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ABSTRACT

EFFICIENT RESOURCE ALLOCATION IN ENERGY HARVESTING WIRELESS
NETWORKS

Tekbıyık Ersoy, Neyre

Ph.D., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Elif Uysal-Bıyıkoğlu

December 2012, 186 pages

This thesis presents various studies on energy efficient design of wireless networks. It starts

with a survey on recent shortest path based energy efficient routing algorithms developed for

ad hoc and sensor networks, making a comprehensive classification for these algorithms. In

addition to energy efficient design, sustainable and environmentally friendly deployment of

wireless networks demands increased use of renewable energy. However, this calls for novel

design principles to efficiently utilize the variation in the availability of the energy. The the-

sis continues with an investigation of state-of-the-art resource management and scheduling

algorithms developed for energy harvesting wireless sensor networks. Building on the state-

of-the-art, the main contribution of this thesis is to formulate and solve a utility maximizing

scheduling problem in a multiuser broadcast channel with anenergy harvesting transmitter.

The goal is to determine the optimal power and time allocations to users between energy ar-

rivals. The structural properties of the problem are analyzed, and its biconvexity is proved.

A Block Coordinate Descent (BCD) based algorithm is developed to obtain the optimal so-

lution. Two simple and computationally scalable heuristics, PTF and ProNTO, which mimic

the characteristics of the optimal policy, are proposed. Finally, an online algorithm, PTF-On,
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that will bypass the need for offline knowledge about the energy harvesting statistics, is devel-

oped. PTF-On uses a Kalman filter based energy harvesting prediction algorithm, developed

in this thesis, to predict the energy that will arrive in the future.

Keywords: Energy harvesting, optimization, block coordinate descent, biconvex, proportional

fairness.
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ÖZ

ENERJ̇I HARMANLAYAN KABLOSUZ A ĞLARDA ETKİN KAYNAK PAYLAŞTIRIMI

Tekbıyık Ersoy, Neyre

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Elif Uysal-Bıyıkŏglu

Aralık 2012, 186 sayfa

Bu tez, kablosuz ăgların enerji verimli tasarımı üzerine yapılan çesitli çalışmalar sunmaktadır.

Tez, kablosuz tasarsız ağlar ve algılayıcı ăglarda, ăg ömrünü uzatabilecek, yakın zamanda

literatüre katılan, en kısa yol atama tabanlı enerji verimli yol atama algoritmalarının araştırıl-

ması, ve bu algoritmalara yönelik yeni bir gruplandırma yönteminin sunulması ile başla-

maktadır. Enerji verimli tasarımın yanısıra, günümüzde birçok uygulamanın sürdürülebilir

ve çevre dostu olması gerekmekte, ve, bu da yenilenebilir enerji sistemlerinin kullanımının

artması ile mümkün olmaktadır. Fakat, yenilenebilir bir enerji kaynăgının varlı̆gı, enerji

miktarlarındaki anlık dĕgişimleri etkin bir şekilde dĕgerlendirecek yeni tasarım prensiplerini

gerektirmektedir. Bu dogrultuda, tezin devamında enerji harmanlayabilen kablosuz algılayıcı

ağlarda kullanabilecek en yeni kaynak paylaştırma ve çizelgeleme algoritmalarının araştırıl-

ması konu edilmiştir. En son gelişmeler ışığında, bu tezin başlıca katkısı, çok kullanıcılı

bir tümegönderim kanalında, enerji harmanlayabilme özelliğine sahip bir göndericinin bu-

lundŭgu durumda, fayda enbüyütme amaçlı bir çizelgeleme probleminin formüle edilmesi

ve çözülmesidir. Amaç, enerji harmanları arasındaki zamandilimleri için, optimal güç ve

kullanıcılar arası zaman paylaştırımını belirlemektir.Problemin yapısal özellikleri incelen-
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miş ve iki yüzü dışbükey (biconvex) olduğu kanıtlanmıştır. Optimal çözümü elde etmek için

Blok Koordinat Alçalma (BCD) tabanlı bir algoritma geliştirilmiştir. Basit ve sayısal olarak

ölçeklenebilen ve optimal çözümün karakteristik özelliklerine uyum săglayan iki buluşsal

yöntem, PTF ve ProNTO, tasarlanmıştır. Son olarak, onlinebir algoritma olan ve gelecekte

harmanlanacak enerji miktarlarının önceden bilinmesini gerektirmeyen, PTF-On algoritması

tasarlanmıştır. PTF-On, bu tezde geliştirilen bir Kalman filtre tabanlı enerji harman tahmin

algoritması kullanarak ileride harmanlanacak olan enerjiharman miktarlarını kestirebilmek-

tedir.

Anahtar Kelimeler: Enerji harmanlama, eniyileştirme, blok koordinat alçalma, iki yüzü dış-

bükey, orantısal adil.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Related Work

1.1.1 Sustainable Machine to Machine Networks

The progress in short range networking, growth of wireless mobile networks, and advances in

device networking have allowed the development of a new technology, Machine to Machine

communications (M2M) [10], [11], which has recently received considerable attention. M2M

is mainly a combination of three common technologies: wireless sensors, the Internet and

personal computers. In M2M, a field node or a group of field nodes1 (in the vicinity of an

event) gather data and send it wirelessly through a network (e.g. wireless sensor network),

where it’s routed, often over the Internet, to a server or cloud of servers. At that point, an

application program (or a software agent), translates the data into meaningful information

(e.g., an accident has occurred, items need to be restocked,etc.) based on information from

the sensors and a set of rules, and then, sends commands to controllers or actuators, which

issue the electrical signals necessary to make machines take action. Hence, M2M technology

enables the next generation of wireless sensor networks andglobal connectivity to billions

of processes, devices, and machines through the Internet. There is an immense potential

for future applications of this technology. Some of the currently envisioned applications are

building automation and structural control, transportation and logistics, healthcare, public

safety and surveilance, and, environmental and utilities monitoring. We summarize some

of the major existing and potential M2M applications in Figure 1.1. The vast majority of

1 Field nodes can be sensors of properties such as temperature, humidity, flow measurement, and position
finding system, as well as controllers and actuators for machines such as air conditioners, elevator pumps, traffic
lights, etc.
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M2M applications - perhaps 70 percent - have intrinsic environmental benefits that promote

environmental sustainability [12].

 

 

�������������	
	���
HVAC Control/ 
Automation�
Lighting Control / 
Automation�
Structural Health 
Monitoring �
Energy/ Utility 
Monitoring�
Building Awareness / 
Security �

Entry Control�
Fire Detection, 
Intruder detection�
Elevators, doors, 
etc.


������������� ������������ ��
���
Mass Transit�
Stop Light 
Management�
Parking Control�
Toll Payment�
Inventory Monitoring�
Vehicle and Asset 
tracking �
Driver safety�
Accident notification �
Location positioning

�	������
Portable Devices�
Remote Healthcare �
Individual 
Monitoring for the 
Elderly �
Consumer Medical

����� ��

�����	���� ������ ���	���
Site surveillance�
Air Quality 
Monitoring�
Billboards�
Point of Sale�
Vending Machines�
Public lighting�
First-responder 
Sysems�
Border/ Perimeter 
Security

��	���� �������	��
Smart Grid 
Monitoring (Smart 
metering)�
Substation 
Integration�
Distribution 
Automation�
Utility Sub-metering�
Oil/Gas Production 
Monitoring�
Water treatment and 
supply�
Billing of utilities ( 
Oil, water, electricity, 
heat, etc.)

������������� �����������
Plant Operations / 
Safety�
Instrument 
Calibration�
Machine Health 
Monitoring�
Process Control and 
Automation�
Condition-based 
Maintenance

 ! " # $ %

Figure 1.1: Current and future M2M applications (Photo Credits: 1 [2], 2 [3], 3 [4], 4 [5],
5 [6], 6 [7])

With increasing awareness of the potential harmful effects to the environment caused by CO2

emissions and the depletion of non-renewable energy sources, there is a growing consensus

on the need to develop more energy-efficient systems and networks [13]. In recent years,

researchers and industry analysts have pointed out that application of M2M can result in a

“greener” ICT infrastructure. In particular, it is suggested in [14] that a combination of M2M

and dematerialization services (such as eliminating paperbookkeeping in favor of electronic

records) could reduce Europe’s energy bill by at least 43 billion Euros and reduce CO2 emis-

sions by at least 113M tons per year in 2020 across 25 EU countries (EU-25).

However, the authors estimate that a billion mobile connections would be required to achieve

these savings, 87% of which are Machine-to-Machine (M2M). As the use of M2M networks

increases, the information generated by end users will alsoincrease. The reliable distribution

of this content will require increasing investments in infrastructure and maintenance, and a

matching electricity bill to run the underlying ICT (Information and Communication Tech-

nologies). These could significantly offset the potential savings offered by M2M networks
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unless innovative energy efficient technologies are employed in the design of these networks.

Today, ICT equipment and services are responsible for about8% of all electrical power con-

sumption in the EU, and about 2% of carbon emissions. As M2M applications and deploy-

ments continue to increase, the ICT sector will inevitably grow. This growth, together with

increasing energy costs and the need to reduce greenhouse gas emissions make it important

to design M2M networks as energy efficiently as possible on every stage from computation

and storage to communication. Yet, despite the growing research interest in M2M, its energy

efficient design per se has not been sufficiently addressed in the literature.

With this in mind, Chapter 2 is devoted to overview an array ofstate-of-the-art techniques and

technologies that may be incorporated in various stages andlayers of M2M design.

1.1.2 Energy Efficient Routing in Machine to Machine Networks

Although still in its nascent phase, M2M is a promising technology. M2M networks make

use of multi-hop routing in order to route data in a wireless network. Since each node in a

wireless multi-hop network acts as a router, one of the main issues in multi-hop routing is

energy efficiency. In the last decade many energy efficient routing algorithms have been de-

veloped for use in multi-hop networks, such as ad hoc and sensor networks. Ad-hoc networks

are dynamically formed multi-hop networks that can be deployed without the need for any

fixed infrastructure, such as base stations. The nodes configure themselves into a network

and cooperatively maintain network connectivity. Some works in which treat the problem of

energy by reserving the network connectivity are [15], [1].Sensor networks often have nearly

an ad-hoc structure, except perhaps having a central data collection unit or sink.

The growing interest in sensor applications has created a need for protocols and algorithms

for large-scale self-organizing ad-hoc networks, consisting of hundreds or thousands of nodes.

Hence, in the past decade, wireless sensor networks (WSNs) have been the topic of consider-

able research effort due to their potential for civilian and military applications and their ability

of being incorporated in M2M networks. Although M2M networks do not only consist of sen-

sors, WSNs are a key component of machine-to-machine (M2M) communication. Therefore,

sometimes sensor networks are referred to as M2M networks [16]. WSNs are made up of a

large number of small sensors that are networked via low power wireless communications. A
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sensor network enables cooperation, coordination, and collaboration among sensor nodes and

thus it differentiates itself from a mere collection of sensors. The three main functions in a

sensor network are sensing, controlling and actuating. These functions could be on separate

nodes or co-located on the same physical node. Thus, there are three types of nodes; sensors,

controllers and actuators [17]. These nodes are generally equipped with data processing and

communication capabilities which are used for collecting and disseminating environmental

data. Figure 1.2 shows a schematic diagram of sensor node components.

Figure 1.2: Basic components of a typical sensor node

The sensing circuitry measures ambient conditions relatedto the environment surrounding

the sensor and transforms them into an electric signal. Processing such a signal reveals some

properties about objects located and events happening in the vicinity of the sensor. The sensor

sends such collected data, either to other sensors or back toan external base station (BS). A

base station may be a fixed or mobile node (sink) capable of connecting the sensor network

to an existing communications infrastructure or to the Internet where a user can have access

to the reported data.

Due to the inherent multihop characteristic, routing is important in WSNs. Since a WSN con-

sists of energy-constrained sensor nodes, the resources ofthe network (such as energy supply

and bandwidth) should be used wisely. Therefore, at the network layer, it is highly desirable

to use energy aware and energy conserving routing algorithms for routing and relaying of data

from the sensor nodes to the BS. In developing energy aware and energy conserving routing

techniques, WSNs are modeled as graphs. Then, a shortest path routing (SPR) algorithm is

applied on this graph. Therefore, once an appropriate link metric has been defined, the optimal

shortest path routes can be computed in polynomial time and in a distributed fashion [18].
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There have been previous surveys on the characteristics, applications, and communication

protocols in WSNs [19], [20]. The surveys in [19], [20] addressed several design issues and

techniques for WSNs describing the physical constraints onsensor nodes, applications, archi-

tectural characteristics, and the protocols proposed in all layers of the network stack. In [21],

a comprehensive list of recently proposed routing protocols is presented, and routing algo-

rithms used in WSNs were classified as data-centric, hierarchical and location-based. As can

be observed from [19] and [21] early literature on wireless networking addressed the design

of efficient routing algorithms without optimization of the energy required to send the mes-

sages. A comprehensive survey of routing techniques proposed for wireless sensor networks

is presented in [22]. The techniques mentioned in the surveyhave the common objective of

trying to extend the lifetime of the sensor network while notcompromising data delivery, as

well as addressing routing challenges and design issues that may affect the performance of

routing protocols in WSNs.

The motivation and scope of Chapter 3 differ from those of previous related surveys in that

the focus is on link-cost based shortest path routing alternatives and mechanisms proposed

for WSNs as well as other ad-hoc networks are considered.

1.1.3 Resource Management and Scheduling in Energy Harvesting Industrial WSNs

The collaborative nature of wireless sensor networks (WSNs) brings several advantages over

traditional wired systems, including self-organization,rapid deployment, flexibility, and in-

telligent processing capability [23]. Recently, WSNs havefound their way into a wide variety

of applications and systems with varying requirements and characteristics [24], [25]: ocean

water monitoring and bathymetry, avalanche rescue, objecttracking, remote monitoring of oil

and gas reservoirs, and, preventive and predictive maintenance (PdM)2, which is considered to

be an important example of the class of industrial WSN applications that provide measurable

value in real deployments.

Resource management is just as critical in the industrial environment as in other deployment

scenarios. This may seem counterintuitive since most industrial plants have ample power sup-

plies and distribution systems. However, as also discussedby Krishnamurthy et. al. in [25],

2 Predictive maintenance is a general term applied to a familyof technologies used to monitor and assess the
health status of a piece of equipment (e.g., a motor, chiller, or cooler) that are in service [25].
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operating and safety regulations call for each piece of equipment to have a dedicated power

circuit, thus requiring separate power connections for sensor nodes. Hence, to reduce installa-

tion costs, the WSN must either be battery powered (and employ aggressive resource manage-

ment) or make use of energy harvesting. Since industrial WSNs are expected to be deployed

in harsh or inaccessible environments for long periods of time, recently, employing energy

harvesting (via ambient energy sources such as solar [26], vibrational [27], [28], wind [29]

and thermal energy [30]) to replace/supplement batteries that power WSNs, has earned much

interest. Detailed information about different types of energy harvesting approaches can be

found in [30], which is a useful source that investigates thecurrent energy harvesting WSN

applications in several areas, and, provides examples of leading development enterprises.

The most popular source of the ambient energy is the sun. Solar energy is becoming widely

used, due to its high power density compared to other sourcesof ambient energy [31]. Conse-

quently, numerous researchers have designed energy harvesting circuits to efficiently convert

and store solar energy [32], [33], [34], and, most of the studies mentioned in Chapter 4 focuses

on solar energy harvesting. As claimed by Yu and Yue [35], solar energy harvesting is a com-

paratively fledged technology for WSNs used for outdoor applications. However, for indoor

applications, it is not suitable since the efficiency of photovoltaic cell is very low under low in-

door light luminous intensity. For indoor applications, one may prefer the micro-scale indoor

light energy harvesting system developed in [35], or, the energy optimized sensor node [36]

designed to harvest the energy from indoor light, for building climate control application.

Moser et. al. argue in [37] that, depending solely on energy harvesting gives rise to new

challenges and will trigger the revision of conventional resource management. If, e.g., the

size of a solar cell limits the available power/energy of an electronic device, decisions such

as when to provide how much power, rate, service, etc. have tobe made in order to satisfy

the needs of the user as well as possible. Successful demonstration of perpetual operation

with indoor EH WSNs have already been made, that are drawing attention to the importance

of routing and scheduling mechanisms that are aware of the energy harvest process. For

instance, in an indoor office environment, Hande et al. [38] used monocrystalline solar cells

to scavenge energy from 34 W flourescent lightbulbs in order to supply (via supercapacitors)

the routers of a WSN. The routers, operating in pairs, achieved virtually perpetual operation

by resource-aware operation. The authors in [38] stressed that in scenarios with mobility,

resource management mechanisms for other forms of energy scavenging (such as vibration-
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based or thermal) should be investigated in future work.

Resource (energy) management in WSNs equipped with energy harvesting capabilities is

substantially and qualitatively different from resource management in traditional (battery-

powered) WSNs. As stated by Mao et. al. in [39], conservativeenergy expenditure in en-

ergy harvesting networks, may lead to (i) missed rechargingopportunities because the battery

buffer is full and, (ii) long delays because the energy is not being fully used to transmit at

high enough data rates. On the other hand, aggressive usage of energy may result in reduced

coverage or connectivity for certain time periods, not to mention complete battery discharges

that could make the nodes temporarily incapable of transferring time-sensitive data. In indus-

trial applications, this may lead to loss of production and may sometimes create hazardous

situations [40]. Thus, new resource allocation and scheduling schemes need to be designed to

balance these contradictory goals, in order to maximize thenetwork performance. This is the

main motivation for Chapter 4.

1.1.4 Proportional Fair Resource Allocation on an Energy Harvesting Downlink

Management of energy consumption is vital for the sustainability of many wireless communi-

cation systems. Therefore, especially in the past decade, energy efficient scheduling policies

have been investigated [41, 42, 43]. Due to recent advances in energy harvesting technologies,

emerging communication devices have been powered by rechargeable batteries which are ca-

pable of harvesting energy through solar cells, vibration absorption devices, thermoelectric

generators, wind power, etc. Although energy harvesting allows sustainable and environmen-

tally friendly deployment of wireless networks, it requires efficient utilization of time-varying

energy. Hence, the focus should be shifted from minimizing energy expenditure to optimizing

it over time.

It is well known (e.g., [44], [45], [46]) that optimization of a broadcast channel(e.g., the

downlink) shared by many users calls for different choices of rate and power allocation to

different users depending on the gains, channel conditions, demands of these users, and most

importantly, the objective of the optimization.

There has been considerable recent research effort on optimizing data transmission with an

energy harvesting transmitter. In [47], the authors develop a packet scheduling scheme that
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minimizes the time by which the energy harvesting transmitter delivers all packets to the

receiver of a single-user communication system. In [48], the authors extend this work to

the multi-user case and, propose an iterative approach thatreduces the two-user broadcast

problem into a single-user problem as much as possible, and then, utilizes the single-user

solution in [47]. [49] treats the time minimization problemfor the two-user broadcast channel

differently, as it proposes an iterative solution technique by considering two energy arrival

slots at a time. These approaches are extended by [50] and [51] to the case of a transmitter

with a finite capacity battery. [52] extends [47] one step further to propose the directional

water-filling algorithm, which is able to find the optimal energy management schemes for

energy harvesting systems operating in fading channels, with finite capacity rechargeable

batteries. Both [51] and [52] investigate the following dual offline problems; maximizing the

number of bits transmitted with a given deadline constraint, and minimizing the transmission

completion time with a given number of bits to transmit.

Unlike the broadcast related studies mentioned above, [53]investigates the dual problems

in a multiple access communication system. By using the generalized iterative backward

waterfilling algorithm [53], the transmission completion time minimization problem can be

simplified into convex optimization problems, and solved efficiently. [54] solves the short-

term throughput maximization problem for a battery-limited energy harvesting transmitter in

a single link topology.

In [55], the authors consider the problem of energy allocation over a finite horizon for point

to-point wireless communications, taking into account a time varying channel and energy

source, so as to maximize the throughput. In [56], Gatzianaset. al. consider an infinite-

horizon online throughput maximization problem for a rechargeable sensornetwork. The

authors propose a queue stabilizing transmission policy with decoupled admission control

and energy allocation to maximize a function of the long termrate achieved per link. Chen

et. al. [57] claim that infinite-horizon based solutions canbe highly inefficient, especially in

the context of networks with energy replenishment. Hence, unlike [56], [57] investigates the

finite-horizon throughput maximization problem for a rechargeable sensor network.

The work in Chapters 5 and 6 differ from the previously mentioned studies particularly in their

aim to maximize the throughput in a proportionally fair way,taking into account the inherent

differences of channel quality among users. Due to characteristics of the utility function, the
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problem presented is abiconvexproblem3 which is nonconvex, and has multiple optima. This

allowes us to decompose the problem into two parts (power allocation, time allocation) and

present a Block Coordinate Descent based optimization algorithm, BCD, that converges to a

partial optimal solution. Although BCD is guaranteed to converge to a partial optimal solution

and thus the partial optimal utility, it is computationallyexpensive and when there are tens of

users and energy arrivals, forming invertible hessian matrices (needed for the optimization of

the power variables) may be computationally excessive. Hence, we next restrict our general

case assumption to the case where energy interarrival timesare equal, in Chapter 6, so that

we can analytically derive the characteristics of the optimal solution, and then, build on those

to develop simple heuristics, PTF and ProNTO that closely track the performance of the BCD

solution. Note that, not all generality is lost, since harvest amounts are arbitrary and the

absence of a harvest in a certain slot can be expressed with a harvest of amount zero for the

respective slot. Periodic sampling is consistent with practice as in many energy harvesting

systems, transmitters have supercapacitors that can storethe harvested energy and supply in

every predetermined time window.

1.1.5 Prediction Based Proportional Fair Resource Allocation for Industrial Wireless

Sensor Networks

As previously discussed in Chapter 4, resource management is just as critical in the industrial

environment as in other deployment scenarios. In many industrial WSN applications, an area

needs to be covered with a wireless sensor network (WSN), or multiple WSNs, monitoring

different parameters, or different locations. Often, these subnetworks of simple devices send

data via gateway nodes (or cluster heads) to a remote base station located at a central office,

where the signal processing to produce strategic decisionsruns on a more powerful computer.

It is often also the central computer that maintains the health of the network by regularly

recomputing the network topology. It is then necessary for the base station to broadcast cer-

tain network details and commands to the gateway nodes. Sustainable and environmentally

friendly development of such industrial applications requires increased use of renewable en-

ergy, i.e., solar, wind, etc. Thus, in chapter 7, we address the case where the base station is

supplied with solar energy harvesting. However, unlike what we have done in Chapters 5 and

3 The problem of optimizing a biconvex function over a given (bi)convex or compact set, where a function
f : X × Y→ℜ is called biconvex iff (x, y) is convex iny for fixed x ∈ X and is convex inx for fixedy ∈ Y [58].
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6, this time we focus on a more realistic scenario and thus, complicated problem; theonline

problem, in which the energy arrival amounts within a frame are not known apriori.

1.2 Contributions of This Thesis

The contributions of this thesis study can be stated as follows:

• An overview of the state-of-the-art techniques and technologies that may be incorpo-

rated in various stages and layers of sustainable M2M design:

– Despite the growing research interest in M2M communications and the impor-

tance of energy efficiency in M2M networks, we are not aware of a detailed study

on energy efficiency in M2M networks. By this means, we believe that the reser-

ach presented in Chapter 2 will be a useful reference for those who are interested

in energy efficient design of M2M networks.

• A detailed survey on link-cost based shortest path routing alternatives, and a compre-

hensive classification of the discussed algorithms, summarized in Table 3.2.

– Several surveys on both ad hoc and sensor networks exist in the literature. How-

ever, the motivation and scope of the study presented in Chapter 3 differs from

those of previous related surveys since the focus is on link-cost based shortest

path routing alternatives and mechanisms. To our knowledge, this is the first

study/survey devoted to the shortest path based energy efficient routing algo-

rithms. It should be noted that, this survey is a published work [59].

• An overview of the state-of-the-art resource management and scheduling algorithms,

developed for energy harvesting WSNs:

– This study will soon be available as a book chapter [60].

• Proportional fair resource allocation related contributions:

– The proportional fair resource allocation problem proposed for an energy harvest-

ing downlink.

– Derivation of the structural properties of the proposed problem.
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– An optimization algorithm that converges to an optimal solution, BCD.

– Derivation of the optimal solution based characteristics.

– Simple and efficient heuristics that closely track the performance of the optimal

algorithm.

– Although there has been a considerable recent research effort on optimizing data

transmission with an energy harvesting transmitter, we arenot aware of a study

on an energy harvesting downlink that takes into account theinherent differences

of channel quality among users to maximize the throughput ina proportionally

fair way. The study in Chapter 5 entails not only the optimal power/rate allo-

cation to users between energy arrivals, but also the optimal time allocation that

will maximize a proportionally fair utility function. Chapter 6 provides simple,

practical, and close-to-optimal algorithms that can operate in order of seconds,

and by this means, it can be considered as a useful source for those who desire

forming fast and proportionally fair allocations in an energy harvesting broad-

cast system. The studies in Chapters 5 and 6 are combined to form a journal

paper which is accepted for publication [61]. Parts of thesestudies are presented

in 27th International Symposium on Computer and Information Sciences (ISCIS

2012) [62], [63].

• A Kalman-filter based energy prediction algorithm, K-SEP, and anonlineproportional

fair resource allocation algorithm, PTF-On, that can closely track the performance of

theoffline PTF algorithm.

1.3 Organization of The Thesis

In Chapter 1, the motivation of the thesis study is stated. The chapter also provides introduc-

tory information about the studies included to this thesis,along with their related works.

In Chapter 2, we overview an array of state-of-the-art techniques and technologies that may

be incorporated in various stages and layers of M2M design. We start by describing a typical

M2M architecture and its components, as well as issues related to their design. Next, we

discuss possibilities for the energy conservation in the design of these components.

11



In Chapter 3, we focus on the problem of energy efficient routing and its significance in

wireless networks, followed by a definition of link cost based Shortest Path Routing (SPR).

Then, we describe various shortest path based energy efficient routing algorithms designed

for wireless ad-hoc or sensor networks, and, the candidate link cost metrics that could be used

in accordance with shortest path based algorithms.

Chapter 4 overviews a selection of state-of-the-art resource management and scheduling al-

gorithms, developed for energy harvesting WSNs, selected in particular with respect to their

suitability to the industrial WSN environment. The treatment includes an explanation of the

operating principles, as well as the design settings for these algorithms. The drawbacks, ad-

vantages, and possible application areas of these algorithms are also discussed.

Chapters 5 and 6 are devoted to the proportional fair resource allocation problem on an energy

harvesting downlink. In Chapter 5, we describe the system model, and, make the problem

statement precise to study the mathematical structure of the proposed problem. The proposed

BCD algorithm is described in this Chapter, followed by a detailed analysis and discussion of

the nature of the solution found by BCD. We also test the insight gained from analysis about

convergence and the nature of the solution, by running the algorithm on numerical examples.

Chapter 6 discusses the structure and properties of the optimal solution. Depending on these

properties, PTF and ProNTO heuristics are proposed in this Chapter. The numerical and

simulation results are also presented.

Chapter 7 presents our latest study, i.e., theonlineversion of the problem proposed in Chapter

5. The chapter explains how we leveraged the PTF heuristic, to propose a stand-alone algo-

rithm, PTF-On, that can predict the base station’s energy arrival profile throughout the day,

and then, act upon this energy arrival profile to maximize thethroughput in a proportionally

fair way.

Finally in Chapter 8, the summary of this study, and, a discussion about the possible future

directions is presented.
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CHAPTER 2

TOWARDS SUSTAINABLE MACHINE TO MACHINE

NETWORKS

M2M communications (M2M) is a rapidly growing technology that automates the commu-

nication among heterogeneous groups of devices. M2M has received increased attention re-

cently due to its potential for reducing the energy consumption and greenhouse gas emissions

caused by current communication technologies and human activities. In order not to offset the

potential savings by the overall energy consumption of computation, storage and communi-

cations needed to realize M2M networks, it is necessary to design these networks with utmost

energy efficiency at every layer of their architecture.

This chapter starts by laying out the components of an M2M architecture, and continues

by a wide scoped consideration of solutions from recent literature that can be employed to-

ward energy efficient design of each of these components. The array of solutions surveyed

include, energy efficient hardware and protocols for wireless sensor and actuator networks

and, performance-improving techniques for other wired andwireless networks that serve to

support M2M networks.

2.1 M2M System Architecture and Design Issues

2.1.1 M2M Architecture

M2M is a combination of various heterogeneous electronic, communication and software

technologies. A typical M2M system, illustrated in Figure 2.1, comprises of the following

basic components [64], [65]:
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Figure 2.1: M2M architecture

• Intelligent and communication enabled modules and devices: These devices include

sensors, actuators, RFID tags, PLCs (Programmable Logic Control), I/O modules and

any other device, machine or appliance that incorporates a communications module.

The wireless communications module can be built into the system or integrated as an

add-on component. These devices are programmed to read, andsometimes react to,

actions and conditions such as motion, pressure, or temperature. We will refer these

devices as intelligent devices.

• M2M Area Network: This network provides connectivity between intelligent devices

and M2M Gateways. Examples of M2M Area Networks include: Local networks such

as M-BUS and Wireless M-BUS, and, Personal Area Network (PAN) technologies such

as IEEE 802.15, SRD (Short Range Device), UWB, Bluetooth, Zigbee, sensor net-

works, etc.

• M2M Gateway: An M2M gateway is responsible for extracting raw data from an intelli-

gent device and preparing it for the network. The gateway uses a proprietary protocol or

device driver to interact with the intelligent device, and translate the data into a format

that another device, application or human can understand. Mainly, an M2M gateway

facilitates communication among the various devices and provides a connection to a

backhaul that reaches the Internet. The M2M gateway can havemany different embod-
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iments [66]; it needs to support one or more of the local network protocols as well as the

backhaul connection to the Internet. The backhaul connection may be Ethernet, cable,

DSL, fiber, or cellular. We refer the interested reader to [66] for information about the

issues related to the design of M2M gateways. Although the focus is on home M2M

networks in [66], the converged M2M gateway structure proposed by the authors is a

single product that uses advanced protocols to control all of the home network devices

and thus, it provides insight into how an M2M gateway should be designed.

There can be several gateways in an M2M network. Every gateway is capable of an-

alyzing a certain amount of data transmitted from various types of intelligent devices.

According to Kim and Choi [67], when an M2M application queries the sensing infor-

mation of a certain geographical region to an M2M platform, the platform should find

out the devices that cover the requested region and select the M2M gateways to route the

request to those devices. Since the M2M platform knows geographical locations of the

registered devices and M2M gateways only, the M2M platform should speculate about

the coverage of M2M area network (M2M-AN) which consists of the M2M gateway1

and associated devices including both registered and unregistered devices. In this case,

determining the smallest feasible M2M gateway set (list) whose collective coverage

spans the target region is important for minimizing the routing overhead, transmission

power and processing resources. We refer the interested reader to [67] for details of

four algorithms proposed by Kim and Choi in order to select the M2M gateway list for

geographical region based query from certain M2M applications.

• Communications network: The Communications network in an M2M application is

the central connection component between an intelligent device and a remote client.

It provides communications between the M2M Gateways and theremote clients (or

software applications). Examples of Communications networks include: xDSL, IEEE

802.11, Local Area Networks (LAN), GERAN (GSM EDGE Radio Access Network),

UTRAN (UMTS Terrestrial Radio Access Network), W-LAN, WiMAX (Worldwide

Interoperability for Microwave Access), and the cellular communication technologies

like GSM (Global System for Mobile communications), GPRS (General Packet Radio

Service), EDGE (Enhanced Data rates for GSM Evolution), 3G,LTE (Long Term Evo-

lution), CDMA, etc. A large number of M2M applications transmit relatively low data

1 In some M2M applications, M2M gateways can be included to theM2M-AN structure.
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volumes, so the potential transmission speed has little significance for them. Among

many choices mentioned above, the pricing model of GPRS and EDGE makes them

attractive for M2M applications. Some gateways also support GPS (Global Positioning

System) technology in order to transmit location data by using satellite communication.

Communications network allows the system to send information to a back-end server,

which processes the data and sends it via the Internet to the facility that monitors and

controls the machine, via protocols such as TCP/IP and the short message Peer to Peer

Protocol.

• The remote client or application: This is the destination ofthe information. The remote

client can be either a hardware or a software that receives the data. More specifically,

clients can be cell phones, web browsers (e.g., Internet Explorer, Firefox, or Google

Chrome, etc.), email clients and smart messaging (SMS) devices, among others. These

clients use a software application which allows the received data to be analyzed, re-

ported, and acted upon.

2.1.2 M2M Design Strategies

There are basically three infrastructure design strategies in M2M implementations: push strat-

egy, pull strategy and push/pull (hybrid) strategy. In push strategy, the intelligent device

initiates the communications and sends data through an M2M gateway over the network to a

remote client. In order to perform this operation, the device recognizes pre-defined conditions

and triggers itself to send alarms, alerts, e-mails, data and commands to an M2M gateway.

Then, the gateway connects over the network on an as-needed basis to send data to the remote

client. For instance, if the temperature level in a room rises above a predetermined threshold,

the intelligent device sends a command via the M2M gateway toa PLC or I/O unit to enable

power to a cooling device. Depending on the device’s capabilities, it may also be possible

to send an email to a technician’s cell phone. In this scenario, the gateway connects over the

network only when the temperature threshold is exceeded. Pull strategy, on the other hand,

requires a server and an always-on LAN, or Internet connection to ensure continuous report-

ing. Hence, it is more expensive than the push strategy. In the Pull strategy, there is a server

on the network which is tasked with polling (periodically) the intelligent devices for data. The

server is capable of broadcasting the data throughout the enterprise, sending alerts, alarms,
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messages, or commands to other devices. An advantage of thisstrategy is that it enables the

user to check whether the server is consistently establishing communications with the intel-

ligent device or not. The hybrid strategy is a combination ofthe push and pull strategies.

The hybrid method is used when the user demands to access the intelligent device at any time

and rely on the the device to take action when an event is triggered. However, if the M2M

gateway has an Internet connection and, acts as a Web server,the hybrid method introduces

many issues [64] such as the need for a static IP address for each intelligent device which

necessitates greater security precautions such as individual firewalls.

Having laid out the typical architectural components, we are ready to discuss the construction

of these for sustainable operation of the whole M2M network.

2.2 Requirements for M2M Network Design

Despite the promising real-time monitoring applications and tremendous benefits, M2M com-

munications is still in its infancy and faces many challenges, namely, meeting the following

requirements [68], [69] are met.

1. Scalability: Scenarios with hundreds or thousands of intelligent devices are easily fore-

seable, considering, for example, the smart grid. Network protocols that scale well are

thus needed.

2. Sustainability/ Energy Efficiency: To reduce the need for human intervention for true

automated operation, sustainable operation for months or years at a time is desirable.

