration of bits b12 = B12 and b22 = (B21 + B22 − r21T1) in minimum time by using

E = E1 + E2 − P1T1 units of energy. Solution of this problem is similar to the one in sec-

tion C.1 and can be solved iteratively by Algorithm 5.

Solution method of other cases with two or more active constraints follow the same method-

ology given in the previous paragraphs, hence omitted here.
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