Usually, a mass of intelligent devices are deployed in M2M networks. Hence, as sup-

ported by Lu et. al. [70], M2M communications should focus onenergy efficiency

by optimizing M2M nodes’ sensing, processing, and transmissions, and ultimately pro-

long the lifetime of the whole M2M communications. Protocolarchitecture that support

sustainable, low power operation with adaptive duty cycling, sleep/wakeup scheduling,

etc. are thus needed.

3. Reliability: Low reliablity in sensing, processing, andtransmission, leading to high

error rate in monitoring, data loss or long delays will certainly reduce the applicability

of M2M infrastructures. Hence, M2M infrastructures need tobe designed to ensure

certain reliability requirements at every layer.
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4. Mobility: In certain applications where intelligent devices are built on moving ma-

chinery, for example, or are intrinsicly mobile or portable, it will be required that the

network provide seamless mobility.

5. Priority / Identification: Management of services with different priority classes is likely

to be a requirement. Interrupting routine traffic to transmit important or urgent messages

or serve a flow with higher priority is expected in many automation scenarios. To

accomplish this, the network needs to support identification of intelligent devices or

groups of intelligent devices by permanent or temporary IDs, location or combination

thereof (e.g. URIs or IMSI).

6. Heterogeneity: Often, the M2M System should be able to support a variety of different

device types, e.g. active intelligent devices and sleepingintelligent devices, upgradable

/ not upgradable intelligent devices, and, M2M gateways. Hence, the M2M network

should be capable of interfacing heterogeneous M2M Area Networks.

7. Security/Privacy: M2M network should be designed in a way that prevents unautho-

rized use of the intelligent devices and the M2M Gateway. It should be capable of

protecting privacy.

Recently, a considerable attention has been paid to the deployment of architecture and soft-

ware challenges in M2M networks not only from the IT industrybut also from academia [70].

However, the energy efficiency related issues in M2M networks have not been well explored.

On the other hand, energy efficient design can increase the applicability of M2M and over-

all impact to global energy efficiency [70]. In the next section we focus on methods and

technologies that can be used for designing sustainable andenergy efficient networks.

2.3 Sustainable M2M Networks

This section will make an overview of energy efficient design at various components of an

M2M network.
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2.3.1 Energy Efficient Solutions for Intelligent Devices

Intelligent devices form the core of an M2M network, and naturally the availability of the

devices themselves is critical for the reliability of the network. Intelligent devices used by

M2M applications are often wireless sensor nodes or communication modules that incorpo-

rate sensors. These are typically powered by batteries of finite capacity which need to be

replaced after a certain period of use. However, for many current M2M applications such as

Environmental Monitoring and Structural Health Monitoring (SHM), battery replacement is

impractical - nodes may be crammed into hard-to-reach nooksor distributed over wide areas.

Hence, in order for M2M networks to operate successfully andefficiently, M2M applications

must overcome the maintenance problem, probably through using nodes that can automati-

cally replenish their energy from the environment. This concept, sometimes called ambient

energy harvesting, has attracted great interest from the research community in recent years.

Today, the main sources of ambient energy considered suitable for use in wireless sensor

networks are solar, mechanical (vibration or strain) and thermal energy [71]. Solar power is

one of the most common and mature forms of energy harvesting,succesfully used in many

current implementations. One of the most poignant examplesis a plug-and-play solar energy

harvesting module (Heliomote3 [72]) which is capable of powering commonly used sensor

nodes, including Crossbow’s Mica2 and MicaZ, Moteiv’s Telos, Yale’s XYZ, Intel’s Stargate,

and ISI’s PASTA.

Harvesting of vibrational, kinetic and mechanical energy generated by movements of objects

is particularly suitable around roads, bridges, and rail tracks. One method of harvesting vi-

brational energy is through the use of a piezoelectric capacitor while kinetic energy can be

harvested using a spring-loaded mechanism. For example, traffic sensors can be powered by

the short duration vibrations generated by a vehicle driving over them. Recently, Torah et

al. developed an autonomous and energy aware wireless condition monitoring sensor system

(ACMS) powered by harvested vibrational energy [73]. This system employs a kinetic energy

generator (EG) which converts mechanical energy, in the form of vibrations, into electrical

energy using an electromagnetic transduction mechanism. Despite the small volume of the

EG (150mm3), it produces sufficient power for the entire microcontroller subsystem from a

very low vibration source of 0.2ms−2 with no additional battery or power supply.
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Table 2.1: A comparison of possible wireless technologies for M2M-ANs

Thermal energy harvesting, on the other hand, exploits the property of certain semiconductors

to generate electricity from temperature differences or gradients (e.g. between the human

body and the surrounding environment). The practical challenge here is to harness sufficient

energy from small gradients occurring in daily life, such asbetween a person’s skin and the

surrounding air. Chandrakasan and Ramadass [74] have demonstrated devices which can

exploit differences of just one or two degrees Celcius to produce tiny (about 100 microwatts)

yet usable amounts of electric power. A system powered with such thermal energy harvesting

devices could, for example, enable 24-hours-a-day monitoring of heart rate, blood sugar or

other biomedical data, through a device worn on a patient’s arm.

2.3.2 Energy Efficiency in M2M Area Networks

2.3.2.1 MAC Standards for M2M-ANs

M2M-ANs can employ various MAC standards (wireless networking technologies) such as

UWB, Bluetooth, WiFi, etc. The chosen technology can dramatically impact the rate, range,

capabilities and the cost of the network. Table 2.1 presentsa comparison of some of the

popular wireless networking technologies appropriate forM2M networks.
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UWB (IEEE 802.15.3a) uses an extremely wide band of RF spectrum to transmit data, and

thus, it can transmit more data in a given period of time than the more traditional technologies

(Bluetooth, WiFi, Zigbee, etc.). The shortcoming of this technology lies in its high power

requirements. Also, the IEEE 802.15.3a task group was dissolved in 2006, making further

support for UWB unattainable in the future, if UWB is selected as the communication tech-

nology in an M2M-AN. WiFi (IEEE 802.11) also, is suited for high-data-rate applications

over large areas. As discussed in [75], this technology enjoys an enormous infrastructure

for residences and support for IPv6 addressing. The main shortcoming of WiFi is similar to

that of UWB: the high power requirement. Hence, WiFi is considered impractical for M2M

communications. Bluetooth (IEEE 802.15.1) technology supports IP addressing and is well

suited for low-power/low-data-rate applications. However, Bluetooth networks(known as

piconets) support up to only eight devices communicating simultaneously. To provide scala-

bility, M2M-AN requires a number of piconets (each consisting of eight devices), being able

to communicate with one another via their master devices. This, however, leads to increased

communication latency. Another drawback of Bluetooth is that it requires periodical waking

up (≈ 3 secs) and synchronization with the master device of the piconet.

When energy efficient operation and longevity (rather than high rate, sophisticated features,

or a long communication range) are the main concerns, the Zigbee standard stands out among

currently available technologies. ZigBee is an open globalstandard that operates on the IEEE

802.15.4 physical radio specification, in unlicensed bandsincluding 2.4 GHz, 900 MHz and

868 MHz. ZigBee was developed particularly for wireless devices, ensuring low power and

long life time. It supports power-saving modes, battery-optimized network parameters, and

application configurations to address the needs of low-cost, low-power multi-hop wireless

networks. We refer the interested reader to [76] for detailsabout how to plan and develop

Zigbee networks.

2.3.2.2 Protocols and Algorithms for M2M-ANs

Today, the most widely used M2M area network (M2M-AN) paradigm is a WSN. The lifetime

of a WSN, which is used as an M2M-AN, directly affects the performance of the whole M2M

network. Thus, the problem of efficient utilization of a finite energy resource on nodes is of

great importance. Over the last decade, various solutions have been proposed for this problem
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in the research community. A large part of this effort targeted energy conserving protocols at

the network and link layers. A comprehensive survey of promising new solutions for WSNs,

such as techniques for energy efficient data acquisition, can be found in [77]. We refer the

interested reader to [78] for a recent survey of MAC and routing protocols that have been pro-

posed for WSNs with the goal of prolonging the network lifetime. In the MAC domain, they

list protocols that conserve energy by reducing collisions, idle-listening, overhearing and ex-

cessive overhead. In the routing domain, the authors discuss two major categories of routing

protocols, namely data-centric routing2 and hierarchical routing3. Due to the inherent mul-

tihop characteristic, energy efficient (or energy aware) routing is very important in WSNs.

Among energy aware routing techniques, shortest path basedapproaches focus on model-

ing WSNs as graphs. The main aim in doing this is to apply a shortest path based routing

algorithm on the network graph to determine the most energy efficient route. In Chapter 3

and [59], we survey shortest path based energy efficient routing alternatives that can be used

in M2M networks. A novel comprehensive classification of these algorithms is also available

in Chapter 3 and [59].

In the previous section, we discussed energy harvesting methods that can be used to power

the sensors used in WSNs. Energy management in wireless networks equipped with en-

ergy harvesting capabilities is substantially different from energy management in traditional

(battery-powered) networks [39]. Thus, new resource allocation schemes should be designed

to balance these contradictory goals, in order to maximize the network performance. In Chap-

ter 4, we focus on resource allocation schemes that could be used for sustainable operation

of Industrial WSNs. These shemes can easily be used in M2M-ANs, as Industrial WSNs are

often used as M2M-ANs.

Another typical M2M-AN is the Wireless Sensor and Actuator Network (WSAN), a hetero-

geneous network that consists of sensor and actuator nodes.As the actuating task is typi-

cally a more complicated and energy-consuming activity than the sensing task, actuators are

resource-rich (i.e, line-powered) nodes equipped with better processing capabilities, higher

transmission powers, and longer battery life. There are twobasic architectures for data pro-

cessing in WSANs: Automated architecture (AA) and Semiautomated architecture (SA). In

2 Protocols in this category employ data-aggregation and sometimes caching to reduce the number of trans-
missions and amount of data to sink.

3 Protocols in this category divide the network into clusterswhere clusterheads gather data from field sensors,
aggregate and transmit the data.
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AA, sensor nodes sense the environment and report the data toactuator nodes which then ini-

tiate appropriate actions based on the received data. In SA,sensor nodes route sensed data to

a sink which may then issue action commands to actuator nodes. As transmitting the sensed

data to the sink typically results in fast energy depletion of nodes around the sink, this type

of architecture tends to have a disadvantage in terms of network lifetime. In AA, however,

sensed data is reported to actuators and different actuators may be triggered based on differ-

ent events, resulting in a more evenly distributed communication load and thus more even

draining of energy.

2.3.3 Energy Efficiency in Wide Area Communication Networks

2.3.3.1 Energy Efficient Solutions for Wireless Connectivity

Considering the part of an M2M architecture from the gatewayto the end user, the power con-

sumed on the access network is often the dominant component of the overall power consump-

tion of the M2M architecture. Indeed, [79] reports that the energy consumption of wireless

access networks account for more than 55% of the whole communication sector. Today the

most profitable wireless access network choices for M2M networks include radio access net-

works (RANs) and cellular networks. According to [13], as of2008, the energy consumption

of the cellular communication systems corresponded to 60 billion kWh of electricity usage

annually, and, about 40 million metric tons of CO2 emissions each year which is equivalent

to annual greenhouse gas emissions from about 8 million cars. Hence, in this section, we

will mainly focus on energy consumption of RANs and cellularnetworks. Today, the most

attractive alternatives for reducing the energy consumption of RANs and cellular networks

are: varying the cell size, switching-off some BSs, and, sometimes, switching between op-

erators [80], [81]. Therefore, the energy efficient solutions mentioned in this section will be

related to the above-mentioned three alternatives.

a) Cell Size: Large vs. Small: Cell sizes are categorized into macro-, micro-, pico-, and

femto-cells4. A small-sized cell based approach requires many base stations (BSs) with

low transmit power level. A large cell based approach, on theother hand, requires a

few BSs with a high transmit power level. This short section is devoted to the effect of

4 Femtocells enable connecting miniaturized, lower power base stations to wired backhauls such as home
digital subscriber lines or cable modems [82].
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cell sizes on the energy consumed by the network, and, the selection of the appropriate

cell size for M2M networks.

As cell size is reduced, energy efficiency and system capacity can significantly increase.

According to Leem et. al. [83], if the path-loss exponent is taken as 4 and the per-energy

capacity of a macro-cell is normalized to 1, the per-energy capacities of a micro-, pico-,

and femto-cell are 16, 104, and 108 in downlink and 64, 106, and 1012 in uplink, re-

spectively. Therefore, for the setting in [83], even thoughmany BSs are required in

small-cell based approaches, using small cells leads to significant reduction in energy

consumption. Moreover, the amount of CO2 emission of one BS transmitter is approx-

imately 181 kg in a year, if the cell radius is 1 km, and, if the cell radius is reduced

to 500 m, 100 m, and 10 m, the amount of CO2 emission in a year reduces to 45.25

kg, 1.81 kg, and 18.1 g, respectively [83]. Hence, it is evident that small-cell based

communication systems not only reduce energy consumption but also help protecting

the environment. Bhaumik et. al., however, claim in [84] that the optimal cell size from

an energy perspective depends on a number of factors, including base station technol-

ogy, data rates, and traffic demands (explained in [84]). This claim is relevant to M2M

networks as the technology, traffic demands, and, data rate requirements change from

application to application. It is the service requirementsof each M2M application that

leads to the definition of the media (and thus the cell size) used for transmission of

M2M data. M2M applications have traditionally only required relatively low data rate

connections, for which cellular 2G technologies, such as GPRS, EDGE and CDMA

have been perfectly adequate. In 2006, however, high rate wireless M2M applications,

such as, remote information display, and in-vehicle camerasystems, began to be de-

ployed. While high speed wireless M2M will likely only represent a small proportion

of total M2M connections over the course of the foreseeable future, these applications

will continue to exist, increasing diversity in M2M networkdeployments.

The appropriate cell-size for an M2M network depends on the type of the application it

is used for. An M2M network with macro cells is effective in providing area coverage

for voice and low-speed data traffic, but limited in providing high data rates per unit

area. Hence, larger cells are needed for energy saving when data rate is low. If an M2M

application require high data rates, however, small-cell based approaches are more ap-

propriate since they can be very effective in accommodating high data rates with low
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energy consumption. For some hybrid applications, a hierarchical cell structure, con-

sisting of cells with different sizes and ranging from macro to micro cells, can also be

used. We refer the interested to [85] for an energy-aware hierarchical cell configuration

framework that has theoretical results as well as practicalguidelines on how wireless

network operators should manage their BSs.

When traffic demands, rather than the data rate, is the primary concern for an applica-

tion, one should prefer approaches/architectures that consider traffic demands in choos-

ing cell sizes. A multi-layer cellular architecture that automatically detects traffic de-

mands at different locations and selects the best cell size from a few alternatives has

been proposed in [84]. It was shown that the simple 2-layer architecture developed

in [84] is compatible with current cellular standards (GSM,UMTS, WiMAX), and,

can save up to 40% power compared to a traditional static cellular network. Instead of

choosing the cell size among a few alternatives, one may prefer to adapt the cell size to

traffic load. In such a case, thecell zoomingapproach [86] which adaptively adjusts the

cell size according to traffic load, user requirements and channel conditions seems to

be the best choice. Cell zooming can not only solve the problem of traffic imbalance5,

but also reduce the energy consumption in cellular networks. Instead of providing fur-

ther details about the cell zooming approach, we refer the interested reader to [86] in

which the implementation issues of cell zooming, includingtechniques, benefits, and

challenges, are discussed in detail.

b) BSs: Switch-off or Sleep: In a recent document [87], it is reported that the Radio Base

Station (RBS)6 energy consumption is the dominant part of total energy consumption

of a wireless access network. Oh et.al. agree with [87], reporting that the base stations

contribute to 60% - 80% of the celluar networks’ total energyconsumption. Thus, the

introduction of sleep modes and switching-off mechanisms in the operations of base

stations are today considered as the most promising approaches to reduce the energy

consumption of cellular access networks. Sleep modes are particularly effective at the

network periphery, where the degree of traffic aggregation is low, and where the network

is less vulnerable to possible failures, service degradation, since the number of affected

5 For a cellular network in a city, the traffic load in the daytime is relatively heavy in office areas and light in
residential areas, while the opposite things happen in the evening. For a static cell deployment, this causes some
cells to be under light load, while others are under heavy load.

6 RBS is also referred to as the base transceiver station (BTS), node B (in 3G Networks) or, simply, the base
station (BS).
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users is limited [80]. The sleep mode mechanisms proposed by[88], enable savings in

energy (for 2G and HSPA (High Speed Packet Access) systems):the dynamic scheme

switches resources ON and OFF as a function of the instantaneous change of the load

in the system, which in turn follows the users arrivals and departures. The semi-static

one, on the other hand, allows the resources to remain activefor a relatively longer

time interval, in order to minimize the number of activation/deactivation commands. It

was shown in [88] that the dynamic approach is mostly efficient when the load in the

network is high, and, the semi-static approach is as good when the traffic load is low.

Thus, semi-static one is preferred for low traffic since it requires fewer activation and

deactivation procedures. Another sleep mode based approach, which can be useful in

M2M networks, has been presented in [89]. By introducing a feature that dynamically

puts low loaded cells into sleep mode, during which BS’s radio equipment is effectively

powered down, the authors report a daily energy saving of 33%over a period of 12

hours. At this point it should be noted that, this is achievedwithout any degradation to

user satisfaction and thus network performance [89]. However, this comes with a reduc-

tion in average user data rate. Until now, we discussed the benefits of using sleep mode

in which the BS experiences a litle or no activity. However, in order to achieve signif-

icant energy savings, what is called for is a more carefully designed approach that will

allow the system to shut entire BSs and transfer the corresponding load to neighboring

cells during periods of low-utilization [13]. [90] is one ofthe most well-known studies

that deal with this problem. [90] studies the BS switching strategy using a simplified

analysis and shows simulation results for several switching-off BS ratios. However, [90]

does not analyze the dominant factors for minimizing the energy consumption based on

the BS switching, the traffic profile and the BS density. The traffic profile during day

time is higher than that during night time. Moreover, there is a difference in the traffic

profile observed on a normal weekday and on weekends. However, BSs are planned

to support the day time traffic. Therefore, infrastructures of access networks are under

utilized during the night time and the holiday period. This necessitates the use of effec-

tive dynamic BS switching strategies. A basic dynamic BS switching strategy which

considers the time varying characteristic of the traffic profile has been proposed in [91].

The first-order analysis performed in [91] reveal that the amount of energy saving is

dependent upon the traffic ratio of mean and variance and the BS density. The results

of [91] provide a guideline on how to manage the BS resources so as to obtain energy
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saving. Another dynamic BS operation approach has been proposed in [92]. Litjens

and Jorguseski [92] apply a well-structured approach for the derivation of the potential

energy savings that can be achieved by switching off UMTS/HSDPA sites in off-peak

hours, while maintaining a prespecified requirement on the average or cell edge perfor-

mance. The authors report possible energy savings of up to about 40% depending on

the network operator’s performance target and the specificsof the energy consumption

model. However, the results presented in [92] are valid onlyfor UMTS/HSDPA net-

works and thus, can not be generalized. A generalized first-order approximation of the

percentage of power saving one can expect by turning off BSs during low traffic periods

has been derived in [13]. The most important contribution of[13], however, is not the

approximation itself, but the discussion of related challenges. We refer the interested

reader to [13] for a useful discussion on challenges and potential solutions in switching

approaches, including maintaining coverage, enabling cooperation between operators,

and providing E911 service.

Recently, telecommunication operators, alongside researchers, have started paying attention

to energy issue, and begun to study green solutions. From theperspective of the operators, re-

ducing energy consumption is not only a matter of being greenand responsible, it is also very

much a cost issue. Many service providers and cellular network operators have been explor-

ing ways to increase energy efficiency in all components of access networks. The following

is a summary of recent technologies, developed by different service providers and operators:

• Ericsson: Ericsson has developed a number of energy optimization innovations [93]

that reduce the total cost of ownership, while at the same time improving the environ-

mental performance of mobile network growth worldwide. Oneof these innovations,

Base Transceiver Station (BTS) Power Savings feature, works by putting the radio re-

sources of the network that are not being used into standby mode during periods of low

traffic. It is reported that, depending on network traffic patterns, the feature can reduce

energy consumption by up to 25 percent in the radio access network. According to

the company, if all of its currently installed GSM base stations had this feature, CO2

emissions would be reduced by one million tons per year.

• Motorola: Motorola has unveiled a new design7 for its WiMAX base stations (BSs)

7 The new design was showcased at the Global Green Telecom in November 2009 in Dubai.

27



that costs less to build and operate. According to Motorola,build costs for these new

designs are 35% lower than traditional BSs and power consumption is reduced by 60%.

Moreover, Motorola estimates that maintenance and power costs for a hybrid site (a

combination of solar and power generators) over a five-year period are 157, 774 USD,

which compares favorably with the maintenance cost of 228, 098 USD for a shelter-

based WiMAX BS driven by two generators.

• Nokia Siemens Networks (NSN): NSN’s Flexi Base Station, which has been recognized

as the world’s most progressive mobile network technology at the annual GSMA Global

Mobile Awards 2009, can be deployed with WCDMA/HSPA and upgraded to LTE with

software alone. It is reported that a typical Flexi BS running WCDMA/HSPA consumes

over 70% less than previous generations, without impactingperformance. Moreover,

Flexi can work without external air conditioning, typically bringing a 30% reduction in

site energy consumption.

• Vodafone: Vodafone reports in [94] that by 2020 it will reduce its CO2 emissions by

50% against its 2006/7, primarily by improvements in energy efficiency and increased

use of renewable energy such as solar power, wind power and fuel cells.

Controlling or reducing the energy consumption in the telecommunication network equipment

and related infrastructure is another way of improving the efficiency of communications net-

works (CNs). [95] presents a collection of ideas from operators and manufacturers on methods

of reducing their operational energy use. The document focuses on telecommunication equip-

ment and infrastructure equipment (power station, air cooling, control of equipment, etc.).

Until now, we have considered the energy consumption of access networks. To verify the

effectiveness of the mentioned technologies and methods, it isimportant to accurately mea-

sure the energy efficiency of the network. Metrics need to be specified to adequately compare

different configurations and to evaluate the efficiency from various perspectives. We refer the

interested reader to [96], [97] and, [98] for such energy efficiency metrics. [96] characterizes a

network’s power consumption in Watts per unit area for givencoverage and spectral efficiency

requirements. Other metrics like Energy Consumption Ratio(ECR) and Energy Consump-

tion Gain (ECG) is discussed in [97]. A cell’s energy efficiency and area energy efficiency

measured bybit per Jouleandenergy efficiency per unit areaare investigated in [98].
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2.3.3.2 Energy Efficient Solutions for Wired Connectivity

While perhaps secondary nowadays to access networks, the energy consumption in the wired

network part of an M2M architecture is increasing in importance, especially as applications

increasingly depend on data centers reached over the Internet. Research and development ef-

forts include efficient hardware, energy efficient Ethernet [99] and, more recently, optimizing

network traffic for energy conservation. Virtualization of load through cloud computing is

clearly a very promising technology for scalable energy usein wired networks. In the rest,

we overview these different avenues of research.

a) Energy Efficient Hardware: By using rapid heat-dissipating raw materials, highly effi-

cient power supplies, intelligent cooling systems, and advanced silicon solutions, some

switch vendors (e.g., 3Com, D-Link) have gained significantequipment-level improve-

ments in energy efficiency. For example, D-Link’s line of gigabit Ethernet switches

for small and home offices can reduce power consumption by both hibernating unused

ports and adjusting signal strength based on cable length. It is claimed that the DSG-

2208 desktop switch can achieve up to 80% power savings, compared to conventional

switches by the same manufacturer. It is worth noting that power supplies and proces-

sors are also typical heavily power consuming components ofwired networks. Differ-

ent processor manufacturers employ different strategies and technologies to conserve

energy [100], [101].

b) Improving Energy Efficiency by Optimizing Network Traffic: As mentioned in the pre-

vious section, in order to improve energy efficiency, some vendors work from the bot-

tom up and use the most efficient components available for their equipment. Other

vendors, on the other hand, working from the top-down, seek to first optimize network

traffic across the network to reduce the stress on equipment. According to [102]: “In

the high-end market, the focus includes improving operating efficiency by controlling

individual hardware components, and optimizing the efficiency of network-attached de-

vices by using technologies such as virtualization”. Virtualization is a key technology

for energy-efficient operation of servers in data centers. It partitions computational re-

sources and allows the sharing of hardware. Many services often need only a small

fraction of the available computational resources of a data-center server. If such ser-

vices are virtualized and run within a virtual machine, depending on their utilization,
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many virtual machines can exist on a single physical server resulting in consolidation

of resources and significant energy efficiency [103]. These virtual machines can be

moved, copied, created, and deleted depending on management decisions. Due to the

server consolidation, less hardware investment is needed overall, further reducing the

energy wasted for cooling.

A good example of virtualization is the Cloud Computing, which allows services to

run remotely in a ubiquitous computing cloud that provides scalable and virtualized

resources. This technique allows peak loads to be moved to less populated parts of

the cloud and it can provide higher utilization of the hardware through aggregation of

a cloud’s resources. It also facilitates the identificationof the main sources of energy

consumption, and the significant trade-offs between performance, QoS and energy effi-

ciency. In fact, it is pointed out in [103] that cloud computing provides insight into the

manner in which energy savings can be achieved in large scalecomputer services that

integrate communication needs.

Gelenbe and Silvestri [104] have focused on optimizing wired network traffic in order

to improve energy efficiency, proposing and studying a dynamic approach where link

drivers and/or nodes are turned on or off in response to traffic load in the network, with

ensuing changes in the paths followed by the traffic so as to meet the QoS (Quality of

Service) needs of the flows. Optimization in the context of network routing is carried

one step further by monitoring the current flows and predicting the future flows in the

network. The authors also considered the design and implementation of the Energy

Management System Middleware (EMS), a software component with the following

tasks:

1) Observe ongoing traffic flows, monitor the status and power consumption of nodes.

2) Select a network configuration that offers sufficient QoS to ongoing and predicted

flows, with lower energy consumption.

3) Manage and sequence dynamic changes in links and nodes, and reroute traffic

accordingly.

The results of experiments ran on a network testbed [104] indicate that EMS can effec-

tively reduce the energy consumption in wired networks, while guaranteeing an accept-

able level of QoS.
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c) Energy Efficient Ethernet: For data center managers and equipment vendors looking for

greener alternatives, the IEEE 802.3az initiative offers further reducing the power con-

sumed by Ethernet equipment. IEEE 802.3az, or the Energy-Efficient Ethernet (EEE)

standard [99] offers a series of enhancements to the twisted-pair and backplane Ethernet

networking standards that allow for less power consumptionduring periods of low link

utilization. The goal of EEE is to reduce power usage by 50% ormore while remaining

fully backward compatible with already deployed equipment. Christensen et. al. claim

in [99] that the adoption of the new IEEE 802.3az EEE standardwill result in large

energy and economic savings likely exceeding $400 million per year in the US alone.

2.4 Challenges and Open Issues

Having extensively discussed the above topics, we provide our view on various challenges

and research opportunities in the area of M2M networks. As anM2M-AN is the core of the

M2M network, we first list the M2M-AN related research issues, and then, discuss the general

issues that need attention for sustainable and reliable operation of M2M networks.

2.4.1 Open Research Issues for M2M-ANs

1. Channel modelling and link quality characterisation: Due to the area of deploy-

ment, M2M-ANs may be subject to strong RF interference, and may be damaged due to

harsh physical environmental conditions such as corrosion, cold, heat, and high humid-

ity caused by weather, or the area of operation (factory, or home, etc.), not to mention

the malicious acts of human beings. The above-mentioned conditions may cause the

network topology and wireless connectivity to change when certain intelligent devices

fail or the measurements are not suitable for drawing good conclusions. Hence, effi-

cient wireless channel modelling and link quality characterisation methods need to be

developed so that the system designers can employ to predictthe performance of the

network.

2. Energy Efficiency: The availability of energy harvesting capabilities changefrom ap-

plication to application. Today, there exists numerous M2Mapplications that operate

on limited battery power, requiring communication protocols, and resource allocation
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schemes, developed for high energy efficiency. Energy efficient protocols such as rout-

ing solutions are needed where M2M-ANs are usually expectedto function over years

without having to change the battery. In [59], we present a comprehensive survey

on wireless unicast routing alternatives for M2M-ANs. However, as also discussed

by ETSI in [68], an M2M network should support all of the following communica-

tion modes; anycast, unicast, multicast and broadcast. This way, whenever possible, a

global broadcast can be replaced by a multicast or anycast inorder to minimize the load

on the communication network. Hence, routing techniques needs to be developed for

above-mentioned communication modes, by taking into account the long sleep cycles,

changing radio environment, change of topology, and the limited power.

3. QoS (Quality of Service): There exist various M2M pplications that require different

levels of QoS. Therefore, as also stated by [69], in order to enable efficient prioritisation

of certain M2M applications that have some critical requirements to meet, such as those

belonging to protection and control functions, algorithmsthat will help M2M-ANs to

support different levels of quality of service (QoS) are required. For example, in intru-

sion detection based M2M applications, an alarm notification for the system requires

immediate attention, and thus a realtime communication, where applications based on

periodic reporting activities require reliable communications.

4. Dynamic Environment: As the topology of the intelligent devices (mostly sensor

nodes) in an M2M-AN changes due to several reasons such as sleep mode schedule,

and mobility or node failure, there is a need for dynamic protocols that can adapt to

changing network topologies to make sure that the network functions as normal.

5. Data Aggregation: With the large scale development of M2M networks, and thus

M2M-ANs, there are a large amount of information collected over time. Hence, re-

searchers need to focus on methods of combining or aggregating, fusing or inferring

data intelligently, so that a conclusion, on what action is needed or how to configure the

parameters in the system for optimum functionality, can be drawn.

2.4.2 Open Research Issues for M2M Networks in General

1. Standardization: As shown in this thesis, M2M communications require an integra-

tion and convergence among various different communications systems. Therefore,
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apart from individually designed protocols, standardization of a unified M2M archi-

tecture is highly demanded to promote rapid development andapplication of M2M

networks. Recently, there has been a new and exciting standardization effort in ETSI.

ETSI has constituted a technical committee, ETSI M2M committee, with the purpose

to develop an end-to- end architecture for M2M communications. Moreover, according

to [105], mobile operators around the world have been constructing platforms to inte-

grate M2M services with infrastructure networks and launching M2M projects (e.g.,

GSM Association’s Embedded Mobile Initiative) to accelerate the adoption of wireless

interconnectivity of different M2M components.

2. Protocol Re-design:The current leading transmission protocols of the Internetused

by the communication networks, TCP/IP, are reported to be inefficient [105] for M2M

networks’ traffic, due to the redundant and energy-wasting overhead compared to the

low data volume needing to be transmitted. Hence, in near future, the researchers need

to seek the ways of designing new transmission protocols that reflect the special needs

of M2M communication.

3. Security: Last but not least, security is an essential requirement that needs to be met

in all sub-layers of an M2M network, in order to ensure that the whole system func-

tions smoothly and safe from any sorts of attack and intrusion. As, due to their need

for dispersed and decentralized methods, conventional security models are not directly

applicable to the highly distributed and low-cost devices used in M2M networks, new

security models and methods that can protect privacy/security in every layer of an M2M

network, needs to be explored.
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CHAPTER 3

ENERGY EFFICIENT WIRELESS UNICAST ROUTING

ALTERNATIVES FOR MACHINE-TO-MACHINE NETWORKS

Energy efficiency is one of the important design objectives for machine-to-machine net-

work architectures that often contain multi-hop wireless subnetworks. Constructing energy-

efficient routes for sending data through such networks is important not only for the longevity

of the nodes which typically depend on battery energy, but also for achieving an environ-

mentally friendly system design overall, which will be imperative as M2M networks scale in

number of nodes as projected. The objective of this chapter is to provide a comprehensive

look into energy-efficient routing alternatives to provide a reference for system designers as

well as researchers.

By considering the fact that energy efficient routing is required in newly evolving M2M net-

works and, the fact that ad hoc and sensor networks are usually components of M2M net-

works, most of the energy-efficient routing algorithms surveyed in this thesis will be those

that appeared within the literature on ad-hoc and sensor networks, primarily in the last decade.

This chapter provides a detailed account of energy-efficient unicast routing alternatives, with

a particular focus on those based on additive link cost. One of the main contributions of this

chapter and the thesis is a detailed and comprehensive classification summarized in Table 3.2.

We believe that Table 3.2 could be useful as a reference to thereader who needs to quickly

look up an algorithm with specific properties, rather than read the complete chapter. Note

that, the work in this chapter is also available in [59].
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3.1 Energy Efficient Routing

In wireless ad hoc and sensor networks, the problem of routing has received more attention

than any other design and operation problem. Many wireless routing algorithms have been

proposed in the last couple of decades. Flooding and broadcast routing is often necessary

during the operation of the wireless network, such as to discover node failure and broadcast

some information. Multicast routing, on the other hand, is very common in wireless networks,

and it is used to communicate in a one-to-group fashion. Moreover, it involves wireless

multicast advantage (WMA) [106] which means that if a node transmits a packet by spending

high power, it is possible that more than one node receive itstransmission. Finally, unicast

is always in an end-to-end fashion and it is the most common kind of routing in networks.

The case of unicast routing, although a special case of multicasting, involves no wireless

advantage, however, choosing a good path from source to destination requires knowledge of

node and link states. This is especially the case when battery lifetime maximization is an

objective. Given a selected route, nodes on this route between the source and destination who

act as routers deplete their energies with each packet they forward. Of course, there are other

energy-consuming tasks, as discussed in detail by Ephremides in [107], in particular, often

idle listening, or actively receiving data require significant current consumption, depending

on the type of receiver. For example, the reference values oftransmission power,Pt, receiving

power,Pr , and power consumed in listening,Pl , for a Lucent silver wavelan PC card (802.11)

are 1.3 W, O.9 W, and 0.74 W respectively [108]. FreeScale MC 13192 SARD (802.15),

on the other hand, uses;Pt = 0.1404W, Pr = 0.1404W and Pl = 0.0018W [109]. In the

transmitting mode of operation, an ad hoc battery operated node consumes energy in two

ways [107]:

1. In the front-end amplifier that supplies the power for the actual RF transmission (the

radiated energy as well as the internal heat losses in the antenna and the amplifier itself)

2. In the node processor that implements all the signal generation, formatting, encoding,

modulation, memory access, and other signal processing functions.

The first one is known as the transmission energy and the second one is the processing en-

ergy. In receiving mode, the consumed energy is only of the processing type and includes

the low-noise amplifier that boosts the output of the receiving antenna to levels suitable for
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demodulation, decoding, buffering, etc. Finally, in the listening mode, a node typicallylistens

but is not actively receiving. Hence, the energy consumed isagain of the processing type but

also possibly of some transmission type. The reason for thisis a possible network protocol

requiring a listening device to emit periodic beacon signals. As distance over which point-

to-point transmission is made increases, transmission energy is bounded to be the dominant

component of energy consumption. It is for this reason that many studies related to multihop

wireless networks (e.g. [110]) have focused on transmit energy.

When the above-mentioned ad hoc node is capable of sensing aswell (sensor nodes used

in M2M-ANs), there is one more way of energy consumption; namely, the information col-

lection (or sensing) based energy consumption. Although, this type of energy consumption

seems to be important in designing energy efficient routing mechanisms, most of the algo-

rithms mentioned in scope of this chapter do not consider this type of energy consumption.

We refer the interested reader to DAPR protocol [111] (in Section 3.3.3.3) which is the only

algorithm using this type of energy consumption in its link cost definition.

Gupta and Hirdesh argue in [112] that network technologies used in M2M networks should

ensure availability, reliability and cost effectiveness, and that the mesh network backbones

that can be used in M2M networks should be structured for optimized communication and

energy-efficiency. There can be different definitions of energy efficiency for a routing algo-

rithm [113]. For example, consider a sequence of packets that need to be sent from one source

to a given sink. Minimizing the energy consumed for each packet transmission is an obvious

solution that optimizes locally the energy consumption. In[114] some other objectives such

as minimizing the variance in each node’s battery power level, or the maximum node cost

are discussed. However, focusing on individual nodes in thesystem instead of the system as

a whole might quickly lead the system to a state the network isdisconnected, although most

nodes have high residual power. Shah and Rabaey suggest that[17] a more meaningful metric

for routing protocol performance is network survivability. Network survivability depends on

how well a routing protocol (or algorithm) is designed to usethe energy of each node in the

network efficiently and thus elongate the time that the network stays connected. This is also

known as the network lifetime and it is defined as the time until network dies or becomes par-

titioned. Yet, it may not be so straightforward to define wireless network lifetime, as argued

in [107]: Is it when the first node runs out of energy? Is it whena fraction of them does? Or

is it when all nodes do? In networks where the nodes need to work collaboratively (such as
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ad-hoc and sensor networks) after death of the first node, other nodes are loaded more heavily

and deaths occur much faster [115], [116], [117]. Therefore, maximizing the time until the

death of the first node seems to be key. Indeed, many studies inthe scope of this chapter

define network lifetime as the time until the first node runs out of battery power.

3.2 Link Cost Based Shortest Path Routing

In Shortest Path Routing (SPR), the goal is to send packets over a network in such a way

that the path cost from the source to the destination is minimized. Modeling a network as

a directed graphG, one assigns to each directed edge (ni ,n j) in G a real numberdi, j which

represents the cost of using a particular edge in the network. In the case of an undirected

graph, one can setdi, j = d j,i . If an edge does not exist between nodei and nodej, di, j = ∞.

Let (ni ,...,nl) denote a path. Accordingly, its length is defined as

d1,2 + d2,3 + ... + dl−1,l (3.1)

The goal of shortest path routing applied onG is to find the minimum length path fromni to

nl . The network graph mentioned above is an accurate depictionof the network topology if

the nodes are interconnected with dedicated wired lines. However, it should be noted that in

the wireless case, the notion of a link between the nodes, sayni andn j depends on the transmit

power, channel variations, as well as other factors, and canbe dynamic. Hence, it requires a

separate treatment [107]:

In its simplest form, considering interference as noise, and taking a constant channel code

rate, the criterion for successful reception can be writtenas follows:

SINR> γ (3.2)

whereγ is a threshold that depends on the detector structure, modulation/demodulation, and

coding/decoding used andSINRis the received Signal-to-Interference-plus-Noise Ratioat the

receiver. SINRdepends on the channel characteristics, transmit and receive antennas, RF

transmission power (P) and transmission rate (R), and, interference caused by other users.P

andRdetermine the amount of signal energy packed in each symbol and because of this, they
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are highly adjustable. Especially,P influences the amount of energy consumed on a link and

determines which links are feasible and hence which paths can be used for routing to the final

destination. Hence, in wireless networks, whether a link exists or not depends on the chosen

values ofP andR.

Shortest path routing requires using a link metric which defines the properties of an arbitrary

link. In a wireless network, different link quality metrics can be defined: link bit error rate,

delay, transmission energy, and residual energy. In principle, the metric of choice should map

to the usual global objectives such as the total delay, throughput, blocking probability, and

total energy consumption. In this thesis, we focus on the studies that define metrics in order

that the resulting routing algorithm choosing the optimal paths will achieve a well defined

global objective. We will revisit the topic of link quality metrics in Section 7.

Once link costs that map to global objectives are determined, the routing algorithm makes

a straightforward implementation of SPR. At the basis of most methods described in this

chapter lie the two well-known methods for calculating shortest paths, Bellman-Ford and

Dijkstra algorithms, and it may be worthwhile to briefly describe these two algorithms before

proceeding.

The Bellman-Ford algorithm computes shortest paths from each node to a given destination

node by iterating on the number of hops. Let the destination node be 1. LetDi denote the

length of the shortest path from nodei (i ∈ [1, ..., n]) to node 1, and letDh
i denote the shortest

path from nodei to node 1 that contains at mosth ≥ 0 arcs. The algorithm for computingDi

is given by the following steps [18] :

1. Initial conditions. SetDh
1 = 0,∀h ∈ [0, 1, ...], D0

i = ∞, ∀i ∈ [2, ..., n] and seth = 0.

2. Evaluate

Dh+1
i = minj [di, j ,D

h
j ],∀i , 1, (3.3)

and leth = h+ 1.

3. If Dh
i = Dh−1

i ∀i, stop. LetDi = Dh
i ∀i. Otherwise go to step 2.

The above computation assumed synchronous operation. In a distributed environment, a dis-

tance vector approach is taken to compute shortest paths, and some additional mechanisms
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are included to cope with erroneous or outdated information, or link failures.The centralized

Bellman-Ford algorithm terminates in at mostn steps and has a worst-case complexity of

O(n3). To determine all shortest paths in a network, it must be runn times, wheren represents

the number of destination nodes.

When the link costs (the arc lengthsdi, j ) are nonnegative, an alternative to this method is Dijk-

stra’s algorithm. Dijkstra’s algorithm iterates on path length. To illustrate, let the destination

node be 1, and letDi, i ∈ [1, ..., n], denote the shortest path length of theith closest node to

node 1. Finally, Let P be a set ofpermanently labelednodes for each of which the shortest

path distance to node 1 has been determined. Then, apply the following steps [18]:

1. Initialization. SetP = 1, D1 = 0 andDi = d j,1, for j , 1.

2. Find the next closest node. Determinei < P such that

Di = minj<P[D j]. (3.4)

Add nodei to the set of permanently labeled nodes, i.e.,P = P ∪ i. If P contains all

nodes, then stop; the algorithm is complete.

3. Updating of labels. For allj < P set

D j = minj∈P[D j , d j,i + Di ] (3.5)

Go to step 2.

Dijkstra’s algorithm terminates aftern − 1 iterations and has a smaller worst-case complex-

ity, O(n2), than that of the Bellman-Ford algorithm. We refer the interested reader to [118]

and [18] for more detailed information about distributed implementation of these basic meth-

ods.

3.3 Shortest Path Based Energy Efficient Routing Algorithms

3.3.1 Energy Aware Routing Algorithms

Energy aware routing algorithms, in general, have the common objective of maximizing net-

work lifetime by considering the residual battery energy when performing routing [114],
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[119], [120], [121], [122], [123], [124], [125], [126]. These seek to perform well with re-

spect to the objective of finding paths that consume minimum energy as well as the objective

of finding paths which do not rely on nodes that are significantly depleted, without com-

promising either of these two conflicting objectives. In this section, we present a detailed

overview of these algorithms.

3.3.1.1 MMBCR and CMMBCR Algorithms

Toh et al. [120], [127] proposed the online algorithms MMBCR(min-max battery cost rout-

ing) and CMMBCR (conditional MMBCR) to select energy-efficient source-to-destination

paths. The MMBCR algorithm uses a min-max route selection technique. It chooses a path P

for which the minimum of the residual energies of the nodes onP is maximum. Since MM-

BCR tries to avoid routes with nodes having the least batteryenergy among all nodes in all

possible routes, the battery energy of each node is depletedmore evenly as compared to pre-

vious schemes like MTPR (Minimum Total Transmission Power Routing) [128], MTE (Min-

imum Total Energy) routing [129], [127] and MBCR (Minimum Battery Cost Routing) [130],

[127]. However, since MMBCR does not try to minimize the total transmission energy along

a path, it may also lead to a high overall consumption.

Recognizing that to maximize network lifetime one needs to achieve some balance between

the energy consumed by a route and the minimum residual energy at the nodes along the

chosen route, a conditional variant of the MMBCR algorithm was also proposed in [120]. In

this scheme (called CMMBCR), we look for a minimum energy source-to-destination path in

which no node has residual energy below a threshold. Hence, the algorithm uses minimum-

energy routing when there is at least one candidate path, where the remaining battery power

(energy) in all the constituent nodes is above the battery protection thresholdγ. Once one

or more of nodes on all possible paths falls belowγ, CMMBCR switches to MMBCR which

equitably distributes the battery consumption among the different nodes. Thus, it protects

against the early exhaustion of a few nodes. These algorithms are among the earliest solutions

for extending the life span of ad hoc networks. For more detail about them, we refer the

interested reader to the survey in [131].
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3.3.1.2 Max-minzPmin Algorithm

In [121], the authors propose an online message routing algorithm, max-minzPmin , for the

network lifetime maximization problem. Here,Pmin is the energy required by the minimum

energy path, andz is a parameter. The algorithm selects a path that uses energyat most

z.Pmin, while maximizing the minimum residual energy fraction. The residual energy fraction

(energy remaining after route/initial energy) of nodei after sending a message toj is defined

asRi, j = (Ei(k) − wi, j)/Ei whereEi(k) represents the current residual energy of nodei andEi

is the initial energy level of nodei. The authors use a general metric setting forwi, j where the

energy consumption for a transmission depends on the distance between the sending and the

receiving nodes:

wi, j = k.dαi, j (3.6)

wherek andα are constants for the specific wireless system (usually 2≤ α ≤ 4). The

algorithm works as follows:

1. Find the minimum transmission energy path (the total transmission energy on this path

is Pmin) by usingwi, j metric in Dijkstra’s algorithm.

2. Find the minimumRi, j on that path and let it beRmin.

3. Find all edges whoseRi, j ≤ Rmin and remove them from the graph.

4. Find the minimum transmission energy path on the new graph.

5. If the energy consumption> z.Pmin or no path is found then the previous shortest path

is the solution, stop. Otherwise, go to step 2.

The authors in [121] provide a competitive analysis of theiralgorithm by comparing its per-

formance to the optimal solution obtained by linear programming. However, it should be

noted that in the analysis, it is assumed that the messages are generated cyclically, or in each

interval of time the set of messages are the same. As the competitive bound depends on the

amount of residual energy left over in the network as well as the periodicity of the messages,

it is not clear how good the bound is. Despite the mentioned drawbacks, this approach has

inspired many studies. The algorithm has the disadvantage of being centralized and requiring
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knowledge of the power level of each node in the system. A the distributed version of it al-

gorithm is proposed in [114]. The distributed version of max-min zPmin uses the distributed

Bellman-Ford algorithm and requiresn message broadcasts for each node when there is no

clock synchronization. When all clocks are synchronized, only one message broadcast is

needed.

3.3.1.3 Zone Based Routing Algorithm

In [122], Zone based routing was proposed. Zone based routing can be defined as the modified

and scalable version of max-minzPmin algorithm. It uses a hierarchical approach in which the

area covered by the sensor network is partitioned into smallgroups of sensors. Each group

of sensors in geographic proximity are clustered together as a zone. Each zone is treated as

an entity. Zone based routing algorithm which was improved and discussed in more detail

in [114] consists of three small algorithms:

• An algorithm for estimating the power level of each zone

• An algorithm for computing the best path for the message within each zone (modified

max-minzPmin)

• An algorithm for computing a path for each message across zones

The algorithm mainly works as follows: The sensor nodes in a zone autonomously direct

routing inside the zone. While doing this, they also participate in estimating the zone power

level. Using this zone power level estimate (Pest) each message is routed across the zones.

A global controller (the node with the highest power) manages the zones. If the network

can be divided into a smaller number of zones, the scale for the global routing algorithm is

reduced. The global information needed for sending each message across is summarized by

Pest of each zone. A graph, called zone graph, is used to representconnected neighboring

zone vertices. A link in this graph means that the current zone can go to the next neighboring

zone in that direction. Each zone vertex has a unit power level. Each zone direction vertex is

labeled by itsPest computed by a modified Bellman-Ford algorithm.
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3.3.1.4 Energy Aware Routing Algorithm for Low-Energy Networks

Energy Aware Routing Algorithm proposed in [17] (called EAR-Low in this thesis) tries to

ensure the survivability of low-energy networks. EAR-Low scheme uses sub-optimal paths

occasionally to provide substantial gains. EAR-Low is a reactive protocol (such as the Ad-hoc

On-demand Distance Vector Routing (AODV) [132] and directed diffusion [133].) It is differ-

ent from previous reactive protocols in that instead of finding a single optimal path and using

it for communication, it keeps a set of good paths and then, chooses one of them based on

a probabilistic fashion. Choosing among multiple sub-optimal paths ensures that the optimal

path does not get energy drained and the network degrades gracefully as a whole rather than

getting partitioned. In order to achieve this goal, multiple paths are found between source and

destinations. Then, depending on the energy metric, each path is assigned a probability of be-

ing chosen. When data needs to be sent from a source to a destination, one of the previously

found paths is randomly chosen depending on the probabilities. By having paths that differ

in time, the energy of any single path will not drain quickly.Longer network lifetime (longer

network connectivity) is achieved as energy is dissipated more equally among all nodes.

The proposed Energy Aware Routing (EAR-Low) protocol consists of three phases [17]: The

first phase is thesetup phasein which localized flooding is used to find all routes between

a source-destination pair and their costs. In second phase,data communication phase, the

data is sent from sources to destinations by using the paths which are chosen probabilistically

according to the energy costs (metrics). The last phase is the route maintenance phasein

which localized flooding is performed by the destination node to keep the paths alive. The

energy metric that is used to evaluate routes is an energy aware metric that has been proposed

by Chang and Tassiulas [134]:

Ci j = eαi j R
β

i (3.7)

whereCi j is the cost metric between nodesi and j and, ei j represents the energy used to

transmit and receive on link (i , j). Here,Ri is the residual energy at nodei normalized to the

initial energy of the node andα andβ are the weighting factors. These factors can be chosen

appropriately to favor either the minimum energy paths or the paths with nodes having the

most energy.
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Compared to directed diffusion [133], this protocol provides an overall improvementof 40

percent in network lifetime. Moreover, difference in energy usage among nodes is lesser as

compared to diffusion and, this results in 21.5 percent less average energy consumption. How-

ever, the approach necessitates gathering location information and setting up the addressing

mechanism. Hence, comparing to directed diffusion, the route setup becomes complicated.

3.3.1.5 EAR and DEAR Protocols

The authors in [117] proposed EAR (Energy Aware Routing) andDEAR (Device and Energy

Aware Routing) protocols for a heterogeneous wireless ad hoc network where there exist

different classes of nodes. EAR is the implementation of the Distributed Bellman-Ford (DBF)

routing protocol [18] which uses the following metric as thelink cost function:

C j =
∑

fi(Ri) (3.8)

C j is the cost of sending packetj from noden1 to nodenk via intermediate nodesn2, ..., nk−1

and fi(Ri) denotes the cost or weight of nodei. Since fi represents a node’s reluctance to

forward packets, it was chosen as:

fi(xi) =
1
Ri

(3.9)

whereRi represents the residual energy of nodei. By using the reciprocal of residual energy as

link cost, as the energy of a node decreases, the cost of usingthat node increases. Hence, that

node is not chosen as a forwarding node and its energy is not depleted. The benefit of EAR

protocol comes from the dynamic load balancing among different nodes. The authors in [117]

compared the performance of EAR protocol with a few conventional protocols (AODV, DBF,

DSR [135], WRP [136]) using the system lifetime as the performance measure. Simulation

results have shown that the system lifetime was the highest when EAR was used and the

percentage increase in system lifetime with respect to DBF also increased with an increase in

the number of nodes. Moreover, the system lifetime increased as the edge density increased

since the load was balanced over a larger number of routes. However, the authors mention

that the savings are valid only for a static ad hoc network. When nodes move independently

with respect to one another, it is not necessary that there will be multiple paths from a source

to a destination at all times. Hence, the savings obtained byusing EAR is small (or even
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zero) due to the lack of multiple routes. By considering boththe advantages and drawbacks

of EAR protocol, the authors in [117] proposed DEAR protocolfor such a heterogeneous

ad hoc network where there exist two different classes of nodes; battery-powered nodes and

externally powered nodes.

DEAR protocol is less dependent on the availability of the multiple paths; rather, it makes use

of device awareness to enhance the routing. With both energyand device awareness, the sys-

tem lifetime is further increased by taking advantage of theextra capability and resources of

externally powered nodes while at the same time balancing traffic among the battery-powered

nodes. DEAR actively redirects the packets to the (externally) powered nodes for power-

saving operations. The device-aware redirect scheme is designed as follows:

Each node maintains a routing table and an additional redirect table. Unlike conventional

routing tables, the routing table includes an additional field named as the device type (binary

field in which 0 indicates battery powered and 1 indicates externally powered). The redirect

table consists of the destination address and the address ofthe node to be redirected. We refer

the interested reader to [117] for more information about the formation of these tables and

the algorithms used to update the routing table and the redirect table. Whenever a routing

table update is received, a node updates its routing table byusing the update algorithm. Af-

ter updating its routing table, the node browses through itsrouting table and determines the

minimum cost to reach any externally powered device. Once a battery powered node receives

a packet to be forwarded, it extracts the destination address from the header and looks at the

corresponding entry in the redirect table. According to theredirect table entry, the node either

forwards the packet to the next hop or redirects it to a particular node. Whenever an externally

powered node receives a packet, it checks if the destinationof the packet is one of its neigh-

bors. If so, it unicasts the packet to that particular destination. If not, it boosts its transmit

power to cover the entire network and then it unicasts the packet to its destination.

Reportedly, [117] the DEAR protocol achieves better systemlifetime as compared to other

considered energy efficient routing solutions from the literature, as well as EAR.Of course,

this performance superiority increases with increasing number of powered nodes that this

protocol exploits. Finally, as expected, it was shown that when these powered devices cover

a larger area, DEAR can reduce the number of hops per route andthe percentage increase in

system lifetime compared to EAR increases.
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3.3.1.6 EERP protocol

In [137], the authors proposed an Energy-Efficient Routing Protocol (EERP) to maximize the

lifetime in sensor networks. The proposed protocol is similar to directed diffusion in certain

ways. Both the Directed diffusion and EERP are sink-initiated and reactive routing proto-

cols. Multiple paths are maintained from source and destination (sink). However, Directed

diffusion sends data along all the paths at regular intervals, while EERP uses only one path at

all times; the path that expends minimum energy at all intermediate nodes. The main aim of

EERP is to find the route (path) with lowest energy from the source to the sink depending on

the energy metric and data sent on that path.

The protocol has three phases [137]: Interest Propagation Phase in which localized flooding

occurs to find all the routes from source to destination and their energy costs, Data Communi-

cation Phase in which the paths from source to destination are chosen according to the energy

costs, and, Route Maintenance Phase in which localized flooding is performed intermittantly

from destination to source to keep all the paths alive. EERP protocol is similar to the one

proposed in [17] in that both protocols have the three phasesmentioned above. However,

these two protocols differ in Data Communication Phase. In Data Communication Phaseof

the protocol described in [17]: “The paths are chosen probabilistically according to the en-

ergy costs and each of the intermediate nodes forwards the data packet to a randomly chosen

neighbor in its forwarding table, with the probability of the neighbor being chosen equal to the

probability in the forwarding table”. However, EERP does not consider any probability as-

signment for choosing neighbors. It uses merely the idea of shortest path (cost) routing. The

data communication phase of EERP is realized by modifying the Bellman-Ford Algorithm

to compute the least energy path from the source to the sink. The modified algorithm uses

the link cost metric which was defined in eq(3.7) and keeps a list of tentative shortest paths,

which are then iteratively refined. The algorithm operates as follows: Initially, all vertices (on

the network graph) are unmarked and the path costs to each node are either the weights on

the edges (Ci j in eq(3.7)) or∞. The algorithm then marks the node that is head of the path

from the source node whose cost is minimal among those paths whose heads are unmarked.

The corresponding tentative path is declared final. Then, the algorithm updates the other path

costs by computing the minimum between the previous path costs and the sum of the (final)

path cost to the newly marked node plus the costs on the edges from that vertex [137]. The
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procedure mentioned above continues until all vertices aremarked.

Simulation results reportedly show that EERP consistentlyperforms well with respect to

energy-based metrics, e.g. energy consumption and networklifetime and hence increases

the throughput. EERP protocol reduces the energy consumption per node as compared to Di-

rected Diffusion Protocol (DDP) and provides an increase of 11.4 percent in network lifetime.

3.3.1.7 Flow Augmentation Algorithm

The flow augmentation (FA) algorithm [138] is a minimum cost path routing algorithm which

uses link costs that reflect both the communication energy consumption rates and the residual

energy levels at the two end nodes. The algorithm has received considerable attention as it

can achieve a lifetime close to the optimal network lifetimeobtained by solving the linear

programming problem.

FA algorithm is mainly an extension to what has been presented in [134]. The main differ-

ence between two algorithms is that in [138], the problem is extended to include the energy

consumption at the receivers during reception. Moreover, the problem is formulated for fixed

information-generation rates as well as for some arbitraryinformation-generation process. In

fixed information-generation case, the amount of information to be generated within a certain

time interval is known a priori. The algorithm aims to find theflow that maximizes the system

lifetime under the flow-conservation condition1. On the contrary, in arbitrary information-

generation case, the amount of total information generatedin some time interval is not known

a priori but FA algorithm makes routing decisions on the fly asnew information is generated.

Chang and Tassiulas [138] observe that the flow augmenting path should avoid nodes with

small residual energy since the main aim is to maximize the minimum lifetime over all nodes.

By taking this into account, the FA algorithm uses a new link cost metric which combines the

above mentioned parameters in one:

Ci j = (et
i j )

x1E−x2
i Ex3

i + (er
i j )

x1E−x2
j Ex3

j (3.10)

where
1 Flow-conservation condition: At nodei for each commodityc, the sum of information-generation rate and

the total incoming flow must equal the total outgoing flow
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et
i j = eT + ǫampd

4
i j and eri j = eR (3.11)

whereeT , eR, ǫamp anddi j are the energy consumed in the transceiver circuitry at the trans-

mitter and the receiver, respectively, the energy consumedby the output amlifier, and, the

distance between nodei and nodej. x1, x2, and,x3 in eq. (3.10) are the weighting factors for

each item and,Ei , E j, and,Ei , E j represent the initial and the residual energy levels of nodes

i andj respectively. The transmission energy consumed at nodei to transmit a data unit to its

neighboring node is denoted byet
i j whereas the energy consumed by the receiver is denoted

by er
i j .

In fixed information-generation case, if there is enough residual energy for a packet, the path

cost in FA algorithm is computed by the summation of the link costs ,
∑

Ci j ,on the path. After

running the Bellman-Ford algorithm in order to determine the shortest cost paths, if any of the

commodities cannot find a path to its destination, then, the FA algorithm stops. Otherwise,

the algorithm augmentsλQ(c)2 on each shortest cost path of its commodity and update the

residual energy accordingly. In arbitrary information-generation case, on the other hand,

instead ofλQ(c) of flow, all packets generated in between the routing information updates are

assigned the available shortest cost path.

FA algorithm provides significant improvement over others such MTE, CMMBCR [120] and

Max-min zPmin [121] in terms of maximizing the system lifetime, (or the amount of infor-

mation transfer between the source and destination nodes) under limited energy resources.

Simulation results are claimed to show that, in the fixed information-generation case, the

average gain in the system lifetime obtained by FA algorithmcan be about 50-78 percent

compared to MTE, whereas in the arbitrary information-generation case the lifetime obtained

by FA algorithm can be more than three times longer than that of MTE. Simulation results

with both fixed and arbitrary information-generation process models also indicate that the

FA algorithm can achieve network lifetime that is very closeto the optimal network lifetime

obtained by solving the linear programming problem.

2 λ is the augmentation step size which is equivalent to the amount of information routed between routing
information updates and,Q(c) is the information generation rate for commodityc
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3.3.1.8 CMAX Algorithm

The network lifetime competitive ratio results presented in [121] motivated the study reported

in [123]. The algorithm proposed in [123], CMAX, is known as avery competitive on-

line algorithm which then inspired many other studies. The main objective of CMAX is

maximizing the total number of messages that can be successfully sent over the network

(network capacity) without any information regarding future message arrivals or message

generation rates. CMAX uses a combined cost metric (the energy consumed and the residual

energy). Hence, it needs knowledge of residual battery energy at each node. Moreover, the

algorithm uses only one shortest path computation. It worksas follows:

1. Consider routing message k on the networkG=(N,A). Eliminate all links(i,j) ∈ A for

which Ei(k) < ei j and form a reduced network.

2. Associate weightswi j with each link(i,j) in the reduced graph.

3. Find the shortest path fromsk to dk in the reduced graph with link weightswi j .

4. Letγk be the length of the shortest path found in Step 3 (γk = ∞ if no path was found).

If γk ≤ σ, route the message along the shortest path, otherwise reject it.

The authors use the following metric forwi j :

wi j = ei j (λ
αi (k) − 1) (3.12)

where

αi(k) = 1−
Ei(k)

Ei
(3.13)

Here,λ andγ are two constants chosen appropriately,αi(k) is the fraction of nodei’s energy

that has been used at the time message k arrives andei j is equivalent to the metric defined

in eq. (3.6). Unlike [134] and [121] which aim to maximize thenetwork lifetime, CMAX

algorithm was designed to maximize the network capacity. Despite the choice of different

objective, simulation results show that the CMAX algorithmoutperforms other algorithms

proposed before with respect to optimizing both lifetime and capaticy. Certainly, the most

attractive part of the study is the part in which the authors show that the algorithm achieves a

logarithmic competitive ratio. In order to obtain the competitive ratio result, the authors per-

mit admission control (by using step 4 of the algorithm) so that the algorithm can occasionally
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reject the messages that will overuse the network resources. However, it was shown in [123]

that even if the CMAX algorithm is run without the admission control option, its performance

is excellent. Distributed version of CMAX was also proposedin [123] and simulation results

has shown that by an appropriate choice of the broadcast distance and broadcast frequency,

D-CMAX can achieve performance close to CMAX.

3.3.1.9 OML Algorithm

Park and Sahni improved the idea used in [123] and they proposed OML (Online Maximum

Lifetime) algorithm [119]. OML is an online heuristic whosemain objective is to maximize

the network lifetime. Although both algorithms use exponential metrics as well as other

similar ideas, OML differs from CMAX in many ways. First, OML performs two shortest

path computations to route each message (where CMAX uses only one). Secondly, OML

performs two pruning operations. Third, OML algorithm usesa weighting function which

assigns a high weight to edges whose use on a routing path cause a node’s residual energy to

become low. More specifically, OML works as follows:

1. Consider routing message k on the networkG=(N,A). Eliminate all links(i,j) ∈ A for

which Ei(k) < ei j and form a reduced network (G’=(N’,A’)).

2. Find the minimum energy pathP′i from sk to dk in G’. If there is no such pathP′i , the

routing request fails, stop.

3. Compute the minimum residual energy,minRE, for nodes other thandk on P′i .

4. Eliminate all links(i,j) ∈ A’ for which Ei(k)− ei j < minREand form a reduced network

(G"=(N",A")).

5. Compute the weightswi j with each link(i,j) in G".

6. Find the shortest pathP′i from sk to dk in G” with link weightswi j .

7. Route the message along the shortest path, otherwise reject it.

The authors use the following metric forwi j :

wi j = (ei j + ρi j )(λ
αi (k) − 1) (3.14)
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where

αi(k) =
minRE
Ei(k)

(3.15)

and

ρi j =


0 Ei (k)−ei j>minRE
c otherwise

 (3.16)

Here,λ andc are two constants chosen appropriately,ei j is equivalent to the metric defined in

eq. (3.6).Ei(k) is the current energy at nodei just before the route and,αi(k) is the fraction

of node i’s initial energy. As it can be seen from the equation above, OML and CMAX

algorithms have (λαi (k) − 1) in common. Although, both algorithms have (λαi (k) − 1) term

in the edge weighting function, the two algorithms use differentαi(k) functions. In the case

of CMAX, αi(k) (3.13) function discourages the use as relays of nodes thathave depleted a

large fraction of their initial energy. However, these nodes might still have a large amount of

energy remaining. OML algorithm prevents such a scenario bydiscouraging the use as relays

of nodes whose current energy is low. The authors perform various analyses by changing

transmission radius and node density and, simulation results show that OML outperforms

CMAX with respect to network lifetime, and its performance is less sensitive to the selection

of heuristic parameters. However, it should be noted that although OML performs better

than CMAX, OML has few drawbacks. The main drawback is that the network lifetime

competitive ratio results presented in [123] does not hold for OML. Another drawback is

the extra complexity added by comparisons and the second shortest path selection. Despite

these drawbacks, one should know that OML is superior to previously published heuristics

for lifetime maximization. Distributed version of OML was also proposed in [119].

3.3.1.10 E-WME Algorithm

In [124], the authors presented a routing framework in whichthey formulated and solved the

problem of energy-aware routing with energy replenishment. In contrast to the previously

discussed studies in which the resources used were never recovered and receiving energy

was not considered, in this study, the receiving energy of each node was considered and the

resources of the network were allowed to be replenished by per-node processes. The authors

developed an energy model to characterize the performance of such network in the presence
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of energy constraints. The energy model captures heterogeneous energy sources (different

replenishment rates, battery sizes, etc.) and allows routing in an energy-opportunistic way.

By using this energy model the authors proposed E-WME (Energy-opportunistic Weighted

Minimum Energy) algorithm.

The proposed algorithm is shown to achieve a competitive ratio that is asymptotically optimal

with respect to the number of nodes in the network. E-WME algorithm leverages the work

in [123]. If no nodes with renewable energy sources exist, the E-WME algorithm reduces

to that of [123]. E-WME is easy to implement since it requireslocal short-term energy re-

plenishment information and assumes no knowledge about thestatistical information on the

packet arrivals. The authors describe E-WME algorithm for two different cases; case of con-

stant replenishment rate (constant case) in which the rate of energy replenishment of each

node is constant (in time) and the general case in which time-varying replenishment rate was

allowed in each node. The authors proposed two similar metrics for these two cases. For

the sake of simplicity, we will only mention the metric for the first case (constant case). We

refer the interested reader to [124] for information about the metric used for the second case

and more detailed information about the analysis of the algorithm. For the constant case, the

algorithm uses the following cost metric associated with each noden:

wn( j,R) =
un

γnlogµ
(µλn( j)−1)l( j)en(R( j)) (3.17)

where

λn( j) = 1−
Pn( j)′

un
(3.18)

HereR is the path from the source to the destination,un is the battery capacity of noden,

λn( j) is the fraction of the maximum storable energy used up to node n and Pn( j)′ is the

residual energy at noden when considering routing requestj. Lastly, l( j)en(R( j)) represents

the energy requirement for packetj of length l(j) andµ is an appropriately chosen constant.

The algorithm works as follows:

1. Consider routing messagej on the networkG=(N,A).

2. For an incoming routing requestj, check if the least cost routeR from sj to d j satisfies

CostR( j) =
∑

wn( j,R) ≤ ρ( j) (3.19)
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whereρ( j) is the revenue gained by forwarding thejth packet.

3. If yes, accept the request and route the packet onR(j).

4. Otherwise, reject the request.

By defining the cost metric as an exponential function in noderesidual energy, the E-WME is

capable of closely adapting to the changes in the network energy profile and provides a clear

guidline of how to balance the importance of residual energy, the transmit and receive energies

and the quality of replenishment. Simulation results showed that E-WME has better through-

put than other algorithms such as MBCR [130], CMMBCR [120] and Max-min zPmin [121].

E-WME has several advantages: It is optimal in the sense of minimizing the competitive ratio

and strikes a balance between saving communication cost anddistributing the network load.

Moreover, it can be integrated with distance-vector-like proactive and on-demand routing pro-

tocols. However, by considering the fact that many sensor nodes are battery powered and can

not be replenished, this algorithm becomes application specific. Moreover, we believe that

the performance of this algorithm should be compared with CMAX and OML which appear

to outperform MBCR, CMMBCR and Max-min zPmin algorithms.

3.3.1.11 SWP Algorithm

The authors in [125] suggested that a good energy-aware routing technique should balance

two different goals: choosing a path with maximal residual energy and choosing a path

with minimal energy consumption. Hence, they proposed a two-phased energy-aware routing

strategy that balances these conflicting objectives by transforming the routing problem into a

multi-metric widest path problem. The authors claim that the proposed Shortest Widest Path

(SWP) algorithm outperforms the best known online algorithm in literature (OML). SWP al-

gorithm uses two different metrics: The first metric was defined as the residual energy along

a path (the minimum energy level of any node in the path). The second metric was the energy

consumed along a path (the sum of the weights on the edges along the path). The residual

energy of a path is a concave metric, whereas the energy consumed along a path is an addi-

tive metric. In [125], the authors presented a polynomial time combinatorial technique which

can provide a good balance between these metrics by first maximizing the concave metric

and then minimizing the additive metric. The auhors justifyin their study why this order of
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optimization - concave first, additive second - is better than the other possible order - additive

first, concave second. The SWP algorithm consists of two different phases in which it uses

these two metrics. The algorithm works as follows:

1. Consider a network graphG=(V, E).

2. Modify G into an energy graphEG= (V, E’) as follows: Leave the vertices intact but

replace each single undirected edge inG with two directed edges such that the weight

of one directional edge will be equal to the difference between the originating node’s

energy level and the transmission cost along the edge.

3. Given a source nodes and a destination nodet, run the two-phased routing algorithm

on EG to find a suitable path betweensandt.

4. Phase I: Apply a variant of the Dijkstra’s algorithm (described in [125]) to find a path

with the maximum residual energy and let it have a residual energy of B (there could

be several paths in the network betweensandt with a residual energy of B).

5. Let E" be the set of edges whose residual energy is less thanB. Prune those edges from

EGand form a pruned graph,EG’. (Pruning operation was explained in detail in [125])

6. Phase II: Use Dijkstra’s algorithm to find the least energycost path onEG’.

7. Restore all edges back inEGand go to step 3.

The simulation results showed that the performance of the proposed technique, shortest-

widest path (SWP), is superior than that of the best known routing approach proposed in the

literature (OML heuristic proposed by Park and Sahni [119]). However, unlike the lifetime

definition used for OML, the results were obtained under the assumption that the lifetime was

the number of packets that could be transferred in the network until ssession failures occur (s

is a parameter to be set by the network manager). According tothe simulation settings used

in [125], SWP outperforms OML with respect to both network lifetime and the average resid-

ual energy in the nodes for several values of transmission radii. Moreover, SWP consistently

outperforms OML as the node density increases. The authors mention that the proposed ap-

proach can be easily combined with other QoS metrics such as delay, which can be beneficial

for resource constrained networks.
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3.3.1.12 SWCRP and SFWP Algorithms

In addition to the shortest widest path (SWP) discussed earlier, Mohanoor et al. proposed two

other online energy aware routing algorithms: SWCRP and SFWP [126]. These algorithms

too are two-phased strategies and are derivatives of the SWPalgorithm. As mentioned earlier,

SWP first maximizes the concave metric (the residual energy of a path) and then minimizes

the additive metric (energy consumed along a path). The derivatives of SWP aim to provide

a good balance between the concave and the additive metrics.The first algorithm, which

is called the Shortest Width Constrained Path or Shortest Width Constrained Residual Path

(SWCRP), finds paths with a suitably high residual energy, and then minimizes the energy

consumed along such a path. By sacrificing the high residual energy of the absolute widest

path, the algorithm uses a path with a slightly lesser (compared to maximum) residual energy

but which consumes less energy along the path. In order to do this, the edges whose widths are

below a certain lower bound are removed (temporarily) from the graph. Then, the minimum

energy path is computed on the remaining edges, and this pathis used for routing.

The second algorithm, Shortest Fixed Width Path (SFWP), is similar to the first algorithm

in the sense that it finds a minimum energy path among the pathsthat have a high residual

energy. However, unlike SWCRP, SFWP does not change the residual energy with each route

calculation. Instead of this, it fixes the width (residual energy) of the path at a certain value.

Then, it prunes the edges with residual energy which is less than the fixed value, and finds

the minimum energy path on the pruned graph. The algorithm repeats this procedure until no

path can be found for the given width, at which point the widthis decreased (by a constant

factor) and so on, until the source and destination get disconnected. In [126], the authors

compare the performance of the proposed algorithms with theon-line maximum life-time

(OML) heuristic proposed by Park and Sahni [119] and the max-min zPmin algorithm pro-

posed by Li et al. [121]. Previously, we had mentioned that OML was the best known routing

approach proposed in the literature. The simulation results show that using the widest path

approach usually improves the network lifetime and the widest path (SWP) and its derivative

algorithms (SWCRP and SFWP) are able to send more packets at fewer energy cost. Because

of this, there is more residual energy available for the nodes compared to other algorithms.

Hence, the performance of the proposed algorithms is superior to both the max-minzPmin

algorithm and OML algorithm.
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By considering the fact that it is highly desirable to have a distributed implementation of any

routing algorithm, Mohanoor et al. also developed distributed versions of their algorithms.

The distributed algorithms work as follows: A rooted spanning tree is constructed on the

wireless network graph. Then, the global information is collected in such a way that each

node sends all the information it has to its parents all at once. Once the complete network

information is collected at the root, the root transmits this information to all the nodes (de-

scendants) using the links on the spanning tree. The performance of the distributed versions

of SWP, SWCRP and SFWP algorithms with varying transmissionradius and varying node

densities are presented in [126]. Similar to the centralized case, simulation results show that

the distributed implementations of SWP and its derivativeslead to better network lifetimes

than the distributed implementations of OML and max-minzPmin.

3.3.1.13 OLSRE Protocol

OLSR (Optimized Link State Routing), [139], is a proactive routing protocol where nodes

periodically exchange topology information in order to establish a route to any destination in

the network. OLSR uses multipoint relays (MPRs)3 to minimize flooding of control traffic

and thus reduce the number of retransmissions of broadcast messages. The OLSR routing

protocol has been standardized by IETF [139]. In [140], Mahfoudh and Minet extended the

OLSR routing protocol to respect energy efficiency concerns. This extended version is called

energy efficient routing based on OLSR (OLSRE) (later called EOLSR in [141]). Instead of

using the number of hops to compute the shortest path (in caseof OLSR), OLSRE uses a new

metric that takes into account the energy consumption. According to this new metric, the cost

of transmitting a packet is computed as follows:

costtransmission(i) = Etrans+ n ∗ Ercv (3.20)

wheren is the number of non-sleeping nodes belonging to the interference zone of the trans-

mitter i, and,Etrans andErcv represent the energy dissipated in transmitting and the energy

dissipated in receiving a packet respectively. The authorsuse the following definitions for

Etrans andEtrans:

3 Using MPRs reduces the size of the control messages because,rather than declaring all its links in the
network, a node declares only the set of links with its neighbors that have selected it as MPR
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Etrans = Ptrans ∗ Duration (3.21)

Ercv = Prcv ∗ Duration (3.22)

whereDuration is the transmission duration of a packet, and,Ptrans andPrcv represent the

transmission power and reception power respectively. After defining the link cost as men-

tioned above, the cost of an end-to-end transmission on any pathP is computed as follows:

Cost(P) =
∑

i∈sender(P)

costtransmission(i) (3.23)

The goal of OLSRE is to find the path that minimizes this cost. Hence, in OLSRE, each

node computes its route of minimum energy towards any other node in the network, using

the Dijkstra algorithm, withcosttransmission(i). The above-mentioned routing strategy used by

OLSRE is called (one hop-by-hop energy efficient routing) RE in the thesis.

As it can be understood from the discussion above, the link cost used in RE does not consider

the residual energy (energy-awareness). The main reason for including this protocol in this

category (Energy aware routing algorithms) is that the residual energy is taken into account

in MPR selection phase. Unlike OLSR, which takes intermediate nodes as MPRs, in OLSRE

MPRs are selected according to the residual energy of themselves and their one hop neighbors.

These new MPRs are called (Energy MPRs) EMPRs. To avoid frequent route changes and

assure load balancing, the selection of EMPRs is changed only when the topology changes

or the residual energy decreases over a given threshold. Simulation results presented in [140]

show that this protocol uses the minimum energy consumptionpath, and, is more efficient than

multipath routing. Moreover, compared to OLSR, OLSRE maximizes both network lifetime

and user data delivered. Indeed, the authors claim that RE prolongs the network lifetime of

50% compared to OLSR for a network of 200 nodes. At this point,it should be noted that, the

network lifetime evaluated in [140] differs from the one (the first node failure) used by most

of the studies mentioned in this chapter. The network lifetime presented in the results is the

time to the first network partitioning. As soon as the networkis no longer connected, vital

information can no longer be transferred to its destination.
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3.3.1.14 FML and FMO Algorithms

Fuzzy maximum lifetime (FML) algorithm and fuzzy multi-objective (FMO) algorithm are

two efficient online routing algorithms developed by Minhas et. al.[142]. FML attempts

to maximize the network lifetime objective whereas FMO strives to simultaneously optimize

lifetime as well as the energy consumption objectives. The distinguishing aspect of these al-

gorithms is the novel use of fuzzy membership functions and rules in the design of link cost

functions. Among these two algorithms, FML is the most appealing one since, as claimed

by the authors, it outperforms the OML heuristic both in terms of the network lifetime and

the average energy consumption. FML algorithm operates as follows: When a routing re-

quest is initiated, a fuzzy lifetime membership is computedfor each edge using the following

equation:

µ
i j
lt =



1−( 1−γ
1−α .(1−

re(vi )
σ

)) i f α.σ<re(vi )≤σ
γ

α.σ − TXi j
.(re(vi ) − TXi j ) i f TXi j < re(vi ) ≤ α.σ


(3.24)

whereα and γ are algorithmic parameters, and,σ is the initial energy level which is the

same for all nodes.TXi j denote the energy expended in transmission of a k-bit packetand is

modeled as defined in [142]. Finally,re(vi ) andcevi represent the residual energy and current

energy of nodevi respectively.

As it can be seen from the expression above, the membership function strongly discourages

the inclusion, on the selected routing path, of those intermediate nodes that have depleted

their energy beyond a certain threshold value. The next stepis to assign a weight,wi j , to each

link in WSN using the following expression:

wi j = 1− µi j
lt (3.25)

Following the weight assignment, the maximum lifetime pathbetween a source and a destina-

tion is found by using Dijkstra’s algorithm. Experimental results presented in [142] show that

with rising node density, FML shows a consistent increasingtrend in the obtained lifetime re-

gardless of the transmission radius used, whereas OML is notable to show a similar increasing

trend at higher transmission radii. It also seems that FML algorithm has a complexity advan-

tage over the OML algorithm since it requires only one shortest path computation. FMO
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algorithm, on the other hand, is more complex than FML algorithm since it tries to simultane-

ously optimize two routing objectives: maximizing networklifetime and minimizing energy

consumption. FMO offers a flexible control over choosing a desired balance between the

two routing objectives. The FMO algorithm operates in a similar manner as the FML except

the computation of two additional parameters that need to beused in assigning weights for

each link; namely,fuzzy minimum energy membershipandmultiobjective membership[142].

Therefore, rather than providing further detail about thisalgorithm, we refer the interested

reader to [142]. A multipath extension to [142] is also available. The multipath version is

called FML-MP [143], and, strives to maximize the network lifetime metric by distributing

the source-to-sink traffic for a given routing request along a set of paths.

3.3.1.15 Keep-Connect Algorithms

Most of the algorithms explained in this chapter consider the network lifetime as the time the

first node failure happens. However, Pandana and Liu claim in[1] that in many practical sen-

sor applications, the death of the first node may not influencethe information collection task,

and therefore, the network lifetime should be defined as the time until there is no route from

any source to any destination (the time until the network becomes disconnected/disintegrated).

Using this definition as the network lifetime, Pandana and Liu argue that the network connec-

tivity is an important criterion that needs to be consideredin a routing algorithm. Thus, the

authors propose a class of routing algorithms called keep-connect algorithms that use com-

putable measures of network connectivity in determining how to route packets. The algo-

rithms embed the importance of a node when making the routingdecision. The importance

of a node is quantified by the Fiedler value4 of the remaining network graph when that par-

ticular node fails. The keep-connect algorithms are; MHKC (Minimum Hop while Keeping

Connectivity), MMREKC (Max-Min Residual Energy while Keeping Connectivity), MMKC

(Max-Min remaining Connectivity) and MTEKC (Minimum TotalEnergy Keeping Connec-

tivity algorithm). MHKC, MMREKC and MTEKC are modified versions of the Minimum

Hop (MH) [144], MMRE [145] and MTE [145] algorithms respectively, and, MMKC is a

special case of MMREKC algorithm in which the residual energy of nodes is set to 1. As the

MTEKC algorithm outperforms the other proposed algorithmsin [1], we only provide the link

4 The Fiedler value qualitatively represents the connectivity of a graph in the sense that the larger the Fiedler
value is, the more connected the graph will be.
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cost and SPR (shortest path routing) method related detailsof these algorithms in Table 3.1

and refer the interested reader to [1] for more detail about these algorithms.

Table 3.1: Link costs and SPR methods used in MHKC, MMREKC andMMKC algo-
rithms [1]

In table 3.1,ǫu(t) and ǫw(t) represent the residual energy at timet for transmitting nodeu

and receiving nodew, respectively.c(u,w) is the link cost between nodesu andw, W(.) is

the connectivity weight calculated by using theKeep-Connectalgorithm (keep-connect using

Fiedler value) proposed in [1], andy determines how important the connectivity weight should

affect the routing cost. Being different from the above-mentioned algorithms, the MTEKC

algorithm uses the following link cost:

c(u,w) = et(u,w)W(u)y + er (u,w)W(w)y (3.26)

whereet(u,w) ander (u,w) are the transmit and received energy for delivering a packet from

nodeu to nodew. MTEKC operates as follows:

1. For any source-destination pair, find the MTE path with edge costc(vi , v j) by using the

Dijkstra algorithm.

2. If a node dies, recompute the alive nodes’ connectivity weight usingKeep-Connect

algorithm. Go to Step 1.

MTEKC algorithm minimizes the total transmit energy while trying to keep the remaining net-

work as connected as possible. Extensive simulations performed in [1] indicate that MTEKC

not only achieves 10%-20% better network lifetime and totaldelivered packets compared to

MTE algorithm, but also, is more robust in terms of algebraicnetwork connectivity. However,

it should be noted that the algorithm never achieves both thebest and energy efficient and the
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most robust connectivity route. A distributed version of MTEKC, that nearly achieves the

performance of the centralized version, is also proposed in[1]. The distributed MTEKC is

based on the distributed reinforcement learning routing algorithm [146], and, can be charac-

terized as a version of distributed Bellman-Ford algorithmthat performs its path relaxation

step asynchronously and online with edge cost defined as weighted energy required to trans-

mit packet in that hop. We refer the interested reader to [1] for more information about the

distributed version of MTEKC.

3.3.2 Performance Analysis of CMAX and OML Algorithms

Having observed that CMAX and OML are among the best early competitors for lifetime

maximization (with lower complexity compared to those withsuperior lifetime), and have

frequently used as benchmarks in the literature, we shall devote this section to a comparison

of these two algorithms. We performed simulations by using the same settings used in [119],

on a randomly generated simulation topology containing 20 sensors deployed on a 10× 10

grid. Each node has the same initial energy. Moreover, for each topology, different realiza-

tions of packet streams are randomly generated. Average network lifetime over 10 different

networks is plotted with respect toλ in Figure 3.1. In addition to this, we tested the algorithms

on some other network topologies and we have seen that the performances of the algorithms

are dependent on changing network topologies. However, as mentioned in [119], OML per-

formed better than CMAX in all scenarios. Moreover, as it canbe seen from figure 3.1, OML

algorithm was less sensitive to the selection ofλ and sent more packets until the first node

died (within the network lifetime).

Figure 3.2 and 3.3 illustrate the average residual energy levels of 20 nodes after the first

node dies, in the cases of using CMAX and OML algorithms. Every line in the figures is a

measured average residual energy level (over 10 networks and 10 routing sequences) of the

nodes, for the correspondingλ value. Whenλ increases, the residual energy levels decrease

which means that the algorithm sends more packets by using nodes’ energies efficiently. As it

can be seen from the figures, in the case of using OML algorithm, the average residual energy

levels of the nodes are much lower than the ones for CMAX algorithm. Moreover, OML

is less sensitive to changingλ value. This means that OML algorithm sends more packets

within the lifetime of the network and hence it spends more energy. Moreover, the OML
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Figure 3.1: Average network lifetime over 10 different networks (topologies consisting of
20 nodes) each of which use 10 different routing sequences. In each network and routing
instance, the nodes start with an initial energy of 30. The lifetime values plotted indicate the
average value of the network lifetime obtained by averagingover 10× 10= 100 instances for
that specificλ value.

results show that after the death of the first node, other nodes in the network have similar

and very low energy levels. In contrast, residual energy levels in CMAX exhibit a quite high

variation after the death of the first node. Hence, although many nodes have enough energy

levels to send more packets, because the first node dies early, they can not send their packets

within the lifetime.

3.3.3 Delay Optimization and QoS Related Energy Efficient Routing Algorithms

In the design of communication as well as networking techniques, there is a fundamental

tradeoff between energy and delay, such that, optimizing energy-efficiency inevitably will

come at the expense of increasing packet delay in the network. However, low latency is an

important requirement in many application scenarios, and applications have varying delay

tolerances. Consider, for instance, an M2M security systemwhich is supposed to send an

alarm to a control center when an intrusion, a fire, etc., is detected. Obviously, sending the

alarm packet within tolerable delay is imperative, whatever the energy cost may be. So, while
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Figure 3.2: Average residual energy levels of 20 nodes over 10×10= 100 simulations for each
λ of CMAX. Each dot on the y-axis for nodei represents the average remaining energy level of
nodei just after the first node failure, when CMAX performs routingwith the corresponding
λ value. For the sake of clarity, the dots corresponding to thesameλ value are connected with
lines.

energy-efficient operation is important for general longevity of the network, balancing this

with an effort to certain delay requirements is sometimes required. Moreover, in addition to

low latency, there may be other quality of service objectives as well. The rest of this section is

devoted to studies that address delay and other QoS related issues within the design of energy

efficient routing algorithms.

3.3.3.1 Energy-Aware Routing Algorithm for Cluster-BasedSensor Networks

The authors in [147] proposed a novel energy-aware routing approach for sensor networks.

The approach (called EAR-cluster in this thesis) requires network clustering and assigns a

less-energy-constrained gateway node that acts as a centralized network manager. The gate-

way node takes charge of sensor organization and network management based on the mission

(sensing or relaying) and available energy in each sensor. Knowing the energy usage of each

sensor node and which nodes need to be active in signal processing, the gateway node sets

routes for sensor data, monitors latency throughout the cluster, and arbitrates medium access
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Figure 3.3: Average residual energy levels of 20 nodes over 10×10= 100 simulations for each
λ of OML. Each dot on the y-axis for nodei represents the average remaining energy level of
nodei just after the first node failure, when OML performs routing with the correspondingλ
value. For the sake of clarity, the dots corresponding to thesameλ value are connected with
lines.

among sensor nodes. Hence, the gateway node configures the sensors and the network to

operate efficiently in order to extend the network lifetime.

Younis et al. [147] observe that the gateway node is not as energy-constrained as the sensor

nodes and therefore it is better for the gateway to send commands to the sensors directly

without involving relays. Hence, their problem becomes limited to routing sensor data to the

gateway and thus they use a least-cost (or shortest-path) unicast routing algorithm in order

to solve the routing problem. The model used for testing thisalgorithm assumes that nodes,

sensors and gateway, are connected by bidirectional wireless links with a cost associated with

each direction. The cost of a path between two nodes (source and destination) is defined

as the sum of the costs of the links traversed. For each sensing-enabled node, the routing

algorithm finds a least-cost path from this node (source) to the gateway node (destination).

The proposed algorithm uses the following link-cost metricfor the link (i,j):

Ci j =
∑

CFk f or 0 ≤ k ≤ 7 (3.27)
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where

CF0 = c0.d
l
i j , CF1 = c1. f (ej), CF2 =

c2

T j
, CF3 = c3 (3.28)

and

CF4 = c4, CF5 = c5, CF6 = c6.di j , CF7 = c7.total load (3.29)

CF0 is the Communication cost and reflects the cost of the wireless transmission power.CF1

represents the Energy stock and favors nodes with more energy. CF2 is the Energy consump-

tion rate and makes the heavily used nodes less attractive, even if they have a lot of residual

energy.CF3 is the Relay enabling cost and favors the relay-enabled nodes for routing rather

than inactive nodes.CF4 is the Sensing-state cost and favors selecting non-sensing-enabled

nodes to serve as relays, since they have not committed any energy for data processing.CF5

depends on the maximum connections per relay and extends thelife of overloaded relay nodes

by making them less favorable.CF6 represents the Propagation delay and favors closer nodes.

Finally, CF7 is the Queuing Cost and does not favor relay nodes with long queues to avoid

dropping or delaying data packets.

di j represents the distance between nodesi and j, l depends on the environment andf (ej ) is

a function of nodej’s residual energy.T j is the expected time under the current consumption

rate until nodej’s energy level hits the minimum acceptable threshold. Finally, the weighting

constantsci ’s are system-defined based on the current mission of the network. We refer the

interested reader to [147] for more information about theseweighting constants, how to use

them in various cases and how to compute the total load of a network. It should be noted that

some of theCFi ’s factors are conflicting. For example, in order to minimizethe transmission

power, multiple short distances are required. However, using multiple short distances leads to

more number of hops and thus the delay increases. The proposed routing algorithm provides

a balance among these factors and uses Dijkstra’s algorithmwith the link costCi j to find the

appropriate route.

In [147], the performance of the proposed algorithm was evaluated with respect to various

criteria such as the time for last node to die, time till network partitions, average and standard

deviation of node lifetime, average delay per packet, network throughput, and average energy

consumed per packet. Based on this, it was claimed that a goodbalance between these perfor-

mance objectives has been struck, as consistent good performance was seen with respect to

both energy-based metrics, e.g. network lifetime, as well as throughput and end-to-end delay.
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It was shown that although other algorithms (such as min hop routing, min. distance, Min

Distance Sq.) may slightly outperform the proposed algorithm for some metrics, the same

algorithms were shown to perform poorly with respect to others. However, the algorithm in

[147] pays a computational price as well as an overhead, because on each link multiple cost

metrics need to be calculated, stored and shared.

3.3.3.2 Energy-Aware QoS Routing Protocol

Akkaya and Younis [148] proposed an energy-aware QoS routing protocol for sensor net-

works. The proposed protocol extends the routing approach in [147] and finds QoS paths for

real-time data with certain end-to-end delay requirements. The protocol pursues a cluster-

based approach and only focuses on the QoS routing of data within one particular cluster.

Hence, the main aim of the protocol is to find an optimal path tothe gateway node in terms

of energy consumption and error rate while meeting the end-to-end QoS requirements. The

protocol operates as follows:

First, the candidate paths are calculated without considering the end-to-end delay. In order to

do this, the protocol uses an extended version of Dijkstra’salgorithm and finds an ascending

set of least cost, delay-constrained paths for real-time data in terms of link cost. This link cost

captures nodes’ energy reserve, transmission energy, error rate and some other communication

parameters, and is defined as follows (for a link between nodes i andj):

Ci j =
∑

CFk f or 0 ≤ k ≤ 3 (3.30)

where

CF0 = c0.d
l
i j , CF1 = c1. f (E j), CF2 =

c2

T j
, CF3 = c3. f (ei j ) (3.31)

Here,di j represents the distance between the nodesi andj and f (E j) is the function for finding

current residual energy of nodej. T j is the expected time under the current consumption rate

for the nodej energy level reaches the minimum acceptable threshold andf (ei j ) is the function

for finding the error rate on the link between nodei and nodej.

Finding paths that meet the requirements for real-time traffic is not the only aim. The protocol

is designed in such a way that the throughput for non-real time traffic is maximized as well.
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In order to do this, a specific queueing model is used. The selected queuing model for the

protocol allows the throughput for normal data not to reduceby employing a network wide

r-value (related to the service rate), which guarantees certain service rate for real-time and

non-real-time data on each link. Hence, once the candidate paths are obtained, these paths are

checked to see which one meets the end-to-end QoS requirements by trying to find an r-value

that also maximizes the throughput for non-real-time traffic. If there is no feasible r-value, the

connection of that node to the gateway is simply rejected.

Simulation results show that the proposed protocol consistently performs well with respect to

both energy-based metrics, e.g. average lifetime of a node,as well as contemporary metrics,

e.g. throughput and average delay. Although the throughputfor real-time data may decrease

depending on increased number of packets, the throughput for non-real-time data does not

change much since r-value ensures that there is a constant dedicated bandwidth for such data.

3.3.3.3 DAPR Protocol

DAPR (Distributed Activation based on Predetermined Routes) [111], a distributed and inte-

grated protocol for sensor management and routing in large-scale wireless sensor networks,

allows sensor nodes to become active as network coverage quality demands and to sleep

whenever possible during the remainder of the time. In DAPR,time is divided into rounds.

The beginning of a round consists of a Route Discovery Phase,followed by a Role Discovery

Phase that is divided into an Opt In Phase (activation phase)and an Opt Out Phase (deac-

tivation phase) [111]. Upon completion of the Role Discovery Phase (deciding whether to

become active or not) sensors resume normal activity and perform routing until the beginning

of the next round. The sensor nodes consider the cost to the entire network in their decision

to become active, and the routes between a source node and a destination node are calculated

so that minimum cumulative cost paths (shortest cost paths)are used. The proposal in [111]

built on the work of [134] and [130] and developed an application based routing cost. This

new metric, the application cost, aims to avoid the use of sensors in areas of critically sparse

sensor deployment as routers. Unlike previously mentionedcost metrics considering only

the residual energy or the energy transmitted, the application cost metric considers both the

residual energy of the sensor node to whom the cost is being assigned and the residual energy
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of its redundant neighboring sensor nodes. The applicationcost of a node is defined as:

Capp(n j ) = max
1

Etotal(x, y)
(x, y) ∈ C(n j) (3.32)

whereC(n j) is the area that sensorn j is capable of monitoring andEtotal(x, y) represents

the total residual energy of the nodes which are capable of monitoring a particular location

(x,y). We refer the interested reader to [111] for more detailed information about defining

the regions covered by sensor nodes, calculating the application cost and obtainingEtotal(x, y)

value. Application costs are assigned to sensor nodes and the cost of activating a sensor node

for a given route is a weighted sum of the work that each sensormust perform:

Cact(ns) =
nd∑

ns

Clink(ni , n j) (3.33)

wherens andnd represents the source and destination nodes respectively and the cost of a link

is calculated as follows:

Clink(ni , n j) = Capp(ni ).Et +Capp(n j).Er (3.34)

Here,Et andEr represent the energy required to transmit a packet and the energy required to

receive a packet respectively. According to the simulationresults reported, when compared

to other cost metrics such as number of hops and the reciprocal of a node’s residual energy,

using the application cost metric provides the best networklifetime for DAPR. Although the

performances of the second metric and the application cost is close when all the nodes have

the same initial energy, the benefit from using application cost increases when the energy is

not equally distributed. Furthermore, without sensor management, the effect of the increase

in the number of sensors available to route the data is canceled by the effect of an increase of

data generated on the network. Hence, the network lifetime is not affected much. However,

with DAPR which allows sensor management, the fraction of deployed sensor nodes that are

used as routers increases as the sensor nodes that are used assensors (sensing only) decreases.

3.3.3.4 MDML Algorithm

Minimum Delay Maximum Lifetime (MDML) algorithm [149] is anenergy efficient routing

algorithm, specifically designed for wireless sensor networks deployed inside underground

mines. MDML, is mainly a shortest path based algorithm that uses two different link costs
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based on the network traffic that needs to be routed. The authors in [149] report that the

WSN in mines carry two types of network traffic: Emergency traffic and Non-emergency

(regular) traffic. Emergency traffic occurs occasionally and can be the result of a sudden

change in the mine environmental condition, or a safety alarm sent by one of the miners.

Hence, the main objective for the delivery of emergency traffic is to find a highly reliable

path that incurs minimum delay. Regular traffic, on the other hand, is the result of constant

monitoring and measurements and, is not delay or reliability constrained. The primary goal

of routing for regular traffic is to select energy-efficient paths that can maximize the network

lifetime. Hence, MDML was designed to ensure reliable and timely delivery of emergency

data while maximize the lifetime of the sensor network to avoid costly redeployment of sensor

nodes.

MDML algorithm makes use of a priority queue which has a classifier to check the type

of the incoming packet (emergency or regular) and send it to the appropriate queue. After

defining the type of the packet (or traffic), the appropriate link cost is chosen. In the case of

emergency traffic, since minimizing losses and delay is more important than energy-efficiency,

the following link cost, which combines the hop-count (delay), link quality, and residual

energy, is used:

Ci j = ETXi j ∗ f (Er ) (3.35)

whereETXi j is the ETX (Expected Transmission Count) [150] value of the link between

nodesi, and,j, and f (Er ) is a function of the residual energy of nodei. f (Er ) takes on two

values depending on the expected lifetime of a node; 1 if the expected lifetime is greater than

the route update time (τ) and∞ otherwise. The expected lifetime (E(T)) is given by [149]:

E(T) =
Er

(λi − λs)er
i + λiet

i

(3.36)

whereei is energy consumed per bit andλi andλs are the traffic rates for self generating and

outgoing traffic repectively. As a consequence, for emergency traffic, the algorithm selects

the least ETX cost path among all survivable paths. As it was mentioned before, the aim is

different in the regular traffic case. Therefore, the link cost metric for regular traffic mainly

considers the energy-efficiency and is simply a modified version of the link cost used inFA
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algorithm (eq. 3.10):

Ci j = (et
i j )E

−x
i + (er

i j )E
−x
j (3.37)

whereet
i j ander

i j are the energy consumption for unit data transmission over the link (i,j), and

Ei andE j represent the residual energy levels of nodesi andj.

After defining the appropriate link cost metric, the next step is to apply the Bellman-Ford

Algorithm to find the least cost path. In order to do this, eachnode maintains a routing table

to keep the next hops for each type of the traffic (emergency and regular); and the cost to reach

the destination. Then, a sink periodically (everyτ second) broadcasts Sink Announcement

Packets (SAP). When a node receives the SAP, it calculates the new path costs for both traffics

based on the new information, it compares the new cost with the one in the routing table, and

decides whether to update its routing table or discard the SAP. After updating its routing table,

the node broadcasts the SAP to advertise the newly computed path to its neighboring nodes.

Otherwise, it drops the packet.

The simulation results show that zero loss and low delay can be achieved for emergency traffic.

MDML guarantees that delay of emergency traffic never exceeds the delay of regular traffic.

The simulation results also indicate that in most cases MDMLshows slightly lower network

lifetime compared to the FA algorithm (called Non-MDML in [149]) which was discussed in

section 3.3.1.7. Hence, MDML compromises network lifetimeto achieve high reliability and

low-delay.

3.3.3.5 Energy Efficient Routing with Delay Guarantee

Another study that uses Linear programming in designing an energy efficient routing algo-

rithm was done by Coleri Ergen and Varaiya [151]. Ergen and Varaiya proposed algorithms

that maximize the lifetime of a sensor network and approximate the results obtained by solv-

ing the linear programming problem. The use of linear programming and, the relation of

maximizing the minimum lifetime of the nodes to minimizing the cost per packet was inves-

tigated in [138]. However, the proposed algorithms, LR-ENRand HR-ENR, take this relation

one step further to provide a delay guarantee on the time the packets reach their destination,

while maximizing the lifetime of a sensor network.
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The proposed algorithms are developed in three steps. Firstly, an energy efficient routing

protocol which aims to maximize the network lifetime is proposed for the centralized imple-

mentation of the Linear Programming (LP) solution. The protocol generates a single path

from any sensor node to the Access Point (AP) at each time and attains the optimal flow rates

at each link at the end. However, solving the LP problem by using the centralized proto-

col, requires knowing the whole network topology and packetgeneration rate at each node.

Therefore, a distributed routing protocol [151] (which forms the basis of LR-ENR and HR-

ENR protocols) is proposed to learn the optimal flow rates iteratively by using a sequence of

least cost path algorithms; least sum-cost path algorithm and least max-cost path algorithm.

The cost of a path for these algorithms is defined as the sum or maximum of the costs of the

links on that path. Two different types of link costs are used in these algorithms:

Ci j =
1

(1−C j)n
or Ci j = Cn

j (3.38)

whereC j is the cost of nodej at pth iteration and is given as follows [151]:

C j = p ∗

∑
i ptx f ji +

∑
i prx fi j + psg j + (1−

∑
i f ji −

∑
i fi j )pl

ej
(3.39)

where f ji , ptx, prx, psg j and pl represent the packet flow rate, the energy spent in the trans-

mission of a packet in unit time, the energy spent in the reception of a packet in unit time,

the energy spent in sensing and the energy spent per unit timeby the radio in sleep mode

respectively. In distributed routing protocol, the Bellman-Ford algorithm is used to calculate

the least cost path for both of the algorithms [151].

LR-ENR and HR-ENR protocols are modified versions of the distributed protocol and, they

provide a delay guarantee by limiting the length of the routing paths from each node to the AP

(or sink). Level Restricted Energy Efficient Routing (LR-ENR) protocol executes a modified

version of Bellman-Ford algorithm to find minimum cost pathsof length at mostdmax from

each node to the sink wheredmax is upper bounded by the worst case delay. LR-ENR pro-

tocol operates as follows: By considering the fact that the time is divided into frames, at the

beginning of each frame, the sink floods the network with a tree construction packet (TCP).

TCP keeps a counterc, the routing path, the node cost and the cost of the transmitting node.

When a node receives a TCP, it checks whether the counterc (initially set to 0) is less than

dmax. If c > dmax, the packet is ignored. Otherwise, the node checks whether the transmitting
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node is the next hop on a path of smaller cost than previously learned paths. This is done by

checking the conditionC j > Ci + Ci j (C j > max(Ci ,Ci j )) in least sum-cost (max-cost) path

algorithm, in whichi is the transmitting node andj is the receiving node. If the condition

holds, j updates this cost byC j = Ci + Ci j (C j = max(Ci ,Ci j )), increases the counterc by

1, adds its ID to the routing path, and rebroadcasts the packet. At the end of the flooding

process, each node chooses the minimum cost routing path, and uses this path until the end of

the time frame.

Hop restricted energy efficient routing (HR-ENR) protocol can achieve higher networklife-

time and connectivity for a given delay constraint by using acentralized controller. The first

part of the HR-ENR protocol is similar to LR-ENR’s. The only difference is that each node

i keeps the minimum cost path of length at mostl for all 1 ≤ l ≤ |V| where|V| denotes the

number of nodes in the network. Then, upon reception of a TCP,similar to LR-ENR, the

node checks whether the counterc is less thandmax wheredmax denotes the exact worst case

delay (instead of an upper bound). Ifc < dmax, the node checks its path cost and updates its

minimum cost path for that length as described before, to rebroadcast the packet. When the

flooding ends, each node knows about the minimum cost path of each length. They then send

only the cost of the paths corresponding to each lengthl to the sink. The sink finds the optimal

path length for each node based on Integer Programming modeldescribed in [151] and sends

it back to the nodes in the network. Then, the nodes use the routing path of the optimal length

until the end of the frame.

Simulation results indicate that the network lifetime increases significantly by optimal routing

(LP formulation), and including delay constraint in energyefficient routing (LR-ENR and HR-

ENR) improves the network performance since the delay of thenetwork keeps increasing even

after the optimal lifetime is achieved. The simulation results also show that for the maximum

allowed delay where LR-ENR cannot provide connectivity, HR-ENR provides connectivity

of all the nodes and achieves optimal network lifetime.

3.3.3.6 FMOLD algorithm

The fuzzy multiobjective routing for maximum lifetime and minimum delay (FMOLD) al-

gorithm [152] is an extension to the FML algorithm which was previously discussed in sec-

tion 3.3.1.14. For a routing request, the FMOLD algorithm finds a path that offers a good
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balance between the two routing objectives, namely maximizing the network lifetime and

minimizing the source-to-sink delay. Like the FML algorithm, the path search process in

the FMOLD algorithm is based on the use of an edge-weight function designed by using a

fuzzy membership function. FMOLD algorithm operates as follows: When a routing request

is initiated, the fuzzy multiobjective membership value iscomputed by using the following

equation:

µi j = β.min(µi j
lt , µ

i j
md) + (1− β).

µ
i j
lt + µ

i j
md

2
(3.40)

whereµi j is the fuzzy multiobjective membership of the edgee(vi , v j) and β is a constant

(according to [152]β = 0.2 has the best effect on the maximum lifetime as well as the min-

imum delay objective.).µi j
lt represents the fuzzy lifetime and computed as described in sec-

tion 3.3.1.14.µi j
md, on the other hand, denotes the minimum delay membership value for each

edge, and, is computed as follows:

µ
i j
md = 1+

(θ − 1).pD(vi )
max(pD)

(3.41)

wherepD(vi ) is defined as the length of the partially constructed path from the source node

to the nodevi , and,max(pD) = maxf (pD(vf )) for every f such thatvf is in the set of all leaf

nodes of the Dijkstra’s path search tree. Similar to the FML algorithm, the last step of the

algorithm is to assign a weight,wi j = 1 − µi j , to each edge and then use the Dijkstra algo-

rithm to find the multiobjective path between the source and destination. Simulation results

presented in [152] indicate that FMOLD algorithm is able to achieve a desirable tradeoff be-

tween the maximum lifetime and the short end-to-end delay objectives. As expected FMOLD

outperforms FML in terms of delay, however, it should be noted that in order to understand

the delay minimization performance of FMOLD better, its performance should be compared

to the other algorithms’ discussed in this section.

3.3.4 Energy Efficient Routing and Scheduling

Although the main focus of this chapter, routing is not the only significant problem for en-

ergy efficient design. Due to the shared nature of the wireless channel, scheduling plays a
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big role in managing interference and thus overall performance. Some studies have looked

into combining routing with scheduling for an overall optimized performance. In this sec-

tion, we overview several studies that combine scheduling with a shortest path based routing

mechanism.

3.3.4.1 Energy Efficient Routing Using Directional Antennas

Almost all the protocols reviewed in this chapter have assumed that nodes are equipped with

omni-directional antennas. That is, all nodes have a 360o degree coverage angle and do not

need to point at each other in order to communicate. The main advantage of this approach is its

simplicity. However, in the case of using omnidirectional antennas, the power is broadcasted

towards all directions and, therefore it attenuates rapidly with distance. Spyropoulos and

Raghavendra [113] claim that a lot of energy is wasted by using omnidirectional antennas.

The use of directional antennas allows nodes to communicateusing less power (energy) than

omnidirectional ones. Therefore, the potential energy savings that come from the use of

directional antennas is significant. Hence, in [113] Spyropoulos and Raghavendra proposed

an energy-efficient routing and scheduling algorithm (called EER-Directional in this thesis)

that coordinates transmissions in ad hoc networks where each node has a single directional

antenna. The basic idea of the proposed algorithm is to do energy efficient routing first, in

order to find minimum energy paths and then schedule nodes’ transmissions, accordingly.

The proposed algorithm consists of 4 major steps: In the firststep of the algorithm, Short-

est Cost Routing, a topology consisting all the possible links in the network is obtained by

pointing the directional antenna into different directions. Then, Dijkstra’s algorithm is used

to find the energy efficient shortest cost paths. Two different metrics which were proposed by

Singh et al. [130] are used in order to relate link/node cost with energy consumption. The first

metric minimizes the energy consumed per packet by assigning the link cost as the energy

consumed in transmitting (and receiving) a packet over a link. The goal of the second metric,

however, is to avoid routing traffic through nodes with depleted energy. In order to do this,

each node is assigned a cost (or weight) which is a function ofthe remaining energy of the

node. Then, the total cost of sending a packet through the chosen path is minimized. This

way the network lifetime is maximized. In the second step of the algorithm, Link flow matrix

calculation, the amount of traffic that has to go over each link is calculated. This is done by
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defining a link flow matrix whose entries are the traffic flows on the corresponding links. In

the next step, Topology update, by using the end-to-end traffic information and considering

the fact that only one link can be up for each node at a time, themaximum amount of time

each link can be up is found. The final step is to schedule individual links in a way to min-

imize the total time it takes to serve all links. The scheduling problem is solved by using a

series of Maximum Weighted Matchings [153].

Simulation results show that using directional antennas instead of omnidirectional ones de-

crease the total energy consumption and thus increase network lifetime by a factor, which is

proportional to the antenna gain. Simulation results also demonstrate that additional energy

savings ranging from 10 percent to 45 percent are obtained byusing energy-aware routing

instead of conventional routing schemes (e.g. minimum hop routing). As it can be seen from

above, since this chapter is about shortest path based algorithms, we focused on the shortest

cost routing part of the algorithm and gave some brief information about the other steps. We

refer the interested reader to [113] for more detailed information about the other steps.

3.3.4.2 Joint Routing and Scheduling Algorithms

Girici and Ephremides studied the problem of energy-efficient distributed routing and schedul-

ing for ad hoc wireless networks supporting connectionlesstraffic [116]. The authors observed

the trade-offs between energy, delay and network lifetime and proposed link metric-based

routing and scheduling (link activation) algorithms. The proposed link-metric based routing

algorithm provides a solution for the following routing problem: Each node should select

the the next hop for a packet destined to any given destination so that good communication

performance is achieved in terms of energy consumed per packet, the throughput (volume of

transmitted traffic throughout the network lifetime) and total delay per packet. In order to

find the paths that satisfy the requirement mentioned above,each link(i,j) is assigned a value

that indicates the cost of using that link according to a linkcost metric. The combined link

cost metric reflects transmission power requirements (energy), residual energy of the relaying

node (volume of delivered traffic) and, congestion on that link (delay and stability), and is

defined as follows:
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Ci j = (
Pi j

Pmax
)Wp(

Eo

ER
i

)We(Qi j )
Wd i f ER

i ,E
R
j , 0 (3.42)

whereWp,We and,Wd are the parameters of the algorithm that are adjusted to favor any of the

three terms. Here,Pi j represents the RF power required for error-free transmission from node

i to j andPmax represents the maximum RF power transmission from nodei to j. The residual

energy of nodei is ER
i . Eo is the initial energy of nodei and finally,Qi j is the congestion

on the link(i,j). After a link cost has been assigned for each link, based on the assigned link

metrics, distributed Bellman-Ford algorithm [18] is applied for shortest path computation.

The next step is to apply the scheduling algorithm. The scheduling algorithm aims to find

a maximal utility link activation set (the set of links that can be activated in a conflict-free

manner),S, such that if any node tries to activate an outgoing link withhigher utility than

the present activated outgoing link, the resulting activation setS’ has lower utility thanS. In

order to do this, the communication performance is considered as a utility and each link(i,j)

is assigned a dynamically changing utility value,Wi j :

Wi j = (
(Qi j )γ(ER

i )β

(Fi j )θ(Pi j )α
(3.43)

whereα,β,γ,θ are algorithm parameters,Fi j indicates the number of non-empty links adja-

cent to link (i,j), and,Qi j ,ER
i ,Pi j are as defined in eq. (3.42). The goal is to maximize the

the total utility of the link activation setU(S) =
∑

Wi j [116]. The simulation results show

that the routing algorithm increases the total volume of transmitted packets, and, network

lifetime significantly. Also, the scheduling algorithm hasa slight positive effect on the net-

work lifetime, throughput. Based on the simulation study, it can be said that the proposed link

metric-based policy jointly considering routing and scheduling, more precisely; transmission

power requirements, residual energy information, link queue sizes and transceiver utilization,

provides a better performance in terms of energy consumption, average delay and throughput.

3.3.4.3 Energy-Efficient Interference-Based Routing Algorithm (OptSINR)

Optimal SINR Routing (OptSINR) [154], [155] is an energy-efficient interference-based rout-

ing algorithm that, given a certain class of link schedulingschemes, aims to find the optimal

routes in terms of energy consumption over the entire network. OptSINR is a cross layer

routing algorithm in that it takes into account the interference created by existing flows in the
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network and exploits both the SINR (physical layer information) and power control (MAC

layer). The algorithm mainly deals with the problem of finding a route that minimizes the

total energy increment needed to serve the new arrival over the entire network for given SINR

constraints. In order to solve this problem, Kwon and Shroff [154] proposed two algorithms

(in which the second one is OptSINR algorithm) for two different cases. The first case consid-

ers the impact of admitting a new flow on the network as it traverses an entire route. One or

more links in the route may simultaneously transmit the flow.Therefore, a transmitting link

is interfered by the other links that transport the flow over the route. This causes additional

energy consumption on the network. Hence, the first routing algorithm uses SINR metrics in

order to satisfy the minimum constraints of all the links andto minimize the energy consump-

tion over the network. Since this algorithm in procedure is similar to the OptSINR algorithm,

it will not be discussed in detail. We refer the interested reader to [154] for more information

about the first algorithm.

As mentioned above, in the first case, the links are activatedat the same time and hence, the

link scheduling over the network is not considered. In the second case, on the other hand,

the links are not activated at the same time but scheduled according to some link scheduling

mechanism. In order to solve this new problem with scheduling and minimize the average

energy consumption, OptSINR algorithm was used. The algorithm is based on some matrix

operations and, for a given link scheduling matrixS, it operates as follows: Firstly, a directed

graph consisting ofN nodes andL links, G = (N,L), is constructed. Then, for an incoming

flow, the availability of the resources are checked. If the resources are not available, the

incoming flow is rejected and the source is notified of the rejection. Otherwise, the average

interference strength at all nodes is measured and, the timeaverage of the link scheduling

matrix (used to schedule the links),Π, is calculated. Then, a matrix, (I − F)−1 is calculated

based on path loss and correlation between links. In this matrix, I is the identity matrix and F

is LxL matrix with (l,m) entry:

F(l,m) =
Gi(m), j(l)c(l)

Gi(l), j(l)
, l , m and0 otherwise (3.44)

whereGi(m), j(l) represents the path gain between transmitteri(l) and receiverj(l) andc(l) is the

SINR constraint for linkl. The next and may be the most important step is to calculate the

link cost metric that will be used in shortest cost computation. OptSINR algorithm uses the

77



following cost metric for a linkl=(i,j):

Ci(l) j(l) =
η j(l)

Gi(l), j(l)
(Π(I − F)−1)(

∑
l ) ∀; l ∈ L (3.45)

whereη j(l) is the average of the interference and noise measured at the receiving node,j, of

link l when link l is active and, the termΠ(I − F)−1 corresponds to global information in

the network. After assigning a link cost to each one of the corresponding links, a shortest

path algorithm, e.g. Dijkstra’s algorithm or Bellman-Fordalgorithm, is applied to find the

minimum cost path. Finally, the minimum cost path is used to serve the incoming flow. A

nice feature of OptSINR algorithm is that it automatically routes around congested areas (the

areas in which the average power of the ongoing links increases), and thus results in mitigat-

ing the overall congestion in the network. Kwon and Shroff also developed the distributed

version of this algorithm which uses local information and requires a substantial reduction in

computational overhead [154], [155]. The simulation results show that both centralized and

distributed versions of the OptSINR algorithm are more energy efficient than other routing

algorithms using the minimum transmission energy or the minimum interference as a link

cost (Minimum Energy (ME), Least Interference Routing (LIR) [156]. Finally, it should be

noted that, for a given class of link scheduling schemes, OptSINR algorithm is asymptotically

optimal in the sense of average energy consumption.

3.3.4.4 EURo Algorithm

As mentioned in the previous sections, the three key elements of transmission power, interfer-

ence, and residual energy play an important role in choosingenergy-efficient routes. Ignoring

one or more of these metrics, may result in algorithms which are not energy efficient in a

real wireless environment, where all of these elements should be considered. Hence, Kwon

and Shroff [157] developed a unified routing algorithm called the Energy-efficient Unified

Routing (EURo) algorithm that parameterizes all the three key metrics: transmission power,

interference between links (or routes), and residual battery energy. EURo is algorithmically

similar to OptSINR algorithm [154]. However, unlike OptSINR, EURo takes into account

the residual energy of nodes. Hence, in terms of energy efficiency, EURo algorithm is an

improved version of OptSINR algorithm. Mainly, for a given scheduling policy S, the set of

nodes,N, the set of links,L, and interference constraints, EURo algorithm tries to solve the
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following optimization problem:

arg minR∈R(i, j)

∑

l∈R

(Ci(l) j(l)) (3.46)

s. t. Pmax(l) ≥ P(l) ≥ 0 ∀l ∈ L,

θ(l) ≥ c(l) ∀l ∈ L,

ǫn ≥ 0 ∀n ∈ N,

wherePmax(l), θ(l), c(l) and,ǫn represent the maximum transmission power for linkl, SINR

at link l, the minimum requirement of link in terms of SINR, and the remaining energy at

noden respectively. In this problem,Ci(l) j(l) is the cost metric for linkl=(i,j) and is defined as

follows:

Ci(l) j(l) = (W(I − F)−1)l(
η j(l)

Gi(l), j(l)
) ∀l ∈ L (3.47)

whereW is a weight vector that is a function of the residual energy ofnodes when a new flow

arrives to the network,I is the identity matrix andF is LxL matrix with (l,m) entry given in

eq (3.44).η j(l) is the average of the interference and noise measured at the receiving node,j,

of link l when link l is active and,Gi(l), j(l) represents the path gain between transmitteri(l) and

receiverj(l) andc(l) is the SINR constraint for linkl.

Without considering scheduling, EURo algorithm using the link cost metric defined above

operates as follows: Firstly, a directed graphG= (N,L), is constructed. Then, for an incoming

flow, each node checks the availability of two resources: battery energy and transmission

power. If the battery energy is drained or the transmission power is saturated at a node,

the node rejects the incoming flow and notifies the rejection to the source. Otherwise, the

interference strength at all nodes are measured and, (I − F)−1 matrix is calculated based on

path loss and constraints. The next step is to calculate the present weight vectorW and link

costCi(l) j(l). After assigningCi(l) j(l) as a link cost to each one of the corresponding links, a

shortest path algorithm, e.g. Dijkstra’s algorithm or Bellman-Ford algorithm, is applied to
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find the minimum cost path. Finally, the minimum cost path is used to serve the incoming

flow. It should be noted that when the links are randomly scheduled, the algorithm is similar

to the one mentioned above with a small modification in the link cost [157]. The distributed

version of EURo algorithm (dEURo), was also proposed in [157]. dEURo algorithm uses only

local information and to update local information, each node periodically announces its status

information to its neighbors via a control channel. Moreover, dEURo employs a distributed

shortest path routing algorithm such as the Distributed Bellman-Ford algorithm [18].

Simulation results show that EURo algorithm outperforms other competitive energy-efficient

routing algorithms such as ME(Minimum energy), CMAX [123],E-WME [124], and, LIR

[156]. This is because, when there is no interference between routes, the metrics of E-WME

and EURo are identical so that EURo works the same as E-WME. Inaddition, in the case

when the arrival rate is high, due to interference between the links, the algorithms that do

not consider the impact of interference (ME, CMAX, E-WME) are more affected than EURo.

The simulation results also indicate that even distributedversion of EURo that uses local

information from adjacent neighborhoods outperforms other routing algorithms. However, it

should be noted that since dEURo uses only truncated information, its performance is slightly

poorer than EURo.

3.3.5 Retransmission Aware Energy Efficient Routing Algorithms

Most of the algorithms explored in this chapter are designedto use link cost metrics that are

based on the energy spent in a single transmission. Banerjeeand Misra [158] argues that such

a formulation of the link cost fails to capture the actual energy spent in reliable packet delivery.

They claim that the proper metric should include the the total effective energy (including that

expended for any retransmissions necessary) spent in reliably delivering the packet to its

destination and, they propose a series of retransmission aware algorithms. In this section, we

describe these algorithms by focusing on their link costs and the shortest path method that

they use.
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3.3.5.1 Retransmission-Energy Aware Routing Algorithm

According to Banerjee and Misra, to account for the potential cost of retransmissions needed

for reliable packet delivery, an accurate formulation needs to consider the link error rates

as well. Hence, they proposed a shortest path based Retransmission-Energy Aware routing

algorithm [158] that uses a link cost which is a function of both the link distance (related to

energy) and the link error rate.

Retransmission-Energy Aware (RA) algorithm uses two different metrics designed for two

distinct operating models: HHR and EER. These operating models differ in the type of re-

transmission mechanism that they use. HHR model allows Hop-by-Hop Retransmissions

where each individual link provides reliable forwarding tothe next hop using localized packet

retransmissions. Hence, in this case, a transmission erroron a specific link implies the need

for retransmissions on that link alone. Since the number of transmissions on each link is in-

dependent of the other links, the total cost of a path is foundas a linear sum of individual link

costs. RA algorithm uses the following link cost for the HHR case:

Ci, j =
Ei, j

1− pi, j
(3.48)

where

pi, j = S pb = 0.5S × er f c(

√
Pr

N ∗ f
) (3.49)

whereEi, j is the energy associated with the transmission of a packet over link l i, j , pi, j is the

link packet error probability associated with that link,S is the packet size and, thepb is the

bit error rate for linkl i, j .

On the other hand, in End-to-End Retransmissions (EER) model, the individual links do not

provide link-layer retransmissions and hence, a transmission error on any link leads to an end-

to-end retransmission over the path. Therefore, the total cost of the path cannot be expressed

as a linear sum of individual link costs which in turn leads toan inappropriate formulation

for a minimum-cost path computation. In order to avoid this inappropriate formulation and

be able to use a minimum-cost (shortest cost) routing algorithm, an approximate link cost is

used. The link cost indicates the minimum approximate energy cost and is defined as:
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Capprox
i, j =

Ei, j

(1− pi, j)L
(3.50)

whereL represents the average path length of the network and is samefor all links. After

assigning the link costs to the corresponding links, in bothcases (HHR and EER), RA algo-

rithm uses a shortest path algorithm (Dijkstra’s or BellmanFord) to determine the minimum

cost path that will be used to send the incoming packet.

The EER framework results in at least an order of magnitude higher energy consumption

than the HHR case. However, the energy savings achieved by the RA algorithm is more

pronounced in EER case. Simulation results indicate that the RA algorithm can lead up to

30-70 percent energy savings over MH routing (minimum hop routing in which the link costs

are unity), and, EA routing (Energy aware routing in which a link cost is the energy required

to transmit a single packet) algorithms. The advantages of using RA algorithm is significant

irrespective of whether fixed or variable transmission power is used by the nodes to transmit

across links.

3.3.5.2 MRPC and CMRPC Algorithms

Misra and Banerjee proposed two power-aware algorithms forenergy-efficient routing in ad-

hoc wireless networks [159]. These algorithms differ from previously mentioned power-aware

algorithms. The reason for this is that instead of basing their routing decisions on a function

of the battery power alone, these algorithms also consider the fact that different links require

different transmission powers, and also have different impacts on reliable packet transfers.

The first algorithm, Maximum Residual Packet Capacity (MRPC), is conceptually similar to

the MMBCR algorithm [120] which uses a max-min formulation to select the path that has

the largest packet capacity at the critical node (the one with the smallest residual packet trans-

mission capacity). However, in [158], the authors showed that a routing algorithm for reliable

packet transfer should include the link’s packet error probability in formulating the transmis-

sion energy cost. Hence, unlike MMBCR, MRPC uses links that have varying transmission

energy costs and link error probabilities. MRPC algorithm uses the following cost metric for

routing:
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Ci, j =
Bi

Ei, j
(3.51)

where

Ei, j =
Dk

i, j

1− pi, j
(3.52)

HereBi represents the residual battery power at a certain instanceof time at nodei andEi, j

is the transmission energy required by nodei to transmit a packet over link(i,j). Di, j repre-

sents the distance between nodesi and j, and pi, j is the link’s packet error probability. The

maximum lifetime of a route was defined in [159] as follows:

Li f eP = min[Ci, j ] f or (i, j) ∈ P (3.53)

Given the cost and lifetime formulations above (eqs. 3.51 and 3.53), MRPC uses a modified

version of Dijkstra’s minimum cost algorithm for decentralized route computation. While

Li f eP is not an additive function of the individual node-link costs, it is computed over a path

by applying theMIN operator in an iterative fashion. Detailed information about the mod-

ified version of Dijkstra’s minimum cost algorithm and the iterative process can be found

in [159]. Simulation results show that MRPC leads to superior performance (longer network

lifetimes) than alternative suggested algorithms (Min-Hop Routing, Min-Energy Routing,

MMBCR and, CMMBCR) since it considers the importance of the link error rates. More-

over, in contrast to MMBCR, MRPC is not only able to transmit amuch larger number of

packets but also at a lower per-packet energy consumption.

Misra and Banerjee also presented CMRPC, a conditional variant of MRPC. The CMRPC

algorithm is the MRPC equivalent of the CMMBCR algorithm presented in [120]. CMRPC

switches from minimum energy routing to MRPC only when the remaining battery power at

the constituent nodes falls below a certain threshold,γ. Simulation results show that CMRPC

outperforms CMMBCR in both the total packet throughput as well as the energy efficiency.

However, unlike the MMBCR case, CMRPC does not always outperform MRPC. The relative

performance of MRPC and CMRPC depend on the choice of the thresholdγ. While smaller

values lead to higher variability in the expiration times, larger values fail to exploit minimum

energy paths even if the residual battery capacities are sufficiently large. The reason for this is

that whenγ increases CMRPC performs minimum-energy routing for a smaller duration and
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the average energy per packet increases. The total network throughput is maximized by using

intermediate values forγ.

3.3.5.3 BAMER, GAMER and DAMER Algorithms

Dong et. al. [160] proposed a number of algorithms (BAMER, GAMER and DAMER) to

compute minimum energy paths for reliable communication over lossy links in multi-hop

wireless networks. This problem was previously studied by Banerjee and Misra [158] and,

RA algorithm (which is called BMA in [160]) was proposed in order to solve the problem.

However, in [158] the problem of computing optimal energy efficient paths was solved for

the hop-by-hop retransmission model only. The reason for this is that for the hop-by-hop

retransmission model, it is straightforward to use a traditional shortest path algorithm (e.g.

Dijkstra’s algorithm) to compute minimum energy paths. However, the same is not true in the

end-to-end retransmission model. Therefore, Banerjee andMisra only proposed an approx-

imate heuristic that defines the link costCi, j in eq. (3.48) and used Dijkstra’s algorithm to

compute low-energy paths. Hence, the optimal approaches for the end-to-end case was left as

an open problem.

Basic Algorithm for Minimum Energy Routing (BAMER) optimally solves the problem of

computing minimum energy paths for reliable communicationin the pure end-to-end retrans-

mission model where none of the links in a wireless path guarantees any reliability. Basically,

BAMER is a generalized extension of Dijkstra’s shortest path algorithm which uses the fol-

lowing link cost (link weight):

W(i, j) = cβoNodαi j (3.54)

wherec and,α are both constants, and,βo, No and,di j are the required signal-to-noise ratio

(SNR), the strength of ambient noise, and, the distance between nodesi and j respectively.

Although similar to the Dijkstra’s algorithm, BAMER is different in that it not only takes

into account the link weights, but also the link error rates.Moreover, the way of computing

the total cost of a path is different in the case of BAMER. In order to clarify the difference

between two algorithms (BAMER and Dijkstra), assume that for any pathP(i, j),C(P(i, j))

denote the energy consumption of successfully delivering apacket along that path fromi to j,
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then, for BAMER, the total cost of a path is calculated as in eq. (3.55) whereas in Dijkstra’s,

the total cost of the same path is found by using the same equation and settingN(i, j) = 1 for

all links (i,j).

C(P(s, v)) = N(u, v)[C(P(s, u)) +W(u, v)] (3.55)

Here,u is an intermediate node between the source nodes, and the destination nodev and,

N(i, j) is the expected number of transmissions (including retransmissions) of a successful

delivery over link(i,j) [160]:

N(i, j) =
1

1− Er (i, j)
(3.56)

whereEr (i, j) is the link error rate of link(i,j). Although BAMER is originally designed

for the pure end-to-end retransmission model, an appropriate preprocessing stage which is

explained in [160] enables BAMER to solve the same problem inthe mixed retransmission

model. The mixed retransmision model is a more general and realistic model in which some

links may provide partial reliable delivery while the others may not. The General Algorithm

for Minimum Energy Routing (GAMER) is proposed for that case. GAMER can be defined

as a further generalization of BAMER, where each individuallink may or may not provide

per hop reliability. GAMER uses the same link cost (eq. 3.54)and the algorithm is the same

with BAMER except that depending on the availability of per hop reliability for a link, the

way of computing the total cost of a path changes. In GAMER, iflink (u,v)provides per hop

reliability, the total cost of a path is:

C(P(s, v)) = C(P(s, u)) + N(u, v)W(u, v) (3.57)

Otherwise, the total cost of a path is computed as in eq.(3.55). BAMER and GAMER are both

optimal and centralized algorithms. Dong et. al. also proposed a distributed algorithm, the

Distributed Algorithm for Minimum Energy Routing (DAMER),that approximates the per-

formance of the centralized algorithms. Unlike BAMER and GAMER which only compute

the one-to-all shortest paths from a single source to all other nodes, DAMER computes an en-

ergy efficient path from each node to every other node. DAMER operatesin a periodic round
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by round fashion and for each destinationv, DAMER chooses for (an intermediate node)u the

next hop node that minimizes the expected energy consumption of delivering a packet fromu

to v.

Simulation results indicate that BAMER, GAMER and DAMER algorithms effectively im-

prove energy efficiency over the best known existing techniques (e.g. RA [158] (or BMA as

called in [160])) in the general mixed retransmission model. Furthermore, it is shown through

simulations that high link error rates generally emphasizethe effectiveness of the proposed

algorithms. Even with the optimal setting of the algorithm parameters of BMA, BAMER and

GAMER still consume less energy than BMA by up to 43 percent, and DAMER consumes

less energy than BMA up to 22 percent. Moreover, DAMER is ableto find minimum en-

ergy paths in the hop-by-hop model and leads to significant performance improvement over

existing single-path or multi-path based techniques. Although not previously mentioned in

this thesis, multi-path routing have been utilized to improve throughput or reliability, possibly

at the cost of increased energy consumption. However, in some cases ( [160], [161]), multi-

path routing may reduce the expected energy consumption. Hence, the problem of finding

the minimum energy multi-path routing is also formally analyzed in [160]. However, since

this chapter is about shortest (single) path routing algorithms, energy efficiency in multi-path

routing is beyond the scope of this study. We refer the interested reader to [160], (STPS,

OCND) [161] and (SAR) [162] for good examples of energy efficient multi-path routing.

Up to now, we have explained many shortest path based energy efficient routing algorithms

under a classification that we have done. For the sake of clarity, we illustrate this classification

in Table 3.2. The table not only shows how different routing algorithms fit under different (or

same) categories, but also, compares different routing techniques according to many criteria.

In Table 3.2, N.S. abbreviation in SPR method column indicates that the SPR method used is

not specified in algorithm (can be either Dijkstra or Bellman-Ford).
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3.3.6 Concluding Remarks About the Algorithms Mentioned inThis Chapter

Each of the aforementioned routing algorithms have their own functional advantages and per-

formance limitations. Before choosing a routing algorithmto be used in an M2M application,

one should first consider the requirements of that specific application. For example, in medical

M2M applications, algorithms minimizing delay or maximizing QoS such as EAR-Cluster,

Energy-Aware QoS, DAPR, MDML, LR-ENR, HR-ENR and FMOLD should be preferred

since in case of emergency situations, the late delivery of the patient’s vital information may

be intolerable. Certain building management applications(e.g., Structural health monitoring),

on the other hand, require the network to be available and efficient for a long time and, do not

have delay as a constraint. In such a case, energy-aware routing algorithms (described in Sec-

tion 3.3.1) that consider residual energy levels and seek tomaximize lifetime would be more

appropriate. For other monitoring applications such as Volcano monitoring [163], in addition

to aiming to maximize the network lifetime, it is vital to consider the amount of retransmis-

sions caused by the poor channel quality in the environment.Packet retransmissions may

severely decrease network lifetime. So, in such an application, retransmission-aware energy

efficient routing algorithms such as RA, MRPC, CMPRC, BAMER, GAMER and DAMER

could be more useful. We refer the reader to Table 3.2 in whichwe have classified all of the

algorithms considered in this chapter with respect to criteria and characteristics that we de-

termined as significant and relevant. We intend this as a reference chart for algorithms and/or

link cost metrics for different applications. In Section 3.4, we provide a brief account of link

cost metrics that can be used in accordance with the discussed algorithms.

Among the many algorithms mentioned in this chapter, CMAX, OML, FML, EURo and

Keep-connect algorithms are the most promising in terms of the sole objective of prolong-

ing the lifetime of a network. CMAX and OML algorithms are among the most robust and

well-known among these and often serve as benchmarks. Many recently proposed energy

aware routing algorithms (such as [125], [126], [126], [157] and [164]) have been compared

to CMAX and OML. FML outperforms OML and seems to be the best alternative in terms of

lifetime maximization (when link error rates or SINR is not taken into account). Moreover, its

two extensions; namely, multi-hop extension [143], delay extension [152] make it attractive

for the research community. The EURo algorithm, on the otherhand, is unique in the sense

that it considers both residual energy and SINR in its link cost definition. Its optimization
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Table 3.2: Comparison of energy efficient unicast routing algorithms considered in this thesis

(Part I)
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Table 3.2: Comparison of energy efficient unicast routing algorithms considered in this thesis

(Part II)
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based approach comes at significant complexity cost. Finally, the Keep-connect algorithm

proposed in [1], called MTEKC, is interesting since, as stated by the authors, it explicitly

considers network connectivity in performing the routing task. Although there is novelty in

the routing, the link cost metric used in accordance with theconnectivity weights is quite

conventional. We believe that it could be interesting and worthwhile to use more complex

link costs in accordance with the connectivity weights. This could improve performance in

terms of connectivity as well as network lifetime. Finally,there are other recently reported

shortest path based energy efficient solutions that have not discussed within the scope of this

thesis [165], [166], [167], and, [168].

3.4 A Brief Account of Link Cost Metrics

As stated before, one of the main objectives of this study is to provide a useful reference for

those who are interested in developing their own shortest path based energy efficient routing

algorithms with new and more efficient metrics. Therefore, up to now, we have described

many shortest path based algorithms by focusing on the link cost metric that they use. How-

ever, in literature, there are several efficient metrics which are not used in accordance with an

algorithm. Hence, in this section, we present a brief discussion on some of these efficient rout-

ing (link cost) metrics; ETX [150], [169], ETT [170], MTM [171], MIC [172], mETX [173],

ENT [173], Link Inefficiency [174], and, RLQ [175]. The reason why we have chosen espe-

cially these routing (or link cost) metrics is that all of them can be used in accordance with a

shortest path based (or a least cost based) algorithm. Moreover, these metrics are among the

well-known metrics proposed in the literature.

One of the earliest proposed metrics is the ETX (Expected Transmission count) metric which

was proposed by De Couto et al. [150], [169]. ETX is defined as the expected total number

of packet transmissions (including possible retransmissions) that is needed for successfully

delivering a packet to the destination through a wireless link. The ETX metric incorporates

the effects of link loss ratios, the asymmetry of the loss ratios in the two directions of each link,

and, the interference among the successive links of a path. The ETX of a link is calculated

using the forward and reverse delivery ratios of the link. The forward delivery ratio,df ,

is the measured probability that a data packet successfullyarrives at the recipient (packet

success probability (PSP) or packet success rate (PSR)). The reverse delivery ratio,dr , is the
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probability that the acknowledgement (ACK) packet is successfully received. These delivery

ratios are measured as described in [150], [169]. The expected probability that a transmission

is successfully received and acknowledged isdf ∗ dr . A sender will retransmit a packet that is

not successfully acknowledged. Hence, the expected numberof transmissions, ETX of a link

l, is:

ETX=
1

df ∗ dr
(3.58)

The weight of a path is defined as the summation of the ETX’s of all links along the path.

Hence, ETX is an isotonoic metric. The isotonic property of ametric means that the metric

ensures that the order of weights of two paths is preserved ifthey are prefixed or appended

by a common third path. Isotonicity is the necessary and sufficient condition of a routing

metric for the existence of efficient algorithms (Dijkstra or Bellman-Ford) to find minimum

weight (or least cost) paths. Hence, ETX metric is appropriate for any minimum weight (or

shortest cost path based) algorithm. Measurements on a 29-node wireless test-bed [150] show

that ETX finds routes with significantly higher throughputs than a minimum hop-count metric

and, it becomes more useful to use ETX as network grows largerand paths become longer.

However, despite its benefits, ETX has some drawbacks. It does not consider interference and

the fact that different links may have different transmission rates.

An evolution to ETX is the Expected Transmission Time (ETT) metric [170], [172]. Instead

of computing the number of tries, ETT metric computes the expected MAC layer duration for

a successful transmission of a packet on a particular link. This way, the metric accounts for

different link transmission rates. The relationship between ETT and ETX of a linkl can be

expressed as:

ETTl = ETXl
S
Bl

(3.59)

whereS is the packet size and,Bl is the transmission rate of linkl. Similar to ETX, the weight

of a path is simply the summation of the ETT’s of the links on the path. Hence, ETT is also an

isotonic metric. Therefore, it can be used in accordance with any shortest path (or least cost)

based algorithm. By measuring the link capacities, ETT has the main advantage of increasing

the throughput of a path, and, the overall performance of thenetwork. However, ETT has
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some drawbacks. Although it overcomes the different transmission rates problem of ETX,

it still does not fully capture the intra-flow (two nodes transmitting packets from the same

flow) and inter-flow (among concurrent flows) interference inthe network. To reduce intra-

flow interference, Weighted Cumulative ETT (WCETT) was proposed by Draves et al. [170].

However, this metric is not an isotonic metric and therefore, it will not be explained in this

thesis. We refer the interested reader to [170] and [172] formore information about this

metric.

A similar metric to ETT, called Medium Time Metric (MTM), wasindependently proposed

by Awerbuch et al. [171]. MTM is an additive (and isotonic) metric that allows any shortest

path routing protocol to select a high throughput path. The MTM assigns a weight to each

link that is proportional to the amount of medium time used bysending a packet on that link.

The medium time for linkl and packetp is defined as:

τ(l, p) =
overhead(l) + size(p)

rate(l)

reliability(l)
(3.60)

whereoverhead(l) is the amortized average per-packet overhead of linkl and, reliability(l)

reperesents the fraction of packets which are successfullyreceived over linkl. As it can be

observed from equations (3.59) and (3.60), there is an one-to-one correspondance between the

terms used in both equations.size(p), rate(l), 1/reliability(l) terms in eq. (3.60) correspond

to S, B and, ETX terms in eq. (3.59) respectively. The only difference between ETT and

MTM metric is that unlike ETT, MTM accounts for the MAC related overheads. Since the

weight of any given path is computed by adding all MTM metricsof consecutive links on that

path, shortest path protocols that use MTM find paths that minimize the total transmission

time. MTM has several advantages; such as minimizing mediumtime consumption and thus,

maximizing path capacity and, residual capacity availableto other flows. The experimental

results [171] show that the MTM achieves significantly higher throughput then alternative

metrics (such as Min. hop and ETX).

The Metric of Interference and Channel switching (MIC) [172], is an interference-aware rout-

ing metric which improves WCETT by solving its problem of non-isotonicity and the inability

to capture inter-flow interference. The inter-flow interference problem, is solved by the fol-

lowing definiton of the MIC. The MIC of a path withN links is defined as:
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MIC =
1

Nn ∗min(ETT)

N∑

i=1

IRUi +

Ni=1∑
CSCi (3.61)

whereNn represents the total number of nodes in the network and,min(ETT) is the minimum

ETT in the network. For a given link,IRU is the aggregated channel time of neighboring

nodes that transmissions on the current link consumes and, CSC represents the intra-flow

interference. The non-isotonicity problem is solved by decomposing the MIC into virtual

nodes [172] while applying minimum weight path finding algorithms such as Dijkstra’s al-

gorithm. Despite its advantages such as isotonicity and taking both inter-flow and intra-flow

interference into account, MIC has some drawbacks. One of these drawbacks is the overhead

required to maintain update information of the ETT for each link. Because, depending on

traffic load, this can significantly affect the performance of the network. Another drawback is

the fact that CSC captures intra-flow interference only in two consecutive links.

Besides interference, one of the most important problems ofthe wireless multi-hop networks

is the fast link quality variation. Metrics based on averagevalues computed on a time interval,

such as ETX, may not follow the link-quality variations. To overcome this problem, Koksal

and Balakrishnan [173] proposed two quality-aware routingmetrics: modified ETX (mETX)

and Effective Number of Transmissions (ENT). mETX proposes a more accurate model to

estimate the expected transmission count (ETX) of a single packet for time-varying links. The

model assumes that the bit error probability (BER) is a non-iid (independent and identically

distributed) stochastic process. Under the assumption of this model, mETX works at the

bit level and, computes the mean number of transmissions by summing the first two order

statistics (mean and variance) of the BER over a packet duration. Specifically, mETX is

expressed as:

mETX= exp(µΣ +
1
2
σ2
Σ) (3.62)

whereµΣ andσ2
Σ

are the average channel BER and variability of the channel BER respectively.

Similar to the ETX, mETX is an additive metric. Therefore, itcan be used in accordance

with a shortest path based algorithm. By combining the impact of average and variability of

the loss rate, mETX provides a significant reduction in network loss rate and, improves the

network performance. However, when maximizing the total throughput problem is combined
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with the packet loss rate constraint, mETX may not be sufficient since the links selected by

mETX may achieve the maximum link-layer throughput but incur high loss rates at the same

time. ENT metric is proposed to deal with the problem of optimizing total throughput, while

bounding the packet loss rate visible to higher-layer protocols. If a link causes a number of

expected transmissions higher than the maximum tolerated by an upper-layer protocol (such

as TCP), ENT excludes this link from the routing computationand assigns to it an∞ metric.

Otherwise, it uses the following routing metric:

ENT = exp(µΣ + 2δσ2
Σ) (3.63)

As shown in both experimental and simulation results provided in[173], mETX and ENT can

achieve a 50 percent reduction in the average packet loss rate as compared to ETX.

Up to now, we have mentioned many efficient metrics; ETX, ETT, MTM, MIC, mETX, and,

ENT. Although these metrics can be combined with energy-efficient metrics in order to re-

duce the energy consumption in the network (e.g. MDML algorithm described in section

3.3.3.4), their main objectives are not energy-efficiency related. Now, we will describe two

metrics that are especially designed for energy-efficiency purposes; Link Inefficiency [174],

and, RLQ [175].

The Link Inefficiency metric is a link quality based cost metric which was proposed by Lal et

al. [174] for energy constrained wireless sensor networks.By assuming that an ARQ protocol

is employed on every link and therefore, a node will need to repeat the transmission of a

packet until it is correctly received, Lal et. al. defines thefollowing cost metric for linki as

Link Inefficiency at timet:

I i(t) =
1

PSPi(t)
(3.64)

where PSPi(t) is the probability that a packet will be successfully transmitted over link i.

When a link gets worse, the packet success probability decreases and therefore, the ineffi-

ciency increases, corresponding to a larger amount of energy spent on that link due to re-

transmissions. Therefore, the expected energy consumption on link i is proportional toI i .

Hence, minimizing the sum of the Link Inefficiency metrics of all links along a path, means
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minimizing the expected energy consumption along that path. It is also shown that Link Inef-

ficiency is essentially determined by one or two simple statistics of the channel, such as deep

fade probability, and probability of SNR being over a certain threshold, especially in indoor

environments where channel memory is significant.

Keeping the energy expense at a minimum is directly related to fast channel measurements.

However, estimating the probabilities (that will be used for computing the Link inefficiency

metric) in a short time is hard due to link quality variations. Hence, Lal et. al. [174] devise a

method for estimating link inefficiency metric in a short time and an energy efficient way. In

order to do this, the authors first model packet transmissionas a probabilistic process and then,

study wireless link quality variation over a sufficiently long period of time for various link

configurations. The study shows that only a few measurementsof the channel are sufficient to

obtain a good estimate of the Link Inefficiency metric and hence, design an efficient topology.

Another metric which is especially designed for energy efficiency purposes is the Resource-

aware and Link Quality based (RLQ) metric [175]. RLQ is a combined link cost metric which

is based on both the energy efficiency and the link-quality statistics. The main objectiveof

the RLQ metric is to adapt to varying channel conditions and at the same time exploit the

heterogeneous capabilities in WSANs (Wireless Sensor and Actor Networks). In WSANs,

there exist two kinds of nodes; one type is the battery-powered sensor node whereas the other

type is the line-powered actor node. The RLQ metric for a linkbetween any two nodes is

defined as follows [175]:

Clink = ηtxαtx + ηrxαrx (3.65)

whereαtx andαrx can take one of the following values depending on the type of anode: 0

for line-powered actor nodes and, 1 for battery-powered sensor nodes and,ηtx, ηrx are the

normalized energy costs for the transmitter and the receiver:

ηtx = [(Ctx−data+Crx−ack)Elink]x[1 + (1−
Etx−res

Etx−init
)]y (3.66)

ηrx = [(Crx−data+Ctx−ack)Elink]x[1 + (1−
Erx−res

Erx−init
)]y (3.67)
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whereCtx andCrx represent the energy consumption during transmission and reception, re-

spectively. Here,Etx−init , Erx−init , Etx−res and, Erx−res represent the initial and remaining

energy levels of the transmitter and receiver, respectively. Elink is the expected number of

transmissions and, it is computed as:

Elink =

K∑

i=0

i(1− PRR)iPRR (3.68)

wherePRRstands for the Packet Reception Rate and,K is the maximum number of retrans-

missions performed before ignoring the packet. As it can be seen from the formulation above,

the RLQ metric not only considers both the transmission energy and the receiving energy,

but also, it considers the residual (remaining) energy of a node and possible number of re-

transmissions. Hence, RLQ is a very efficient metric in terms of both energy efficiency and

reliability. Performance evaluations, via test-bed experiments [175], show that the RLQ met-

ric can achieve high performance in terms ofPRR, network throughput and, the network

lifetime.
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CHAPTER 4

RESOURCE MANAGEMENT AND SCHEDULING IN WSNS

POWERED BY AMBIENT ENERGY HARVESTING

This chapter investigates the state-of-the-art resource allocation and scheduling schemes/

algorithms that could be used for sustainable operation of industrial WSNs.

4.1 Algorithms

4.1.1 SSEA and ASEA Schemes

In [176], the authors present both basic and advanced expectation models for solar energy har-

vesting. Based on these expectation models, they suggest energy allocation algorithms, SSEA

(Simple Solar Energy Allocation), ASEA (Accurate Solar Energy Allocation), to achieve op-

timal use of harvested energy. Both algorithms operate based on time-slots. Assuming that

the cycle of energy harvests has a period ofT, and thatT is divided into sub-periods (called

slots) of equal length, the base energy harvest expectationincreases during morning slots,

decreases during afternoon slots, and stays nearly zero during the night. The basis of the

expected harvest for each slot reflects relatively long-term tendencies such as seasonal or

monthly trends. Nevertheless, short-term conditions, i.e., temporary environmental condi-

tions are also important, especially in locations or seasons with frequent weather changes.

Therefore, an “advanced” energy expectation that factors in faster weather dynamics is also

computed.

Both algorithms focus on allocating energy fairly over time, leading to a more stable applica-

tion performance, while at the same time maximizing utilization of the energy harvest. The
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SSEA algorithm is designed for a resource-constrained sensor. It uses a basic expectation

model. Thus, it is simple, and has low overhead, but it sacrifices some degree of effectiveness

in energy allocation. SSEA operates as follows: (1) Determine the amount of residual energy

stored in the battery, and the expected amount of energy to beharvested during each slot. (2)

Using this information, find an appropriate energy budget for every slot in a harvesting cycle.

(3) Then, go to sleep until the start of the next harvesting cycle. ASEA algorithm, on the other

hand, is based on an advanced expectation model, and is suitable for a node which needs a

more precise energy allocation and has adequate resources to support additional computation,

as it comes with a higher overhead than the SSEA scheme. Basedon the expectation of har-

vested energy, ASEA solves a linear programming problem at every start of each slot [176],

and calculates the energy to be allocated for the next slot.

Both algorithms are reported to dramatically reduce the number of occasions on which a

node stays in sleep mode during an entire slot [176]. When compared to the ideal scheme

(which assumes that the amount of energy that will be harvested during the harvesting period

is known a priori), ASEA is shown to achieve results closest to those of the ideal scheme in

all respects, and SSEA comes next.

4.1.2 A Practical Flow Control Scheme

Noh and Kang [31] develop a practical flow control (called PFCin this thesis) algorithm that

aims to maximize the amount of data collected by both flow-centric1 and storage centric2

WSNs. The algorithm is distributed and operates in a time slotted system. It cooperates with

an energy allocation algorithm (called Simple Solar EnergyAllocation (SSEA) in [176]) so

as to use the harvested energy optimally. Under the constraints of the energy allocated to each

time slot, at the start of every time-slot, the algorithm determines an appropriate flow-rate

of the outgoing links, while aiming to maximize its utilization of the energy budget for this

slot. The algorithm tries to maintain an ABP (Adaptive Back Pressure) super-flow as long as

possible, and thus, it can be seen as a modified version of the adaptive flow control algorithm

proposed in [177].

1 When there is a sink node in the network, WSN works as a flow-centric network and aims to maximize
throughput to the sink node.

2 When the network operates without a sink, it operates as a storage-centric network with the aim of mini-
mizing the amount of data loss due to storage constraints.
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Mainly, the algorithm operates as follows: In a time-slotted system where the unit block for

energy allocation is slot, it is assumed that, each slot is divided into several sub-slots; the

unit blocks used for determining the transfer rate. Under this setting, each node determines

the transfer rate of each of its outgoing links at the beginning of each sub-slot, and maintains

this rate during the duration of a sub-slot. The transfer rate is computed by the transfer rate

determination algorithm proposed in [31] which is designedto maintain the ABP superflow

during a sub-slot. After the node determines the transfer rate for all outgoing links during a

sub-slot, it checks whether it has enough energy to operate during that sub-slot. If it finds

that there is not enough energy to sustain the node, the algorithm is terminated while making

the node go into sleep mode and setting wake-up time to the start of the next slot. The

flow-control scheme is shown to produce [31] the lowest amount of data loss (for the case

of storage-centric WSN) as well as the highest throughput, proving that it can maximize the

amount of collected data by the sink while balancing the dataefficiently when the network

operates in the flow-centric mode.

4.1.3 Fixed Power (FP), Minimum-Interference (MI) and Multi-Sink (MS) Power Al-

location Schemes

FP, MI, and MS are simple, location-based power allocation algorithms [178] developed for

structural monitoring applications with multiple sinks. Note that, all these schemes assume

that energy harvesting nodes can only communicate with the sinks, not with each other. More-

over, as they do not consider energy harvesting statistics,all algorithms operate such that a

data packet is sent to the sink(s) whenever sufficient energy is accumulated. FP is the simplest

power allocation scheme since it assigns the same (fixed) transmit power (P) to all nodes. Tan

et. al. report in [178] that, for FP, a largeP permits direct communication with more sink(s)

(causing multi-sink redundancy), but, not only it results in a longer harvesting period, but also

introduces the near-far effect3. Assigning lowP, on the other hand, shortens the harvesting

period and reduces the level of interference, at the expenseof reducing the scope for exploit-

ing multi-sink redundancy. MS and MI schemes are designed sothat powers are assigned

according to nodes’ proximity from the sinks, i.e.,P for each node depends on its commu-

nication range and distance from the sink. MS is a multi-sinkscheme, where each node is

3 Near-far problem: At higher node densities, contention becomes more severe resulting in nodes closer to
the sink becoming more favored.
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assigned a power level just sufficient to communicate with its nearestj sinks. MI is the spe-

cial case of MS, where j= 1, i.e., each node is able to communicate only with its nearest

sink. This scheme minimizes the interference and near-far effect, while ensuring connected-

ness. According to the simulation results obtained for various node densities [178], FP poses

a trade-off between throughput and fairness: throughput is maximized at lower powers at the

expense of fairness and vice versa. The MS scheme does not perform as expected (close to

MI) as the interference outweighs the potential benefits of multi-sink redundancy. Finally,

by assigning the minimumP required for each node to communicate with its nearest sink,

the MI scheme enables more nodes (from different locations) to have successful simultaneous

transmissions, causing its superior performance in terms of throughput, data reliability and

fairness.

4.1.4 QuickFix/SnapIt Algorithms

QuickFix and SnapIt [179] were proposed as two different algorithms that work in tandem, to

maximize the network utility, i.e., the sum of the utility functions of the nodes, with the aim

of achieving proportional fairness in a slotted-time system. The system is designed in such

a way that the time during a day is broken into multiple time intervals called epochs, where

each epoch consists ofτ slots. Quickfix is an efficient dual decomposition and subgradient

method based algorithm that operates within each epoch, to reveal the feasible region and the

optimum solution differing in each epoch. It exploits the special structure of a DAG (Directed

Acyclic Graph) to form an efficient control message exchange scheme, which is motivated by

the general solution structure of a dynamic program. QuickFix offers a distributed solution

that does not require any knowledge of the future rechargingrates. Moreover, it can efficiently

track instantaneous optimal sampling rates (for every slot) and routes in the presence of time-

varying recharging rates. However, QuickFix’s solution tothe proposed utility maximization

problem depends on the average (long term) energy replenishment rate of a node and not the

state of the battery. Hence, if fluctuations in recharging happen at a faster time-scale than the

convergence time of QuickFix, undesired battery outage andoverflow scenarios may arise,

causing missed samples and lost energy harvesting opportunities respectively. Therefore, Liu

et. al. introduce a localized scheme called SnapIt that usesthe current battery level to adapt

the rate computed by QuickFix with the goal of maintaining the battery at a target level, i.e.,

chosen as the half of the local battery state in [179]. SnapItchooses the rate, independently at
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each nodei based on the current state of the battery as follows: the ratefound by QuickFix is

reduced byδi (different for each node) if the battery is less than half full, and, is increased by

the same amount when it is more than half full. We refer the interested reader to [179], for the

effect of δ on the performance of QuickFix/SnapIt. In [179], QuickFix/SnapIt is compared

to a modified version of IFRC (Interference-aware Fair Rate Control) [180], a backpressure-

based protocol, which aims to achieve max-min fairness in WSNs. The results show that the

two algorithms, working in tandem, can increase the total data rate at the sink by 42% on

average when compared to IFRC, while significantly improving the network utility.

4.1.5 DRABP and NRABP Schemes

Gatzianas et. al. [181] model energy harvesting as a time-varying process and consider jointly

managing the data and battery buffers (queues). The authors consider infinite data buffer and

finite battery buffer sizes. They assume that the energy harvesting process is memoryless (it

is claimed that, for a more general process, a slot analysis can be applied whose complex-

ity will grow with the network size). Two policies (DRABP andNRABP) with decoupled

admission control and power allocation are proposed with the goal of maximizing the total

system utility (the long-term rate achieved per link) whilesatisfying energy and power con-

straints. They are carefully crafted modifications of the ABP-based policy of [182], which

is known to achieve the optimal utility in the infinite battery scenario (non-rechargeable bat-

teries). DRABP (Downlink Rechargeable Adaptive Backpressure Policy) is developed for

downlink scenarios, whereas NRABP (Network Rechargeable Adaptive Backpressure Pol-

icy) is developed for multi-hop networks (ad hoc networks, sensor networks, etc.). DRABP

is proven to be asymptotically optimal [181] when all nodes have sufficiently large battery

capacities. Both schemes operate on virtual queues, which are constructed in such a way

that any policy that stabilizes them also satisfies the appropriate long-term constraints. Since

our main concern is WSNs, we focus on NRABP and refer the interested reader to [181] for

details of DRABP.

NRABP operates as follows: (1) At the beginning of slott, observe the virtual data queues

and select appropriate packets for admission into the network layer, for every link, as the

solution to the related problem described in [181]. (2) Observe the channel state, and, choose

a power vectorP(t) = (P1(t), ...,PL(t)) for each node ( wherePl(t) is the selected transmission
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power in link l during slott), based on the constraints on the power-related virtual queues of

each link, and the result of (1). (3) Update the states of all queues according to the number of

bits that have arrived and departed in this stage. It is shownin [181] that, under NRABP, all

queues are bounded and thus, NRABP stabilizes any multihop network. Performance bounds

on NRABP can be found in [183].

4.1.6 Duty Cycling and Power Management Algorithm

Reddy et. al. [184] develop a suboptimal duty cycling and power management algorithm

(which we call DC-PM) for a single hop WSN, whereK EHS (Energy Harvesting Sensor)

nodes communicate with a powered destination over a wireless fading channel. The algo-

rithm manages the power harvested at the individual nodes and duty cycle across them to

avoid collisions in order to maximize the average sum data rate, subject to energy causality

constraint, ECC (called energy neutrality constraint - ENCin [184]), at each node. The al-

gorithm is build on two basic assumptions: (i) Time is slotted, with each constant channel

(CC) slot of duration equal to the coherence timeTc of the channel. (ii) The harvested power

at each node is assumed to remain constant for a constant power (CP) slot which contains a

large number of CC slots. DC-PM consists of an inner stage (IS) of optimal duty cycling over

the CC slots within each CP slot and an “outer stage" of power allocation across the constant-

power slots while satisfying ECC at each of the nodes. Although suboptimal, the solutions to

both stages are very simple in form and thus convenient for implementation.

The outer stage sets the short-term power constraints with the goal of maximizing the long-

term expected sum data rate, subject to long-term energy causality at each node. It essentially

solves the power management problem for a virtual sensor whose harvested power equals the

sum harvested power across the nodes. The resulting power allocation scheme is to assign a

clipped version of the sum harvested power across all the nodes, where the clipping thresh-

olds are set to maximize the average sum throughput, subjectto a sum power ECC. Hence,

the average sum throughput depends only on the sum harvestedpower and its statistics. IS

determines the duty cycles of the nodes that maximizes the average data rate (expected sum

throughput) within a CP slot. It requires that the duty cycleallotted to each node be pro-

portional to the power consumed by it in the CP slot, i.e., theduty cycle allocated to each

node is the fractional allocated power of that node relativeto the total allocated power. The
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transmission depends on the channel gain threshold at each node, which is noted to be the

same [184] at all the nodes within a CP slot. DC-PM is shown to outperform other naive

schemes mentioned in [184], such as equal duty cycling with scheduling, and optimal duty

cycling without scheduling.

4.1.7 MAX-UTILITY and MAX-UTILITY-D Algorithms

MAX-UTILITY [185] is an epoch-based (harvested energy is modeled as an epoch-varying

function), polynomial-time, and centralized rate allocation algorithm, designed to maximize

total network utility, i.e., the aggregate utility of all nodes. It is applicable to arbitrary util-

ity functions that are concave and non-decreasing. MAX-UTILITY exploits the concavity of

the chosen utility function, and a special property of tree-based networks to allocate rates to

nodes as evenly as possible for achieving the main goal of utility maximization, while main-

taining the minimum sensing rate required by the application and energy neutral operation

for every node. The algorithm is shown to be optimal [185] in terms of assigning rates to

individual nodes to maximize overall utility, while ensuring energy-neutral operation. MAX-

UTILITY runs in multiple iterations, assigning rates to a subset of nodes in each iteration.

The algorithm uses one global variable and three per-node variables that are updated from

iteration to iteration. The global variable is a set containing all the nodes in the network that

have been assigned rates so far. The per-node variables are;the remaining capacity of node

i, the set of unassigned nodes in nodei’s subtree, the maximum common rate for unassigned

nodes in nodei’s subtree. In each iteration, MAX-UTILITY picks a criticalnode (the node

with the least common rate among many unassigned nodes) of the current tree, and assigns

its rate to the unassigned nodes in the cirital node’s subtree, then, it produces a pruned tree

by removing any newly assigned nodes. MAXUTILITY stops whenrates are assigned to

all N nodes. The distributed version of MAX-UTILITY is also available, MAX-UTILITY-

D [185]. MAX-UTILITY-D is an entirely feasible alternativeto MAX-UTILITY, and allows

sensor nodes to collaboratively produce optimal rate assignments. It only requires a single

coordinator node such as a routing tree root, which can be anynode in the network. Each

iteration of MAX-UTILITY-D consists of two stages: (1) determining the minimum common

rate and the critical node in the tree, by requiring all the nodes to forward their maximum

common rate for the unassigned nodes in their subtree, to theroot. (2) Requiring the root to

disseminate the minimum common rate discovered in (1), across the network, so that all unas-
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signed nodes in the subtree of the critical node can receive and use this rate as their packet

rate. MAX-UTILITY is a fast and efficient algorithm that can operate with various utility

functions, and has an run time ofO(N3), whereN is the number of nodes. When compared

to an alternative heuristic called Random Rate Augmentation (RRA), proposed by Zhang et.

al. [185], MAX-UTILITY is claimed to deliver superior utility improvement while ensuring

energy neutral operation for all nodes.

4.1.8 NetOnline Algorithm

NetOnline is a distributed low-complexity algorithm heuristically developed for maximizing

the throughput over a finite time horizon, in a sensor networkwith energy replenishment. The

main motivation for this development [186] is the fact that,while the finite-horizon through-

put optimization problem can be formulated as a convex optimization problem, its solution

suffers from high complexity brought about by strong dependenceof current decisions on

future performance,time coupling property4.

The NetOnline algorithm is comprised of two stages: (1) finding a throughput maximizing

energy allocation throughT slots, (2) routing. In part I, it is assumed that the energy re-

plenishment (energy harvesting) profile can be estimated (predicted) for that period, ahead of

time. Every node performs the following operations: Calculate the lower bound on the energy

allocation from the lower-bound of the estimated replenishment profile, via the shortest-path

solution (SPS)5, i.e. SPS is shown to be optimal for a single node case [186], when the replen-

ishment rate profile for the entire finite-horizon period is known in advance. Then, based on

these estimations and current amount of recharging (harvesting), determine the energy to be

allocated for each slot. In Part (2), the main concern is to determine the amount of data in the

outgoing links of each node for the corresponding destination node in time slott. The routing

in each slot is determined by solving a simple linear programming (LP) problem. Since the

defined problem is also a convex optimization problem, the authors use duality and the La-

grange multiplier method to get the optimal solution. The NetOnline algorithm is shown to

be optimal under homogeneous replenishment profiles with perfect estimation for all nodes.

Chen et. al. reports in [186] that, in more general settings,the algorithm significantly out-

4 In a time-slotted system, if energy is overused in a previousperiod, the total throughput attainable over the
time horizon will decrease as a result. On the other hand, if energy is underused in a previous period, the total
throughput will also decrease, even though there is no wasted energy.

5 The shortest path is calculated using the linear time algorithm in [187], whose complexity is O(T).
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performs a state-of-the-art infinite-horizon based scheme(NRABP proposed by Gatzianas

et.al. [181]), and it achieves empirical performance closeto optimal.

4.1.9 The Joint Rate Control, Power Allocation and Routing Algorithm

The joint rate control, power allocation and routing algorithm [39] (called RC-PA-R in this

thesis) is a resource allocation algorithm developed for multihop networks operating in a time-

slotted setting, under node-exclusive interference model. The algorithm jointly controls the

data queue and battery (energy) buffer to maximize the long-term average sensing rate of an

energy harvesting wireless sensor network under certain QoS constraints for the data and bat-

tery queues. The resource allocation part of the algorithm consists of two components: a rate

control (RC) component and a power allocation (PA) component. Both components are index

policies, i.e., the solutions depend on the instantaneous values of the system variables and

thus, they are memoryless. The algorithm can either be implemented in a centralized or dis-

tributed manner depending on the algorithm used for the (RC)component. For the centralized

version, the classical Maximal Weighted Matching (MWM) algorithm [188] is used whereas

the distributed version employs the Maximal Matching (MM) based algorithm as in [189].

RC decides on the amount of data that will be sensed, by comparing all available data with

a finite tunable approximation parameter that controls the efficiency of the algorithm. Thus,

the rate controller makes sure that the data queue remains within a certain bound, making a

positive effect on the battery (energy level) as well, since a certain portion of the data packets

are not allowed into the transmitting node. PA solves a simple convex optimization problem

in each time slot to determine the powers to be allocated so that no node transfers data of a

flow to a relay node that is not the destination of that flow, unless the differential backlog for

that flow is greater than a fixed value, which is chosen such that the resulting backlog of the

receiving node is not larger than that of the transmitting node after the transmission. Thus,

the data flow is pushed from the source node to the destinationwith a positive back pressure.

It is shown through both analysis and simulation [39] that the performance of the proposed

algorithm is close to that of the optimal solution. Specifically, as V increases, the average

total sensing rates of the MWM and MM based algorithm are reported to keep increasing and

get closer to the optimum and a value that is much larger than half optimum, respectively.
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4.2 Comparison of the Algorithms

After having described several promising candidate algorithms above for possible application

in energy harvesting industrial WSNs, we shall now comparatively address the drawbacks,

advantages, and possible application areas of these algorithms. As a quick referral guide, a

detailed comparison of all algorithms, considered in this chapter, is provided in Table 4.1.

Table 4.1: Comparison of algorithms considered in this chapter (N.S. denotes “Not Speci-
fied”)

Despite their simplistic design, FP, MI, and MS algorithms [178] operate only in a single-hop

architecture, where a node can only be configured either as a source or a sink. Moreover, the

algorithms require the location of each sensor node to be obtained from GPS or some other

method, during deployment. The main drawback of these algorithms is that, when employed,

nodes can transmit sensed data only when sufficient energy is harvested. This may cause long

delays in terms of data delivery, i.e., when more energy is harvested, the packets will be sent,

but, when low energy is harvested, packets will be kept waiting until required energy is accu-

mulated. The best one of these three algorithms is known to beMI. Although not applicable

for event-driven applications (e.g., detection of threatsand oil spills) where data dissemina-

tion is only triggered upon the detection of abnormal phenomena, MI can be a good choice

for predictive monitoring based WSN applications such as monitoring of road infrastructure,

where sensed data is continuously being disseminated (e.g., periodically). The algorithm pro-

posed by Reddy et. al. [184], DC-PM, also operates on a singlehop network where a bunch of

energy harvesting sensor nodes communicate with a powered destination (sink), with the goal

of maximizing the sum data rate. DC-PM is the only algorithm (among the ones mentioned
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in this chapter) that considers duty cycling as a part of the optimization process. Although

centralized and suboptimal, DC-PM turns out to have a surprisingly simple form of power

allocation and duty cycling. The algorithm is suitable for applications that require simple

duty cycling and power management techniques. However, in order to implement solution, it

requires the knowledge of the sum normalized power (sum harvested energy) for every slot

(energy inter-arrival times form the slots) and its statistics.

In contrast to MI and DC-PM, QuickFix/SnapIt algorithms [179] can be used in well-structured

networks with an underlying directed acyclic network graph(DAG). The algorithms working

in tandem provide a distributed solution that does not require any knowledge of the future

recharging rates. The combination (QuickFix/SnapIt) is suitable for WSN applications that

demand proportional fairness and perpetual operation. Another advantage of QuickFix/SnapIt

over MI is that, when solar energy harvesting is used, based on the application’s minimum

rate requirement, one can determine the minimum battery level that can support the minimum

rate at night (when no, or, too little energy harvesting is available) and, trust on SnapIt al-

gorithm to maintain the battery at that level to ensure the network remains active during the

night time. However, although [179] target general multihop networks and offer an innova-

tive solution, the proposed solution (QuickFix/SnapIt scheme) is not optimal, and can incur

high control overhead and unpredictable running time, thuspotentially limiting the practical

implementation within resource-constrained WSNs. MAX-UTILITY algorithm, on the other

hand, offers a time complexity ofO(N3) for a system withN nodes. MAX-UTILITY-D, fully

distributed version of MAX-UTILITY, allows resource-constrained sensor nodes to collab-

oratively produce optimal rate assignments. A common limitation of the algorithms is that

they apply only to tree-based WSNs. As they require energy prediction, MAX-UTILITY and

MAX-UTILITY-D algorithms are not suitable for WSNs poweredby unpredictable energy

sources (such as vibration). [176] and [31] also depend on energy prediction. The proposed

algorithms, SSEA, ASEA [176], and PFC [31], are developed for WSNs that use solar energy

harvesting. SSEA and ASEA are suitable for WSNs that requireminimizing variations in the

energy allocation. Note that, there is no energy to be harvested when the sun is down. How-

ever, in some industrial applications, data needs to be collected at the same rate at all times.

SSEA and ASEA allow sensor nodes to reserve an adequate amount of energy to operate at

a constant level at all times. Hence, the target applicationof SSEA and ASEA is time-driven

WSNs, not the event-driven WSNs.
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PFC algorithm cooperates with the SSEA energy allocation scheme to maximize long-term

performance, especially the amount of data collected at thesystem level. It is suitable both for

flow-centric and storage centric industrial WSNs. In storage centric networks, the acquired

data has to be stored in the network temporarily (may be couple of days) until the sink node

is connected to the network in order to gather it. Note that, this algorithm is the only one

(among the ones mentioned in this chapter) considering storage centric networks. Hence, if

the IWSN has the ability of solar energy harvesting, and the sink node is not usually, but

only periodically, connected to the network, PFC algorithmseems to be the best choice in

terms of minimizing the amount of data loss due to storage constraints. The algorithm is a

good alternative for flow-centric networks (the aim is maximizing the throughput) as well,

since it can operate in a distributed manner. However, the algorithm can only operate in solar-

based networks and when a reasonable amount of solar data is available for prediction process

(SSEA).

When prediction is not possible (or available), approachesthat dynamically adapt to instanta-

neous energy and data buffer states are recommendable. For example, Gatzianas et al. [181]

model energy harvesting as a time-varying process and consider jointly managing the data and

battery buffers. The authors consider infinite data buffer and finite battery buffer sizes. They

assume that the harvesting process is i.i.d, and, show that under the proposed policy, DRABP,

the probability of battery state being less than the peak power or close to the full battery state

vanishes as the battery size grows. NRABP, the multi-hop version of DRABP, is also shown

to stabilize [181] any multi-hop network. Note that, if the data buffer size is infinite, the con-

cern is the stability of the data queue, while for finite data buffer, excessive data losses should

be avoided. A common drawback of the proposed schemes is that, although Gatzianas et.

al. claim that for non i.i.d processes, a slot analysis can beapplied, this operation has high

complexity and depends on the network size.

In [39], Mao et. al. consider all combinations of finite and infinite data and battery buffer

sizes by defining minimum number of virtual queues in a general format. In addition to the

constraint on the stability of the data queue (constraint onthe data loss ratio when the data

buffer size is finite), they also impose a constraint on the frequency of battery discharge.

Rather than assuming an i.i.d energy harvesting process as in [181], they allow for a general

harvesting process without assuming ergodicity, and, consider jointly managing the data and

battery buffers to deal with the coupling between them. The developed algorithm is more
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advantageous over previously mentioned algorithms, as it has a built-in routing algorithm,

and can be used in industrial WSNs requiring high long-term average sensing rate. However,

Chen et al. argue in [186] that the infinite-horizon based solutions, such as those proposed

in [181] and [39], may be highly inefficient, especially in the context of networks with energy

harvesting. The stated reason is that the harvesting profiles are time varying and may not even

be stationary and ergodic. Note that, the finite-horizon problem is important and challenging

as well because it necessitates optimizing performance metrics that are exhibited in the short

term rather than metrics that are averaged over a long periodof time. One difference between

the finite horizon problem in [186] and the infinite-horizon problem in [181] is, in the finite

horizon problem inefficiencies cannot be made to vanish to infinitely small values.This im-

plies that new techniques, such as NetOnline [186], need to be developed to mitigate these

inefficiencies. Although no comparison of NetOnline to RC-PA-R [39] exists, NetOnline is

shown to outperform the NRABP algorithm proposed in [181].

It should be noted that, depending on the requirements of thechosen WSN application (whether

long-term or short term metrics are more appropriate), battery capacity, and the type of ap-

plication, the relative performances of the various proposals surveyed in this chapter will be

perceived differently. Depending on the type of the industrial setting, the network size and the

performance criteria, we believe that one of these solutions, when appropriately tuned, will

provide an efficient resource management and scheduling solution.
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CHAPTER 5

PROPORTIONAL FAIR RESOURCE ALLOCATION ON AN

ENERGY HARVESTING DOWNLINK - PART I: STRUCTURE

In this chapter, we pose the following problem whose objective is proportional fairness among

users: How to allocate among users the transmission power and the proportion of the time

between energy harvests, to achieve a good balance between throughput and fairness in an

energy harvesting broadcast system. Specifically, we investigate the proportional fairness

based utility maximization problem in a time-sharing multi-user additive white Gaussian

noise (AWGN) broadcast channel, where the transmitter’s battery gets recharged periodically

(at known intervals). Energy is assumed to be harvested at the transmitter during the course

of transmission (or reception). The data, on the other hand,is assumed to be ready at the

transmitter before the transmission starts. We focus on finding the optimumoffline schedule,

by assuming that the energy arrival profile at the transmitter is deterministic and known ahead

of time in anoffline manner for a time window, i.e. aframe. The times at which harvested

energy becomes available and the amounts that become are known in anoffline fashion, at the

beginning of each frame. The challenge of the optimization problem is the set ofcausality

constraints introduced by the energy arrival times,i.e., energy may not be used before it is

harvested.

Analysis of structural characteristics of the problem reveals that it can be formulated as a

biconvex optimization problem, and that it has multiple optima. Due to the biconvex nature of

the problem, a Block Coordinate Descent (BCD) based optimization algorithm that converges

to an optimal solution is presented in this Chapter. It should be noted that a part of this study

appears in [62].
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5.1 System Model

There is a single transmitter that transmits toN users by time sharing on a bandwith W. The

power spectral density of the background noise isNo. Channel conditions will be supposed

to remain constant during a durationF that will be referred to as a “frame”: i.e.,gn, the gain

of usern, is chosen to be constant throughout the frame. The transmitter is equipped with a

rechargeable battery such that harvested energy becomes available at distinct instances. With

some abuse of terminology, the durations between two harvest instants will be called as “slot”.

The amount of energy harvested from the environment at the beginning of time slott is Et,

and the length of thetth slot isTt as illustrated in Figure 5.1.

Figure 5.1: Multiple frames in a timeline. The highlighted frame, framei, includesK energy
arivals. The time between consecutive arrivals is allocated to N users.

The figure shows the details of a specific frame within a timeline. Note that, the slot lengths do

not necessarily need to be equal as the energy arrivals may occur in different moments in time.

We do not restrict our problem formulation to the case of periodic energy arrivals (Tt = T

for all t ∈ {1, . . . ,K} ). In Chapter 6 however, we use periodic energy arrivals assumption

to derive the characteristics of the optimal solution of theproblem described in this chapter,

Problem 1. In thisofflineproblem, energy arrival times and amounts that will occur within the

frame are known at the beginning of the frame. For a given frame, the transmitter chooses a

power levelpt and a time allocation vectorτt = (τ1t, ..., τNt), for each time slott of the frame,

wherepnt = pt is the selected transmission power for usern during slott and,τnt is the time

allocated for transmission to usern during slott.
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5.2 Problem Statement and Structure

We define the total achievable rate for usern (the total number of bits transmitted to user

n within the ith frame),Rn =
∑K

t=1 τntW log2

(
1+ ptgn

NoW

)
. It should be noted that, with very

long transmission blocks, in terms of the fading dynamics, the ergodic nature of the fading

process is revealed. Thus, we assume that the ergodic capacity is almost achieved. Our goal

is to maximize a total utility, selected as the log-sum of theuser rates
∑N

n=1 log2(Rn), which

is known to result in proportional fairness [179]. The concept of proportional fairness and

the reasoning behind the chosen utility function is explained in detail, in Appendix A. Due

to the nature of the time and power allocation problem, and, energy harvesting procedure,

some constraints need to be satisfied when maximizing the utility function. Accordingly, we

define the following constrained optimization problem, Problem 1, where (5.1) represent the

nonnegativity constraints. The set of equations in (5.2), called time constraints, ensure that

the total time allocated to users does not exceed the slot length. The set of equations in (5.3),

on the other hand, are technical constraints included to ensure that every user gets a non-zero

time allocation during the frame. Finally, the set of equations in (5.4), called energy causality

constraints, ensure no energy is consumed before becoming available.

Problem 1

Maximize: U(τ, p) =
N∑

n=1

log2


K∑

t=1

τntW log2

(
1+

gnpt

NoW

)

subject to:τnt ≥ 0 , pt ≥ 0 (5.1)

N∑

n=1

τnt = Tt (5.2)

K∑

t=1

τnt ≥ ǫ (5.3)

t∑

i=1

piTi ≤

t∑

i=1

Ei (5.4)

wheret = 1, ...,K andn = 1, ...,N. Please note that, Problem 1 can be written as a mini-

mization problem in which the function to be minimized is−U(τ, p). Unfortunately, (1) is

a nonlinear non-convex problem with potentially multiple local minima, some of which are
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also globally optimum. Thus, we can only expect that by proper choice of the initial value,

our algorithm converges to a stationary point that is nearbythe true optimum. In order to

develop such an algorithm, we first decompose the problem into two parts (power allocation,

time allocation) and determine some characteristics that will be useful in understanding the

problem structure better. Fortunately, these characteristics lead us to Corollary 1, which we

exploit to determine the most appropriate algorithm for Problem (1).

5.2.1 Structure of the Optimal Power Allocation Problem

In this section, we assume that the time allocation,τ, is determined, and try to characterize

the structure of the optimal power allocation problem for this τ. When the only variables are

power variables, Problem 1 reduces to the following constrained optimization problem:

Problem 2

Maximize: U(p) =
N∑

n=1

fn(p)

subject to: pt ≥ 0 ,
t∑

i=1

piTi ≤

t∑

i=1

Ei (5.5)

wheret = 1, ...,K and, fn is a function of the total number of bits sent to usern:

fn(p) = log2


K∑

t=1

τntRnt

 (5.6)

andRnt represents the rate of linkn in the tth slot:

Rnt =Wlog2 (1+ Lnpt) where Ln =
gn

NoW
(5.7)

Lemma 5.2.1 will be useful to get a handle on the characteristics of the problem. Although

we claim no originality for the results of the lemma, we provide a proof for completeness.

Lemma 5.2.1 i) Let h1, . . . , hK be strictly concave functions of p1, . . . , pK respectively,

and, c1, . . . , cK ≥ 0. Then, l=
∑K

i=1 cihi is concave. If one of the ci ’s is positive (> 0),

then l is strictly concave.
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ii) Increasing concave functions of strictly concave functions are strictly concave.

Proof. The proof is provided in Appendix B.1. �

Theorem 5.2.2 Problem 2 can be formulated as a strictly convex optimization problem. Thus,

there exists only one global optimum for a given time allocation.

Proof. The proof is provided in Appendix B.2. �

5.2.2 Structure of the Optimal Time Allocation Problem

In this section, we assume that the power allocation across all slots has been determined.

Then, given that the power variables are known constants, wedetermine the characteristics of

the time allocation. So Problem 1 reduces to Problem 3, wherethe only variables are the time

variables:

Problem 3

Maximize: U(τ) =
N∑

n=1

sn(τ)

subject to:τnt ≥ 0 ,
N∑

n=1

τnt = Tt ,

K∑

t=1

τnt ≥ ǫ (5.8)

wheret = 1, ...,K, n = 1, ...,N and,sn is a function of the time variables:

sn(τ) = log2


K∑

t=1

τntRnt

 (5.9)

andRnt’s (defined in Eq. 5.7) are known constants that represent therate of linkn in the tth

slot.

Theorem 5.2.4 below records the convexity of Problem 3, and leads to one of the main re-

sults of this thesis, Corollary 1. The proof of Theorem 5.2.4rests on the observation in

Lemma 5.2.3. Although we claim no originality for the results of the lemma, we provide the

details for completeness.
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Lemma 5.2.3 i) Let q1, . . . , qK be affine functions ofτn1, . . . , τnK respectively, and d1, . . . , dK≥

0. Then, m=
∑K

i=1 diqi is affine.

ii) Increasing concave functions of affine functions are concave.

Proof. The proof is provided in Appendix B.3. �

Theorem 5.2.4 Problem 3 can be formulated as a convex optimization problem. Thus, all

local optima are global optima.

Proof. The proof is provided in Appendix B.4. �

Note that, Problem 3 is convex, but not necessarilystrictly convex. Therefore, in general,

rather than a unique global optimum, there may be multiple local optima which are all also

globally optimum.

Corollary 1 Problem 1 can be formulated as a biconvex optimization problem.

Proof. The proof is provided in Appendix B.5. �

5.3 Solution Method

In the previous section, we have shown that Problem 1 can be formulated as a biconvex

optimization problem since−U(τ, p) is a biconvex function. Such functions are well-studied

in the optimization literature [190], [58]. While not convex, they admit efficient coordinate

descent algorithms that solve a convex program at each step.In this section, we present

a block coordinate descent based algorithm, shortly BCD, for solving Problem 1. In the

BCD solution method, sequentially one block of variables isminimized under corresponding

constraints while the remaining blocks are fixed. We have thesimplest case of only two block

variablesτ and p. Hence, the algorithm alternates between minimization with respect toτ

and minimization with respect top. Our BCD algorithm operates explicitly as follows:

1. Start from any valid time allocation, for example assign each time slot to different user

in the form of TDMA. Assuming that all of the energyEt is used up until the end of

periodt, the power is determined. This power setting satisfies Eq. (5.4).
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2. Keepτnt fixed for all n and t. OptimizeU(τ, p) with respect topt, t = 1, . . . ,K and the

constraints given by (5.4).

3. Repeat the following for allt = 1, . . . ,K.: Keepτni fixed for all n = 1, . . . ,N andi , t.

Also keeppt fixed for all t. Maximize U(τ, p) with respect toτnt, n = 1, . . . ,N and

constraint in Eq. (5.2).

4. If the variables have converged, stop. Otherwise, go to Step 2.

For optimization of the time variables, the Lagrange multiplier method is used. The optimiza-

tion of the power variables, however, is accomplished by using the Sequential Unconstrained

Minimization Technique (SUMT) [191]. SUMT is an optimization method that converts a

constrained optimization problem into an unconstrained one by adding the constraints to the

objective function as a “penalty”. It then uses a standard unconstrained optimization algo-

rithm (e.g., Newton, Steepest Descent, etc.) [192], [193] to solve the problem with the new

objective function.

Regarding the issue of convergence, Problem 1 is a biconvex optimization problem and as

such potentially, there exist many local optima. Therefore, convergence to the global optimum

is not guaranteed. However, provided that some conditions are satisfied, convergence to a

partial optimum (see Definition 5.3.1) is guaranteed. As also discussed by Lin in [194],

convergence to a stationary (or critical) point, for block coordinate descent methods requires

sub-problems to have unique solutions ( [195], [144]), but this property does not hold here:

Although sub-problem 2 is strictly convex, 3 is not strictlyconvex (only convex). Fortunately,

for the case of two blocks, Grippo and Sciandrone [196] have shown that this uniqueness

condition is not needed. Hence, BCD converges to a stationary point of Problem 1. As a

stationary point can be minimum, maximum, or a saddle point,this convergence result may

not be sufficient. However, we can still use the following definition andtheorem (Definition

4.1 and Theorem 4.2 of [190], respectively) to build a stronger result. For this, letX ⊆ ℜn

andY ⊆ ℜm be two nonempty sets, letB ⊆ X × Y, and, letBx andBy denote the x-sections

and y-sections ofB, respectively.

Definition 5.3.1 Let f : B → ℜ be a given function and let(x∗, y∗) ∈ B. Then,(x∗, y∗) is

called a partial optimum of f on B, if

f (x∗, y∗) ≤ f (x, y∗) ∀x ∈ By∗ and f(x∗, y∗) ≤ f (x∗, y) ∀y ∈ Bx∗ (5.10)
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Theorem 5.3.2 Let B be a biconvex set and let f: B → ℜ, be a differentiable, biconvex

function. Then, each stationary point of f is a partial optimum.

Hence, we conclude that the BCD algorithm surely converges to a partial optimum of Prob-

lem 1. Furthermore, Theorem 4.9 of [190] shows that, when subproblems are solvable, for

BCD-like algorithms1 (There are only two block of variables, and, sequentially one block of

variables is minimized under corresponding constraints and the other block is fixed), if the

sequence generated by the algorithm is contained in a compact set, then the sequence has

at least one accumulation point. The theorem further statesthat; when one of the subprob-

lems is strictly convex, all accumulation points are partial optima, and have the same function

value (Note that while a global optimum is a partial optimum by definition, it may not be

an accumulation point. In that case, all the partial optima that are in the set of accumulation

points have strictly lower values than optimum function value.) Hence, we conclude that the

BCD algorithm surely converges to an accumulation point, which is also partial optimum, of

Problem 1, and all accumulation points (a set of partial optima) yield the same utility value.

Note that although the final allocation, (τ∗, p∗) generated by the BCD algorithm, might be a

partial optimum, it neither has to be a global nor a local optimum to the given biconvex op-

timization problem. Because, although the set of accumulation points BCD converges to are

partial optima and have the same function value, there may beother partial optima that may

have different function values. Depending on the starting point of the algorithm, BCD may

converge to a set that includes the global optimum, or a different set that includes local op-

tima, or just partial optima. According to [190], there exists a theorem, originally developed

by Wendell and Hurter [197], that describes the connection between partial and local optima

for the following biconvex minimization problem,

min
{
f (x, y) : x ∈ X ⊆ ℜn, y ∈ Y ⊆ ℜm}

(5.11)

However, as also noted in [190], the given local optimality condition is in general not suffi-

cient. Indeed, Wiesemann claims in [198] (p. 92) that, even the verification whether a partic-

ular solution to a biconvex problem is locally optimal isNP-complete. Gorski et.al. [190], on

the other hand, claims that to find the global optimum of a biconvex minimization problem

by a BCD-like algorithm (ACS [190]), a multistart version ofBCD can be used. But, still,

there is no guarantee to find the global optimum within a reasonable amount of time or to be

1 ACS (Alternate Convex Search) algorithm proposed in [190].
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sure that the actual best minimum is the global one. Hence, itseems justified to settle for the

modest goal to find a partial optimum in our case.

5.4 Numerical and Simulation Results

In this section, we present the numerical and simulation results related to BCD algorithm.

Throughout our simulations we use the following setup:W = 1kHz, No = 10−6W/Hz. Unless

otherwise stated, all powers are in Watts and all energies are in Joules. For the sake of an

example, we suppose that there are five users in the system and10 energy arrivals in 100

secs (frame length). The arrivals areE = [20, 100, 1, 1, 1, 70, 100, 1, 10, 40] joules in the

[1st, 2nd, . . . , 10th] slots respectively. The first user is the strongest one, and, other users are

ordered in a such way that the preceding user is twice as strong as the previous one, i.e., path

losses of the users are; 25, 28, 31, 34, 37 dB respectively. The starting point of the algorithm is

the “Spend What You Get” policy (proposed by Gorlatova et. al. [199]) combined with TDMA

time allocation. This policy corresponds to using all energy in the epoch it was harvested in,

and will be referred to in the rest as SG+TDMA. We performed simulations both for unequal

and equal slot lengths. In our simulations, we use the following sequence of slot sizes for 10

slots; S1 = [10, 12, 5, 7, 4, 15, 20, 2, 10, 15] andS2 = [25, 44, 14, 7, 3, 32, 47, 19, 26, 38], for

the case of unequal slot lengths, and,S̃1 = [10, 10, . . . , 10] andS̃2 = [25.5, 25.5, . . . , 25.5]

for the case of equal slot lengths. Note that,S1 and S̃1 have the frame length of 100 secs,

whereasS2 andS̃2 have the frame length of 255 secs.

First, we assume that the frame length is 100 secs, and, we illustrate the power iterations of the

BCD algorithm, forS1, in Figure 5.2. The power convergence of the algorithm for periodic

energy arrivals (̃S1), however, is illustrated in Figure 5.3. As observed from the figures, rather

than transmitting with full power, saving some energy for the future use is preferred. Another

observation is about the fast convergence of the algorithm,i.e., the powers seem to rarely

change after just a few iterations. In order to observe the effect of frame length and different

slot lengths, in Figure 5.4, we show how utility improves through the iterations for all of the

aforementioned slot length sequences, i.e.,S1, S̃1, S2, S̃2. The fast convergence of the BCD

algorithm is more evident in this figure. The optimal schedules (power and time), optimal

utility and thus, the utility improvement (when compared toSG+TDMA) obtained by BCD,

for all four sequences are presented in Table 5.1. The reasonfor comparing the proposed
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algorithm with SG+TDMA can be explained as follows: In most of the technical papers,

proposed algorithms are compared to some other previously proposed algorithms. Since what

we have done in this thesis is new, earlier work related to oursubject, “proportional fair

power and time allocation on an energy harvesting broadcastsystem”, does not exist. Hence,

there were no algorithms to compare to our proposed algorithms. Therefore, for the power

allocation, we have chosen the SG (Spend what you Get) algorithm proposed by Gorlatova

et. al. [199], since our algorithm considers spreading energy through time, but SG does not.

And, for the time allocation, we have chosen basic time division, the most simple and common

approach for dividing the channel.
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Figure 5.2: Powers vs. iterations (N=5, K=10, Unequal slot lengths): The numbers in the
legend represent the corresponding slots. Starting from SGpolicy, BCD converges to the
optimal powers in 11 iterations.

In some energy harvesting systems, transmitters have supercapacitors that can store the har-

vested energy and supply in every predetermined time window, allowing the case of periodic

energy arrivals. In such a case, if no energy is harvested within a slot, we set the amount of

harvested energy to 0 for that slot. As observed from Figure 5.4 and Table 5.1, periodic energy

arrivals assumption does not degrade the system performance. Moreover, as we have shown

in Chapter 6, by using the periodic energy arrivals assumption we can analytically derive the

characteristics of the optimal solution of Problem 1 and, develop two heuristics that closely
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Figure 5.3: Powers vs. iterations (N=5, K=10, Equal slot lengths): The numbers in the legend
represent the corresponding slots. Starting from SG policy, BCD converges to the optimal
powers in 8 iterations.

track the performance of BCD algorithm. Hence, from now on, we present results only for

the case of periodic energy arrivals in 100 secs,S̃1.

Throughput improvement is another important criteria in our problem setup. Hence, we next

investigate the throughput improvement of the users for increasing path losses. The results

are illustrated in Figure 5.5. In the figure, the Mean Path Loss, is computed as̃L = 1
N

∑N
i=1 Li

whereLi represents the path loss of useri. As seen from the figure, with minor decrease in the

throughput improvement of the stronger users, the weak users receive much more bits than

that they used to receive with SG policy and TDMA. AsL̃ increases, the overall throughput

improvement also increases. For instance, whenL̃ = 31, User 1, User 3, User 4, and, User 5

enjoy approximately 3 %, 1621 %, 361 %, 80 % throughput improvement respectively, while

User 1 suffers only 32 % of loss. Clearly, BCD is a proportionally fair algorithm which tries

to maximize the utility by meeting certain demands of every user.

We next analyze the effect of number and amount of energy arrivals. Assume that there are

six users in the system with the following path losses: 19, 22, 25, 38, 31 dB. The results

obtained for six different energy arrival sequences (two for K=10 and four for K=12) are
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Figure 5.4: Utility vs. iterations (N=5, K=10): Starting from SG+TDMA, BCD converges to
the optimal utility in 11,8,16,18 iterations for the following slot length sequences respectively:
S1, S̃1, S2, S̃2.
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Figure 5.5: Throughput improvement vs. mean path loss (N=5, K=10): Mean path loss
is computed as the mean of the path losses of all users in the system. Results represent
the throughput improvement of five users for three different path loss patterns. With minor
decrease in the throughput of the stronger users, the weak users receive much more bits than
that they used to receive with SG+TDMA.
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Table 5.1: The results of BCD algorithm for four different slot length sequences
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shown in Table 5.2. The arrival sequences are intentionallychosen similar to each other, so

that it would be easier to determine the effect of small changes on the utility improvement.

As observed, it is not the number of slots (number of energy arrivals) but the amount of every

individual energy harvest that determines the utility improvement. The events like; sudden

decrease in energy level or harvesting very small amount of energy for a long time increases

the utility improvement obtained by BCD, as SG+TDMA policy may cause the base station

to stay idle for a long time because it does not save energy forfuture use.

Table 5.2: The effect of number and amount of energy harvests

Knowing that it is not the number but the nature of harvests that affect the utility improvement,

from now on, we set the number of energy arrivals to be 10 (K=10) and the harvests to arrive

as in the 2nd arrival sequence, i.e. [20, 100, 1, 1, 1, 70, 100, 1, 10, 40] sothat we can analyze

the effect of number of users to the performance of the BCD algorithm. Keeping the number

of harvests and harvest values the same, we perform a series of simulations with different

number of users. First, the effects of the optimal power-time allocation pairs on utility,utility

improvement, and fairness are investigated. In order to be able to analyze all scenarios, in

the next three figures, we use the following setups: a) The strongest user in the system has

13 dB path loss, and, every new user that joins the system has 3dB more path loss than the

previous one. b) The strongest user has 19 dB path loss, and, every new user deviates 3 dB. c)

The strongest user has 25 dB path loss, and, every new user deviates 3 dB. Hence, 13 dB, 19

dB, and, 25 dB seen in the figures represent the path loss of thestrongest user in the system.

Figures 5.6 and 5.7 show how utility and percentage improvement in utility, respectively,

change with the increasing number of users. As seen from the figures, the solution found by

BCD exhibits significant improvement over a SG+TDMA schedule. Between two methods,

SG+TDMA is the worst one since even with a few users, utility can be improved. The results
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show that when case c) is valid, a utility improvement of approximately 20% is possible with

BCD.
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Figure 5.6: Utility (SG+TDMA, BCD) vs. no. of users: The utilities obtained by SG+TDMA
and the proposed algorithm, for increasing number of users,are compared. The effect of path
loss (the strongest user’s path loss is shown between parentheses) on utility is shown. As path
losses of the users increase the utility decreases.

Although we aim at proportional fairness in this thesis, it may be interesting to analyse max-

min fairness of the BCD algorithm. Jain’s index [200], [201]is a well-known measure of

fairness. The indexFI takes the value of 1 when there is a complete fair allocation.

FI =
(
∑N

i=1 xi)2

N ·
∑N

i=1 x2
i

(5.12)

For computingFI , we use the no. of bits transmitted to the users,xi =
∑K

t=1 τitRit for

i = 1, . . . ,N. From Figure 5.8, it is clear that SG+TDMA is worse than BCD in terms of

fairness. Especially for eight users,FISG+T DMA = 0.41 whereasFIBCD = 0.80. Although

low path losses embrace lower utility improvement, they mainly allow BCD algorithm to be

very efficient in terms of fairness,e.g., above 0.8. However as the path loss difference be-

tween users increase, completely fair allocations may not be the optimal ones. For instance,

when there are eight users in the system the path losses of theusers in case c) are; 25, 28,
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Figure 5.7: Utility improvement vs. no. of users: The utility improvement of the proposed
algorithm over SG+TDMA, for increasing number of users, are compared. The effect of path
loss (the strongest user’s path loss is shown between parentheses) on utility improvement is
shown. As path losses of the users increase the utility improvement increases, i.e, BCD’s
performance improves as the channel quality becomes degraded.

31, 34, 37, 40, 43, 46 dB, yielding an excessive difference of 23 dB between the weakest and

the strongest user. In this case, the algorithm should favoruser 1 more than it favors user

8, in order to maximize the utility function, causing a proportionally (instead of purely) fair

allocation.
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Figure 5.8: Fairness index (SG+TDMA, BCD) vs. no. of users: The fairness of SG+TDMA
and the proposed algorithm, for increasing number of users,are compared throughFI , which
takes the value of 1 when there is a complete fair allocation.The effect of path loss (the
strongest user’s path loss is shown between parentheses) onfairness is shown. As difference
among the path losses of the users increase the fairness indexes of the schemes decrease
(SG+TDMA being the worst), causing comparatively unfair allocations among users.
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CHAPTER 6

PROPORTIONAL FAIR RESOURCE ALLOCATION ON AN

ENERGY HARVESTING DOWNLINK - PART II:

ALGORITHMS

In this chapter, we show that by using the periodic energy arrivals assumption, it is possible

to analytically derive the characteristics of the optimal solution of the Problem proposed in

Chapter 5. In Chapter 5, we proved that the problem in hand is abiconvex problem and has

multiple optima. This allowed us to decompose the problem into two parts (power alloca-

tion, time allocation) and present a Block Coordinate Descent based optimization algorithm,

BCD [62], that converges to a partial optimal solution. Although BCD is guaranteed to con-

verge to a partial optimal solution and thus the partial optimal utility, it is computationally

expensive and when there are tens of users and energy arrivals, forming invertible hessian

matrices (needed for the optimization of the power variables) may be computationally ex-

cessive. Hence in this chapter, we first derive the characteristics of the optimal solution of

Problem 1 and then, build on those to develop simple and computationally scalable heuristics,

PTF and ProNTO [63] that closely track the performance of theBCD solution.

6.1 System Model

Consider a time-slotted system where each frame, of lengthFi , is divided intoK slots. There

is a single energy harvesting transmitter that transmits toN users by time sharing. Note that,

we use the same system model as in Chapter 5. However, unlike Chapter 5, in this chapter we

assume periodic energy arrivals and hence equal slot lengths (Tt = T for all t = 1, . . . ,K), as

shown in Figure 6.1, to reveal the characteristics of the optimal solution of Problem 1.

127



Figure 6.1: Problem illustration: There areK energy arivals in a frame, and, the time between
consecutive arrivals are allocated toN users.

Similar to the setting in Chapter 5, for a given frame, the transmitter chooses a power levelpt

and a time allocation vectorτt = (τ1t, ..., τNt), for each time slott of the frame, wherepnt = pt

is the selected transmission power for usern during slott and,τnt is the time allocated for

transmission to usern during slott.

6.2 Structure and Properties of the Optimal Solution

In this section, we analyze the structure and properties of the hybrid power-time allocation

policy. Remember that the utility function of Problem 1 is

U =
N∑

n=1

log2(
K∑

t=1

τntRnt) (6.1)

whereRnt represents the rate of linkn in tth slot, as in Eq. (5.7).

Let Rn = [Rn1 Rn2 . . . RnK]T andτn = [τn1 τn2 . . . τnK]T . Then, utility can be rewritten as

U =
N∑

n=1

log2(τn
TRn) (6.2)

= U1 + U2 + . . . + UN (6.3)

whereUn, the utility of usern, is
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Un = log2(τn
TRn) (6.4)

In order to reveal characteristics related to the optimal solution that will help us develop

computationally efficient and close-to-optimal heuristics, we decompose the problem into

two parts (similarly as in Chapter 5): power allocation and time allocation.

6.2.1 Structure of an Optimal Power Allocation Policy

In this section, we analyze the structure and properties of the optimal power allocation policy.

In order to do this, we assume that the time allocation is determined, and try to characterize

the structure of the optimal solution of the power allocation problem for this time allocation.

Clearly, when the only variables are power variables, Problem 1 reduces to the following

constrained optimization problem, which is equivalent to Problem 2 of Chapter 5:

Problem 4

Maximize: U(p) =
N∑

n=1

Un(p)

subject to: pt ≥ 0 (6.5)

t∑

i=1

piTi ≤

t∑

i=1

Ei (6.6)

where t = 1, ...,K and, Un is a function of the power variables (as defined in Eq. (6.4)).

In previous chapter, Chapter 5, we proved the strict convexity1 of Problem 4. Similarly,

the general problem, Problem 1, is shown to be a biconvex optimization problem that has

many local minima [62]. As Problem 4 has a unique optimum, theoptimal power allocation

changes for every given time allocation. In Theorem 6.2.1, we claim that one of the optimum

schedules of Problem 1 has a nondecreasing power schedule. Lemma 6.2.3 not only helps

us to prove our claim but also reveals that Problem 1 has multiple optima. From the proof

Lemma 6.2.3, the attentive reader can observe that any feasible permutation2 of the optimal

1 Maximizing U(p) is equivalent to minimizing−U(p) which is a convex objective function.
2 A feasible permutation is any permutation of a given schedule that does not violate the constraints described
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schedule (τ∗, p∗), described in Theorem 6.2.1, is also optimal.

Theorem 6.2.1 When all slots have equal length (Tj = T, f or ∀ j ∈ {1, ...,K}), there exists

an optimal schedule(τ∗, p∗) such thatp∗ is nondecreasing, (e.g.,p∗ = (p1, ..., pK) where

p1 ≤ p2 ≤ ... ≤ pK).

Proof. The proof is provided in Appendix C.1, and rests on Lemma 6.2.3 below. �

We shall need the following definition of a permutation of a vector sorted in nondecreasing

order of elements, for stating Lemma 6.2.3.

Definition 6.2.2 Given a vectorRn = [Rn1 Rn2 . . . RnK]T , we defineRn
↑
= [Rnπ(1) Rnπ(2) . . . Rnπ(K)]T

whereRn
↑

is a permutation (sorted in increasing order) ofRn, such that

Rnπ(1) ≤ . . . ≤ Rnπ(2) ≤ . . . ≤ Rnπ(K) (6.7)

Lemma 6.2.3 When all slots have equal length (Tj = T, f or ∀ j ∈ {1, ...,K}), for any given

schedule(τ,PC), we can find suchτ′n,R′n (whereR′n = Rn
↑
) that (τ′n)TR′n = τn

TRn for all n =

1, . . . ,N; i.e., the utility, U, does not change. Hence, if (τn
∗,Rn

∗
) is optimal, then (τ′n

∗
,R′n
∗
) is

also optimal.

Proof. The proof is provided in Appendix C.2. �

6.2.2 Structure of an Optimal Time Allocation Policy

In this section, we assume that the power allocation throughthe slots is determined. Then,

given that the power variables are known constants, we determine the structure and properties

of the optimal time allocation policy. Since, the only variables are time variables, Problem 1

reduces to Problem 5, which is equivalent to Problem 3 of Chapter 5:

in Eqns. (1)-(5.4).
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Problem 5

Maximize: U(τ) =
N∑

n=1

Un(τ)

subject to:τnt ≥ 0 (6.8)

N∑

n=1

τnt = T (6.9)

K∑

t=1

τnt ≥ ǫ (6.10)

wheret = 1, ...,K, n = 1, ...,N and,Un is a function of the time variables (as defined in Eq.

(6.4)). In Chapter 5, Problem 5 is shown to be convex. Thus, the analysis can rely on KKT

(Karush-Kuhn-Tucker) optimality conditions, which must be satisfied by the global optimum.

We start by forming the Lagrangian function as follows:

L(τ, λ, µ) = − U(τ) +
K∑

j=1

N∑

i=1

µ(N( j−1)+i)τi j +

NK+N∑

j=NK+1

µ j(ǫ −
K∑

t=1

τ( j−NK)t) +
K∑

i=1

λi(
N∑

n=1

τni − Ti)

(6.11)

whereµ’s are the Lagrange multipliers, and, the total number of constraints3 is N(K + 1)+K.

After defining the Lagrangian as in Eq. (6.11), one can construct the KKT conditions for

the optimal solution, which are presented in Appendix C.3. Please note that the optimal time

allocation should jointly satisfy the set of equations thatarise from KKT conditions. Clearly,

as the number of users,N, and, the number of slots,K, increase, the number of equations

increases dramatically making it cumbersome to write analytical solutions. Therefore, for the

sake of conciseness, we continue the analysis with the special case of two users and two slots

which allows us to construct the characteristics of the optimal time allocation policy.

Consider two consequtive slots with different power levels. Let us call the one with the least

powerthe weak slot, and the one with the highest powerthe strong slot. When the slots have

equal length (T1 = T2 = T), the optimal policy has the properties described in Lemma 6.2.4.

3 There areK equality constraints andNK + N inequality constraints.
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Lemma 6.2.4 In an optimal schedule, time allocation over the two slots (of equal length) has

the following properties:

1. The weak slot is assigned to only one of the users. The strong slot, however, is shared

between users. When both power levels are equal; if one slot is assigned to user 1 (user

2), the other slot is assigned to user 2 (user 1).

2. To whom the the weak slot will be assigned depends on two criteria: first, Γn =
Rn2
Rn1

,

which is the ratio of user n’s rate in the second slot to that inthe first, and second,

whether the strong slot is before or after the weak slot. Whenthe weak slot preceeds

the strong slot, it is assigned to the user with the smallerΓ. Otherwise (implying the

decrease in power level), it is assigned to the user with the higherΓ.

3. In a strong slot, the user that did not (or will not) receiveany data in the weak slot is

favored, i.e., more than half of the slot is assigned to that user. In order to preserve

fairness, this favoring operation is done by consideringΓ1 andΓ2.

Proof. The proof is provided in Appendix C.3. �

6.3 PTF Heuristic

In this section, we develop a heuristic algorithm, Power-Time-Fair (PTF), based on the char-

acteristics (discovered in the previous section) of an optimal power/time allocation schedule.

As also described in [63], the PTF algorithm operates as follows:

1. For Power Allocation: Assign nondecreasing powers through the slots by using the

energy harvest statistics, as follows:

(a) From a slot, sayi, to the next onei + 1: If harvested energy decreases, defer a∆

amount of energy from sloti to sloti+1 to equalize the power levels. Do this until

all powers are nondecreasing, and, form a virtual nondecreasing harvest order.

(b) By using the virtual harvest order, assign nondecreasing powers through the slots,

i.e., in each slot, spend what you virtually harvested at thebeginning of that slot.
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2. For Time Allocation: For the power allocation found in 1), let,Bnt = RntT be the

number of bits that would be sent by usern if the whole slot (of lengthT) was allocated

to that user. Assign the first slot to the user who has the maximum rate,Rnt, in that slot.

For the other slots, apply the following: At the beginning ofeach slot,t ∈ {2, . . . ,K},

determine the user with the maximumβ where,

βn =
Bnt∑t

i=1 Bni

and, assign the whole slot to that user. If multiple users share the sameβ, then, allocate

the slot to the user with the best channel.

Simulation results show that the performance of the PTF algorithm is close to the performance

of the BCD algorithm.

6.4 ProNTO Heuristic

In this section, we develop a fast and simple heuristic, ProNTO (Powers Nondecreasing -

Time Ordered), based on the optimal power allocation related characteristics discovered in

Section 6.2.1 and the simulation results obtained by running BCD algorithm for periodic

energy arrivals. The ProNTO algorithm operates as follows:

1. For Power Allocation: Assign nondecreasing powers through the slots by using the

energy harvest statistics, as done in part (1) of PTF algorithm.

2. For Time Allocation: Order the users,u1, . . . , uN, according to their channel quality

and form a user priority vector,u↓ = [u↓1, . . . , u
↓
N] whereu↓1 represents the user with

the best channel. AsK > N, Allocate every userK−mod(K,N)
N slots as follows: The first

K−mod(K,N)
N slots are allocated tou↓1, the nextK−mod(K,N)

N slots are allocated tou↓2, etc.

Add the remainingmod(K,N) slots to the most powerfulmod(K,N) users’ slots. For

example; LetK = 12 andN = 5, and the path losses of the users to be 13 dB, 17 dB,

10 dB, 12 dB, 20 dB respectively. Then, the first 3 slots are allocated to user 3, the next

3 slots are allocated to user 4, the following 2 slots are allocated to user 1, 9th and 10th

slots are allocated to user 2, and the last 2 slots are allocated to user 5.

Thus PTF and ProNTO differ only in time allocation part. The time allocation method used in

ProNTO is proposed according to the following observation:when a partial optimal solution
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obtained by BCD algorithm is modified as described in Lemma 6.2.3 and its proof, to form

the nondecreasing optimal schedule, the time allocation becomes ordered, e.g., as shown in

Table 6.2. As time allocation method used in ProNTO is simpler than the one used in PTF,

ProNTO can operate faster. Simulation results show that theperformance of ProNTO is close

to the performance of the BCD algorithm.

6.5 Numerical and Simulation Results

In this section, we present the numerical and simulation results related to PTF and ProNTO

heuristics. Throughout our simulations, we use the following setup: W = 1kHz, No =

10−6W/Hz. We assume that some amount of energy (ǫ < E < ∞ whereǫ is an infinitely

small value) is harvested every 10 seconds (T = 10), within a frame (period of known har-

vests). Note that, throughout this section, the units used for frame length, energy, and power

are; seconds, Joules, and Watts respectively. Throughout our simulations, we use four differ-

ent frame lengths; 20, 80, 100, 120. For the frame of 20 secs, we use three different energy

harvest models; [0.5, 50], [50, 0.5], [60, 20]. We define different cases for the remaining three

frame lengths;Regular, Bursty, and,Very Bursty. In Regular, the harvest amounts are close

to each other and form a regular pattern;ER = [73, 65, 9, 19, 40, 37, 22, 84, 39, 67, 81, 100].

In Bursty, there are short term sudden decreases and increases in harvest amounts, caus-

ing a bursty pattern;EB = [20, 100, 1, 1, 1, 70, 100, 1, 10, 40]. Finally, Very Burstyrepre-

sents an extreme case where the transmitter stays energy-hungry for a long time;EV =

[90, 2, 0.5, 0.1, 0.3, 0.7, 40, 60].

We start by the simplest case of two users and two slots (N = 2, K = 2, frame of 20 secs) to

compare the results obtained by BCD algorithm [62], with theoptimal ones presented in Ta-

ble C.2. Our objective in doing such a comparison is to prove the accuracy of both theoretical

and simulation results. We refer the interested reader to Appendix C.3 for the details of the

optimality table, and provide the comparison in Table 6.1. Note that as in Chapter 5, the start-

ing point of the algorithm is the Spend What You Get (SG) policy (proposed by Gorlatova et.

al. [199]) combined with TDMA time allocation (SG+TDMA). The first column of Table 6.1

shows the amount of the harvests (E1, E2). The second column represents the mean path loss

(in dB) of the two users. As observed from the table, for a given power allocation, the results

found by BCD algorithm and the optimal ones (obtained by KKT optimality conditions) are
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almost the same, verifying the consistency and optimality of the algorithm.

Table 6.1: BCD vs. optimal results for the special case of twousers and two slots

The attentive reader can observe from Table 6.1 that, when harvests decrease from one slot

to another, the optimal powers tend to be nondecreasing. Hence in that case, the algorithm

seems to be converged to the nondecreasing optimal discussed in Theorem 6.2.1. Note that,

this nondecreasing optimal could also be obtained by using the modification method explained

in Lemma 6.2.3. By using that method, we modify the results obtained by BCD algorithm to

reveal the optimal (nondecreasing) power and time allocation policies for increasing number

of users. For our analysis, we use three different path loss patterns, called,Low, Moderate,

High respectively. InLow, the strongest user in the system has 13 dB path loss, and, every

new user that joins the system deviates by 3 dB from the previous one (has 3 dB more path

loss than the preceding user). InModerate, the strongest user has 19 dB path loss, and, every

new user deviates by 3 dB. Finally, inHigh, the strongest user has 25 dB path loss, and, every

new user deviates 3 dB. Due to space limitations, we present only theBursty-Moderatecase’s

results in Table 6.2. As illustrated, when the number of users increase, BCD algorithm tends

to assign increasing powers rather than nondecreasing. Onecan also see from the table that,

no matter how many users exist in the system, ordering powersin nondecreasing order, causes

the time allocation to be ordered too. By ordered, we mean that the first slot(s) are allocated

to the user with the best channel, the next slot(s) are allocated to the user with the second

best channel, etc. , and the last slot(s) are allocated to theuser with the worst channel. This

observation constitutes the main motivation for the ProNTOheuristic.

We next use the above-mentioned energy harvesting cases (Regular, Bursty, Very Bursty) to

135



Table 6.2: Optimal time and power allocation policies vs. number of users: Found by BCD
algorithm and modified according to Lemma 6.2.3
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compare the PTF and ProNTO heuristics’ performances to thatof BCD’s. We start by testing

the utility and throughput improvement (over SG+TDMA) performances of the heuristics for

increasing path losses. For this, we set the number of users to two, i.e.,N = 2. The results are

presented in Figure 6.2 and Figure 6.3, respectively. In both figures, the Mean Path Loss, is

computed as̃L = 1
N

∑N
i=1 Li whereLi represents the path loss of useri. Hence, the three mean

path losses seen in the figures represent theLow, ModerateandHigh cases. One can observe

from Figure 6.2 that, the utility improvements of all algorithms tend to increase (or at least stay

constant) when path loss increases, and the utility improvement performances of the proposed

heuristics are very close to that of BCD’s. For the chosen cases, ProNTO outperforms PTF.

This is more obvious for theVery Burstycase. The corresponding throughput improvements

are shown in Figure 6.3. As illustrated, for the case ofN = 2, even with≈ 5% of utility

improvement, a≈ 65% of improvement in total throughput is possible. Note that, in all cases,

the performances are very close to each other.
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Figure 6.2: Utility improvement (BCD, PTF, ProNTO) vs. meanpath loss forN = 2: The
effect of mean path loss on utility improvement for the three energy harvesting cases;Regular,
Bursty, Very Bursty

In order to determine the effect of number of users to the performances of our proposed

heuristics, we next perform a series of simulations by considering all energy harvesting cases

(Regular, Bursty, Very Bursty) and different number of users. By taking average over all
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Figure 6.3: Throughput improvement (BCD, PTF, ProNTO) vs. mean path loss forN = 2:
The effect of mean path loss on throughput improvement for the threeenergy harvesting cases;
Regular, Bursty, Very Bursty

energy harvesting cases, we present the average utility improvement results in Figure 6.4, for

theModeratecase. As illustrated in the figure, when the number of users increase, the average

utility improvements of all schemes also increase. Note that, both heuristics closely track the

BCD algorithm. When there are few users in the system, PTF andProNTO are competitive.

However, when there are more users, ProNTO seems to outperform PTF in terms of average

utility improvement. At all instances, ProNTO is within the1% neighbourhood of the BCD

algorithm.

Although we aim at proportional fairness in this thesis, it may be interesting to analyse

max-min fairnesses of the proposed algorithms, PTF and ProNTO, by using Jain’s fairness

index,FI . As in Chapter 5, we use Eq. (5.12) to computeFI . For computingFI , we use the

no. of bits transmitted to the users,xi =
∑K

t=1 τitRit for i = 1, . . . ,N. From Table 6.3, it is clear

that SG+TDMA is the worst choice in terms of fairness. Although low path losses embrace

lower utility improvement, they mainly allow both PTF and ProNTO to be very efficient in

terms of fairness. However, as observed from the table, whenall three cases are considered,

PTF seems to be more fair than ProNTO is. Hence, ProNTO seems to trade of fairness for

utility improvement. It can also be inferred from Figure 6.4and Table 6.3 that, when ProNTO
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Figure 6.4: Average utility improvement (PTF, ProNTO, BCD)vs. no. of users: The average
is taken overRegular, Bursty, Very Burstycases. The average utility improvements of the
proposed algorithms over SG+TDMA, for increasing number of users, are compared. Utility
improvment increases with increasing number of users.

outperforms PTF in terms of utility improvement, the difference between two heuristics is

not high. However, this is not the case for fairness,.i.e., when PTF outperforms ProNTO, the

difference can be considered as high. Hence, although ProNTO seems more promising in

terms of utility improvement, depending on system requirements, one can still choose PTF

over ProNTO for more fairness.

Table 6.3: Fairness index (SG+TDMA, PTF, ProNTO, BCD) vs. no. of users: The fairness
of PTF and ProNTO heuristics are compared to that of SG+TDMA’s and BCD’s, throughFI .

139



CHAPTER 7

PREDICTION BASED PROPORTIONAL FAIR RESOURCE

ALLOCATION FOR INDUSTRIAL WIRELESS SENSOR

NETWORKS

As industrial WSNs are expected to be deployed in harsh or inaccessible environments for

long periods of time, a remote base station may be needed to control the operation of these

networks. In industrial applications, it is very likely that an area needs to be covered with

multiple WSNs. In such a case, each of these networks monitordifferent parameters and send

data via the appropriate gateway nodes (cluster heads) to a base station node located at the

central offices, where the strategic decisions about the data is taken.

In this chapter, we address the case where the base station issupplied with solar energy har-

vesting. Leveraging the daily periodicity of solar energy harvesting, we optimize the daily

message delivery schedule from the base station to the nodesof a distributed network. The

inherent differences in channel gain from the BS to the sensor nodes make ita challenge to

provide service to each of them while efficiently spending the harvested energy. Leveraging

a close-to-optimal algorithm developed for fair allocation of harvested energy in a wireless

downlink, we develop a stand-alone algorithm, PTF-On, thatoperates two algorithms in tan-

dem: A Kalman-based prediction algorithm and the modified version of the PTF algorithm.

PTF-On can predict the base station’s energy arrival profilethroughout the day, and then, act

upon this energy arrival profile to determine the best power and time allocation that will max-

imize the throughput (the amount of data sent to the gateway nodes) in a proportionally fair

way.
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7.1 System Model and Problem Statement

In our setup, there is a single base station that transmits toN gateways (or cluster heads)

of several sensor networks by time sharing on a bandwith W, asshown in Figures 7.1 and

7.2. The power spectral density of the background noise isNo. Channel conditions will be

supposed to remain constant during a durationF that will be referred to as a “frame”: i.e.,gn,

the gain of gatewayn, is chosen to be constant throughout the frame.

Figure 7.1: Industrial WSN application (agricultural monitoring) with remote base station.
Example 1: [8]

The base station is equipped with a rechargeable battery, powered by a solar panel, such that

harvested energy becomes available at distinct instances.The durations between two harvest

instants will be called a “slot” (as in Chapters 5 and 6). Our system model is based on the one

illustrated in Fig. 6.1. However, instead of considering only one frame, we consider multiple

frames. We assume that the length of a frame is 24 hours. Note that, we restrict our attention

to the case of periodic energy arrivals (Tt = T for all t ∈ {1, . . . ,K}), as in Chapter 6). As also

explained in Chapter 6, not all generality is lost, since harvest amounts are arbitrary and the

absence of a harvest in a certain slot can be expressed with a harvest of amount zero for the

respective slot. Thus, we define the length of a slot to be a sub-hour (half an hour). Thus, the

amount of energy harvested from the environment at the beginning of time slott of framei is

Ei,t, as illustrated in Fig. 7.3.

141



Figure 7.2: Industrial WSN application (pipeline monitoring) with remote base station. Ex-
ample 2: [9]

Figure 7.3: Energy arrival model
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For a given frame, the base station chooses a power levelpt and a time allocation vector

τt = (τ1t, ..., τNt), for each time slott of the frame, wherepnt = pt is the transmission power

for gatewayn during slott and,τnt is the time allocated for transmission to gatewayn during

slot t. We use the same constrained optimization problem, Problem1 proposed in Chapter

5. Please note that, Problem 1 is a biconvex optimization problem with multiple optima, and

there exists anoffline heuristic algorithm, PTF, that can closely track the optimal solution

(solution found by BCD) of this problem. In this chapter, we modify the PTF algorithm so

that we can use it in an online setting, i.e., the amounts of energy harvests within a frame

are not known a priori. The modified version of the PTF algorithm will need to be combined

with an energy prediction algorithm. There are some energy prediction algorithms available

in the literature such as EWMA (Exponentially weighted moving average) [202] and WCMA

(Weather conditioned moving average) [203]. However, these algorithms are simple moving

average based prediction algorithms developed to operate on energy harvesting sensor nodes

that do not have high computation capabilities. As our base station is equipped with a solar

panel and is expected to harvest energy at a high rate, we developed a new energy prediction

algorithm which will be explained in the next section.

7.2 Kalman-Based Solar Energy Prediction

In this section, we apply the Kalman filter algorithm to forecast the energy arrivals within a

frame, for a base station powered with solar panel. We considered sub-hourly prediction of

the energy arrivals for a frame of 24 hours (one day) and, formulated the Kalman filter for the

following state and measurement models:

x(k+ 1) = α1x(k) + α2x(k− 47)+ β1y(k) + w(k) (7.1)

z(k) = x(k) + v(k) (7.2)

wherex andz represent the state (energy level) and the measurement respectively. This model

is mainly based on the idea that; due to the diurnal cycle of a day, the amount of energy that

will be harvested in the (k + 1)th sub-hour of an arbitrary day,x(k + 1), should be related to

the energy harvested in thekth sub-hour of the same day,x(k), the solar irradiation received

in thekth sub-hour of the same day,y(k), and, the energy harvested in the (k + 1)th sub-hour
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

1

0

0
...

0

0



w(k) (7.3)

of the previous day (the energy that was harvested 48 sub-hours ago: x((k + 1) − 48) =

x(k − 47)), x(k − 47). In Eq. 7.1,w(k) is a modeling error, which represents the effects of

the uncontrolled events on the harvested energy (such as shadowing caused by clouds passing

through, disturbance to the solar panel, or damage due to malicious act, etc.). In this paper,

it is modeled as Gaussian i.i.d. with zero mean and varianceσ2
w . The parametersα1,α2 and

β1 represent the weights assigned to emphasize the importanceof the parameters that will be

used for prediction. In the measurement model,v denotes the measurement noise and it is

also modeled as Gaussian i.i.d. with zero mean and varianceσ2
v.

By considering that there are 48 sub-hours in a day, the overall state equations can be re-stated

in matrix form as in Eq. (7.3). Now, we define an augmented state vector,ξk, which contains

the energy amounts harvested today:

ξk =

[
x(k) x(k − 1) . . . x(k− 46) x(k− 47)

]′
(7.4)

We define a new matrixA, column vectorsB, andΓ as follows:

A =



α1 0 0 . . . 0 0 α2

1 0 0 . . . 0 0 0

0 1 0 . . . 0 0 0
...

. . .
...

0 0 0 . . . 1 0 0

0 0 0 . . . 0 1 0



(7.5)

B =
[
β1 0 . . . 0 0

]′
(7.6)

Γ =

[
1 0 . . . 0 0

]′
(7.7)
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Thus, the state model in Eq. (7.3), and the measurement modelin Eq. (7.2) reduce to

ξk+1 = Aξk + By(k) + Γw(k) (7.8)

z(k) = x(k) + v(k) (7.9)

which is structurally equivalent to the “truth” model described in Eq. (5.27) (in page 252)

of [204]. Thus, by applying the Discrete-Time Linear KalmanFilter described in [204], we

are able to predict the amount of energy arrival in the next sub-hour by only using the amount

of energy arrival in this sub-hour, the solar irradiation received in this sub-hour and, the arrival

in the previous day’s next sub-hour. Please note that, in order to compute the best weightsα1,

α2 andβ1 that will be used for simulations, we use a data fitting methoddescribed as follows:

By using the 18 days’ data (real power measurements belonging to 01.10.2009-18.10.2009

for Amherst, Massachusetts, USA) provided by Navin Sharma [205], we design a Newton

algorithm that aims to minimize the Mean Squared Error (MSE)between the real data and

the estimated data, for 17 days (17days= 816sub− hours). Thus, the objective function that

needs to be minimized by the Newton algorithm is described below:

1
816

863∑

k=48

(x(k+ 1)− (α1x(k) + α2x(k − 47)+ β1y(k)))2 (7.10)

Our simulation results, provided in Section 7.4, show that the best values for defined weights,

α1,α2,β1 are 0.7184, 0.1439, and, 0.0063 respectively, when thex(k)’s are in terms of kilo-

joules.

7.3 PTF-On Algorithm

In this section, we propose an online proportional fair resource (power and time) allocation al-

gorithm, called PTF-On. PTF-On is the online version of the PTF heuristic proposed in [61].

Note that the PTF algorithm operates in anoffline fashion, i.e., the energy arrival amounts

within a frame are known at the beginning of that frame. The main motivation of the PTF-On

algorithm can be explained as follows: There are 48 sub-hours and thus, 48 energy arrivals

within a frame (24 hours). At the beginning of a each slot, thecurrent amount of residual

energy and amounts of previous harvests are known. The amounts of next 47 energy arrivals
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should be predicted. Thus, at the beginning of each frame we perform two prediction opera-

tions to determine the energy amounts that will be harvestedduring the frame. We perform

this operation as follows: At the beginning of Slot 1, the energy arrives and is known to the

base station. Thus, the base station can use K-SEP to predictits next energy arrival, i.e., the

arrival in Slot 2. However, the arrivals other then the arrival in Slot 2 can not be predicted

before a sub-hour passes. This is due to the fact that a half anhour should pass to see what is

really harvested in Slot 2, so that this value can be used to predict the value in Slot 3. Thus,

we adopt S-SEP, which does not use the data that was harvestedin the previous slots (mainly

predicts the amount of energy that will be harvested in today’s kth sub-hour as the average of

the energy arrival amounts of the past two days’kth sub-hours), to predict the next 46 arrivals.

Thus, all energies (or at least their estimates) are known tothe base station at the beginning

of the frame. This way, at the beginning of each frame, one canrun PTF algorithm to de-

termine a close-to-optimal power and time allocation that will maximize the throughput in a

proportionally fair way, for the up-coming 24 hours.

PTF-On requires past two days’ data for predicting the energy arrival amounts of the day it

will be used in. Assume that there are days 1,2,3,4,... etc, and, PTF-On will be used to predict

the arrivals, and, determine the most proportional fair resource allocation, for the second half

of day 3 and first half of day 4 (Frame of 24 hours: From 12:00 of day 3 to 12:00 of day 4).

The operation of PTF-On algorithm is explained below, and illustrated in Figure 7.4.

1. For the 24-hours frame started at 12:00 of day 3, there willbe 48 slots, each 30 minutes

of length (Please note that this frame is called the originalframe). The beginning of the

whole frame will be the beginning of Slot 1. Thus, when the frame starts, the energy

arrival at the beginning of slot one of day 3,E3,1 is known. Thus, the energy arrival at

the beginning of Slot 2,E3,2, can be predicted by using the K-SEP algorithm. Then,

use the S-SEP algorithm to obtain rough predictions of the others,E3,3, . . . ,E3,48, and

form a predicted harvest series as follows:Epred = [E3,1,E′3,2,E
′′
3,3, . . . ,E

′′
3,48], where

E, E′ andE′′ represent the real, the K-SEP predicted, and the S-SEP predicted energy

amounts, respectively.

2. As all the energy amounts (or at least their estimates) areknown at the beginning of

the frame, use the first part of the PTF algorithm to determinethe best proportional fair

power allocation (sub-hours) within the frame.
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3. In the first slot of the frame, apply the power allocation found by the PTF algorithm

for Slot 1 of that frame. Let,Bnt = RntT be the number of bits that would be sent to

gatewayn if the whole slot (of lengthT) was allocated to that gateway. If this slot is

the first slot of the original frame, assign this slot to the gateway who has the maximum

rate,Rnt, in that slot. Otherwise, at the beginning of each slot,t ∈ {2, . . . ,K}, determine

the gateway with the maximumβ where,βn =
Bnt∑t

i=1 Bni
. Then, assign the whole slot

to that gateway. If multiple gateways share the sameβ, then, allocate the slot to the

gateway with the best channel.

4. When first slot of the frame finishes, and thus the second slot starts, assign Slot 2 of the

current frame as the first slot of the upcoming frame (half an hour shifted version of the

original frame), and estimate related energy amounts. Then, add the remaining energy

to the energy of the first harvest of the new frame to form a new predicted harvest series.

(Ex: At 12:30,E3,2 is known andE3,3 can be predicted by K-SEP. The remaining 46

energy harvests are predicted by S-SEP. Thus, a new predicted harvest series is formed:

Epred = [E3,2 + (E3,1 − p1T),E′3,3,E
′′
3,4, . . . ,E

′′
3,48,E

′′
4,1].)

5. Apply Step 2,3, and 4 in order until the 24 hours is completed, i.e., the last slot of the

original frame has been assigned a power and time allocation.
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Figure 7.4: Operation of PTF-On algorithm
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7.4 Numerical and Simulation Results

7.4.1 K-SEP and S-SEP Related Results

In this section, we present the numerical and simulation results related to our Kalman fil-

ter based solar energy prediction algorithm, called K-SEP,and the online resource allocation

algorithm, PTF-On. By using the best weights that we computed by using the Newton algo-

rithm, we perform numerous simulations to test our predictor. We test the performance of our

predictor by the MSE criteria. We compute the MSE as follows:

MS E=
1
M

M∑

i=1

(xi − x̃i)
2 (7.11)

wherex and x̃ represent the real and estimated energies respectively, and, M is the number

of samples that will be considered. In order to compare the performance of our predictor

with another one, we use a simple solar energy predictor, called S-SEP in this paper. We

first let M = 48 (for 48 sub-hours in a day), and, compute daily MSE values for 16 days, as

shown in Tables 7.1 and 7.2. Then, average MSE over 16 days of October, 2009 (03.10-2009-

18.10.2009) for K-SEP and S-SEP are,MS EK−S EP
Aver = 4.377 kilojoules/sub-hour/day and

MS ES−S EP
Aver = 84.146 kilojoules/sub-hour/day respectively. By considering that the maximum

power measured in [205] was 60 Watts, one can produce maximumEmax = 60.1800= 108

kilojoules in a sub-hour by using this system. Thus, the performance of S-SEP is much

worse than the performance of K-SEP in terms of average error, i.e.,
√

MS EK−S EP
Aver = 2.092

kilojoules/sub-hour whereas,
√

MS ES−S EP
Aver = 9.173 kilojoules/sub-hour.

Table 7.1: MSEs for the first 8 days

Days 3 4 5 6 7 8 9 10

MSE of K-SEP 0.168 12.064 9.517 17.076 6.937 3.646 0.329 2.691
MSE of S-SEP 106.689 266.271 122.629 89.941 141.008 43.907 122.341 15.874

Table 7.2: MSEs for the second 8 days

Days 11 12 13 14 15 16 17 18

MSE of K-SEP 2.028 2.328 3.451 3.612 0.287 1.093 2.569 0.194
MSE of S-SEP 90.872 20.191 69.325 26.108 32.366 5.634 57.263 135.915

The figures 7.5, 7.6, 7.7 illustrate the performances of the two predictors for three days in

which S-SEP performs the best, the second best, and the worstin its 16 days’s performance.

As it can be seen from the figure, K-SEP outperforms S-SEP at all instances.
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Figure 7.5: Performances of K-SEP and S-SEP for 16.10.2009
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Figure 7.6: Performances of K-SEP and S-SEP for 10.10.2009
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Figure 7.7: Performances of K-SEP and S-SEP for 04.10.2009

7.4.2 PTF-On Related Results

In this section, we present the numerical and simulation results related to the proposed online

heuristic, PTF-On. Throughout our simulations, we use the folowing setup:W = 10 MHz,

No = 10−19 W/Hz. For the sake of an example, we suppose that there are three sensor

networks, and thus three gateways in the system, similar to the one shown in Figure 7.1. The

path loss of the gateways are 78, 92, and, 100 dB respectively. We compare the performance

of the proposed algorithm with the performance of the “SpendWhat You Get” policy (where

the amount of energy harvested at the beginning of a slot is completely spent during that slot)

combined with TDMA time allocation, and with the performance of theoffline PTF heuristic

that operates close-to-optimal. We start our analysis at 12:00 pm on 03.10.2009 and finish

it at 12:00 on 17.10.2009. Hence, we have 14 frames, each of which are 24 hours (48 sub-

hours). For each frame, we test the performances of the PTF-On and PTF algorithms, and,

the SG+TDMA scheme.

For the sake of an example, we illustrate the power allocations found by PTF and PTF-On for

a frame of 24 hours (Frame 5), in Figure 7.8. As seen from the figure, the power levels of

PTF and PTF-On are, most of the time, close to each other.

Utility and throughput improvement (over SG+TDMA scheme) results of PTF and PTF-On,

for all 14 frames, are illustrated in Figures 7.9 and 7.10. Asit can be seen from the figures,

the performance of the proposed online algorithm, PTF-On, is very close to the performance
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Figure 7.8: Power allocations found by PTF and PTF-On for a frame of 24 hours

of theoffline PTF algorithm. Please note that, as the utility is defined as sum of “logarithms”

of individual throughputs, even 1% improvement in utility is significant. This is more evident

when the average (over 14 frames) utility and throughput improvements of PTF and PTF-On,

are computed. For example; the average utility improvementfor PTF is 3.310%, where the

corresponding average throughput is 150.795%. Similarly,the average utility improvement

for PTF-On is 3.158%, where the corresponding average throughput is 143.992%. Figure

7.11 shows the average daily throughputs of the gateways (average amount of data sent to the

gateways in one day) and, the average daily total throughput.
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Figure 7.9: Utility improvements of PTF and PTF-On algorithms over SG+TDMA scheme
for 14 frames
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Figure 7.10: Throughput improvements of PTF and PTF-On algorithms over SG+TDMA
scheme for 14 frames
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Figure 7.11: Average daily throughputs of the gateways, andaverage total throughput when
PTF, PTF-On, and, SG+TDMA are used
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

In this thesis, we first provided a classification of the current and future M2M applications

and, we discussed the architecture and the design issues of M2M networks. M2M networks

make use of multi-hop routing in order to route data in a wireless network. Therefore, the

intelligent devices used in M2M networks should be reliableby means of availability. A key

determinant of longevity and reliability of these networksis energy-efficient system archi-

tectures and algorithms. As ad hoc and sensor networks are subsets of M2M networks, we

believe that forming energy efficient ad hoc and sensor networks is an important component

of forming more energy efficient M2M networks. Hence, we next surveyed the shortest path

based energy efficient routing algorithms developed for ad hoc and sensor networks in recent

years. We also developed a classification for these algorithms, also considering the link cost

metrics used in these algorithms.

By considering the fact that sustainable and environmentally friendly development of many

wireless networks require increased use of renewable energy, we next investigated the state-

of-the-art resource management and scheduling algorithmsthat can be used in energy har-

vesting industrial WSNs. Detailed operation of the algorithms, along with their drawbacks,

advantages, and possible application areas are discussed.

By inspiring from the energy harvesting based resource allocation studies, we next investi-

gated an original problem; the proportional fair power and time allocation problem in an en-

ergy harvesting broadcast system. This thesis focuses on finding the optimumoffline sched-

ule for this problem, by assuming that the energy harvestingtimes and the corresponding

harvested energy amounts are known at the beginning of each frame. Detailed analysis of

structural characteristics of the problem has been performed, which revealed that it can be
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formulated as a biconvex optimization problem, and that it has multiple optima. Furthermore,

an algorithm based on block coordinate descent (BCD), that surely converges to a partial op-

tima of the problem, was showed. Building on the problem formulation and BCD, the optimal

resource allocation policy was further studied and, the existence of an optimal nondecreas-

ing power schedule and, an ordered time allocation schedulewere proved. This allowed us

to propose two alternative efficient and scalable heuristics, PTF and ProNTO. The computa-

tional ease of these algorithms were observed in numerical examples, while the policies they

result in coincide with the structural properties we have shown the optimal to have. Simu-

lation results indicate that, despite their simplistic design, PTF and ProNTO heuristics can

closely track the performance of the optimal BCD algorithm.In our examples, which were

computed for small or moderate problem sizes, both PTF and ProNTO took one or two orders

of magnitude smaller time to converge than BCD, which has to compute a Hessian. Typically,

ProNTO outperforms PTF in terms of utility improvement, whereas the latter is fairer. The

utility improvement difference between BCD and ProNTO is shown to be less than 1% at all

instances.

Finally, we developed anonlinealgorithm that bypasses the need foroffline knowledge about

the energy harvesting arrivals. This algorithm employs energy harvesting prediction algo-

rithms to predict the energy that will arrive in the future, and can be used in not only broadcast

systems but also in industrial wireless sensor networks.

There are many possible future directions for the work presented in this thesis. The first di-

rection could be developing a new PTF-On algorithm that willoperate on shorter slot lengths.

This will increase the number of maintenance messages and updates sent to the gateways,

while improving the performance of the algorithm. However,as the number of slots and,

shifting operations will increase, the ways of keeping the complexity low should be consid-

ered wisely. One idea is to shorten the frame length, from 24 hours to couple of hours, and to

determine the allocation at the beginning of each frame. However, as the long term changes

could not be considered in such a case, one should determine the best frame length that will

provideclose-to-offline performance.

Another direction can be modifying the ProNTO algorithm andcombining it with the energy

prediction algorithm, to obtain anotheronline algorithm. That way the performance of the

PTF-On and (possibly) ProNTO-On algorithms can be compared.
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Other than changing the resource allocation method, one canmodify the energy prediction

algorithm so that it does not only predict the next energy arrival, but uses its own prediction

as a measurement to predict the next arrivals, and this way become a stand-alone prediction

algorithm. Using this method may improve the predictions ofthe algorithm and thus, the sys-

tem performance. Moreover, the current Kalman algorithm may be modified to estimate the

weights (parameters) at every step. That way the accuracy ofthe model would be improved.

It should be remembered that the solar energy harvesting application presented in this thesis

is just an example. As shown by the simulation results, the performances of the proposed

offline algorithms are higher when the energy arrivals are bursty. Although in solar energy

harvesting applications, the base station (or transmitter) stays energy hungry during the night

time (unless an efficient resource allocation method is applied), and thus, theharvesting nature

becomes slightly bursty, there are some other types of energy harvesting methods, i.e., from

vibrations and wind, etc. that suits this scenario better. By simple changing the prediction part

of the proposedonline algorithm, one may solve the proposed problem for different energy

harvesting applications.

Until now, we considered the possible modifications to the proposedonline setup and algo-

rithm. However, there are some other possible directions that may require the modification of

the proposedofflineproblem. For example, the proposed problem can be modified toconsider

battery inefficiencies such as leakage. Moreover, the finite battery case can be considered.

Priority is another issue that can be included to the problemformulation. In the case of

industrial sensor network application presented in this thesis, sending update and mainte-

nance messages to some of the gateways can be more important than sending to others. For

example, among many sensor networks, one may need faster topology updates due to mo-

bility /availability of its nodes. In such a case, the problem can be modified to favor some

gateways in arbitrary slots.

Another possible direction would be considering existenceof multiple base stations equipped

with energy harvesting capabilities. In that case, data intended for some of the gateways can

be sent from either of the base stations, and the resource allocation for these base stations

can be done by considering both of the base stations’ harvesting processes and the channel

qualities of the users.
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APPENDIX A

THE CONCEPT OF PROPORTIONAL FAIRNESS AND THE

REASONING BEHIND THE CHOSEN UTILITY FUNCTION

In its simplest form, fairness is to allocate the same share to all. However, in wireless net-

works, such a simple idea does not generally make sense. Thus, for wireless networks, fair-

ness is defined in a number of different ways, such as max-min fairness [206], and, propor-

tional fairness [207]. The main focus of this thesis is proportional fairness. The concept of

proportional fairness is proposed by Kelly [207], and, generalized by Mo and Walrand [208].

According to [207]: A vector of rates,x, is proportionally fair if it is feasible – that isx ≥ 0

andAT x ≤ c – and, if for any other feasible vectorx∗, the aggregate of proportional changes

is zero or negative1:

∑

i

x∗i − xi

xi
≤ 0 (A.1)

There are many ways to impose the proportional fairness constraint on a network. Using

the logarithm utility is one option adopted in this thesis. There are other valid and relevant

utility functions, some ensuring fairness as well, such as weighted sum-rate maximization.

Howewer, maximizing
∑

log(R), whereR is the rate, provides proportional fairness by defi-

nition. The weighted sum-rate maximization provides only an approximation. This approxi-

mation converges to the real value for very long term optimization, keeping track of the rate

received by each user in time (Please check the proof provided below). Inherently this is a

long-term and online algorithm. On the other hand, we are interested in finite horizon offline

optimization and our time slots are determined according tothe energy harvesting process,

1 The published version of this paper has strict inequality inthis relation. However, Kelly later provided
a corrected version of this paper (For the corrected version, please check http://research.microsoft.com/en-us/
events/networkeconomics/kelly_1997.pdf).
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and thus, the time slots are not necessarily small. Hence, the chosen log-sum utility function

seems to be the best choice for our case.

Proof.

max
∑

n

log(Rn(t)) = max
∑

n=1

log (αRn(t − 1)+ (1− α)rn(t)) (A.2)

= max
∑

n=1

log(αRn(t − 1))+ log

(
1+

(1− α)rn(t)
αRn(t − 1)

)
(A.3)

Given the average received rate up until the current slotRn(t − 1)

max
∑

n

log(Rn(t)) = max
∑

n=1

log

(
1+

(1− α)rn(t)
αRn(t − 1)

)
(A.4)

Applying the approximationlog(1+ x) ≈ x for small x,

max
∑

n

log(Rn(t)) ≈ max
∑

n=1

(1− α)rn(t)
αRn(t − 1)

(A.5)

This can be considered as a weighted total rate maximization, where the weights of each user

at timet are,

wn(t) =
(1− α)
αRn(t − 1)

, ∀n (A.6)

Weighted sum rate maximization only approximately provides proportional fairness. At each

time slot it gives the whole time slot to a single user. The approximation log(1 + x) ≈ x is

only accurate if the number of time slots are very high and time slot durations are very low.

Thus, the expression
∑

n log(Rn(t)) (the log-sum of user rates) is the true proportional fairness

metric. �
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APPENDIX B

PROOFS OF THE THEOREMS, LEMMAS, AND

CORROLLARY MENTIONED IN CHAPTER 5

B.1 Proof of Lemma 5.2.1

i) Let us definel =
∑K

i=1 cihi wherehi is a strictly concave function ofpi , and,ci ≥ 0.

For l to be concave, it needs to satisy the concavity condition, i.e., l(λp1 + (1− λ)p2) ≥

λl(p1) + (1− λ)l(p2) where 0≤ λ ≤ 1, for any pointp1, p2 in the domain ofl. Thus,

proving thatl satisfies the concavity condition completes the proof of part (i). We start

by

l(λp1 + (1− λ)p2) =
K∑

i=1

cihi(λp1i + (1− λ)p2i ) ≥
K∑

i=1

ci(λhi (p1i) + (1− λ)hi(p2i )) (B.1)

= λ

K∑

i=1

cihi(p1i) + (1− λ)
K∑

i=1

cihi(p2i) = λl(p1) + (1− λ)l(p2) (B.2)

where Eq. (B.1) follows from the strict concavity ofhi function. From the set of

equations described above, one can observe thatl is a concave function ofp. Note that

in Eq. (B.1), equality may happen only ifci = 0 for all i. Hence, if there exists an index

j such thatci = 0 for i = 1, . . . , j − 1, j + 1, . . . ,K and,ci > 0 for i = j, Eq. (B.1) is

satisfied with “>”. Then,l is strictly concave inpk. This completes the proof of part (i).

ii) From part (i) we know that,l is a strictly concave function if Eq. (B.1) is satisfied.

Assume that Eq. (B.1) is satisfied and, let there be an increasing concave functionf .

We need to show thatf (l(p)) is always strictly concave. The proof is as follows:

l(λp1 + (1− λ)p2) > λl(p1) + (1− λ)l(p2) (B.3)

f (l(λp1 + (1− λ)p2)) > f (λl(p1) + (1− λ)l(p2)) (B.4)
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where Eq. (B.3) and Eq. (B.4) follow from strict concavity ofl and increasing property

of the f function respectively. By using concavity of thef function, one can further

write the following expression

f (λl(p1) + (1− λ)l(p2)) ≥ λ f (l(p1)) + (1− λ) f (l(p2)) (B.5)

Then, combining Eqns. (B.3)-(B.5), leads us to the final result of strict concavity, as

follows:

f (l(λp1 + (1− λ)p2)) > λ f (l(p1)) + (1− λ) f (l(p2)) (B.6)

Thus, we conclude that increasing concave functions of strictly concave functions are

strictly concave, which completes the proof.

B.2 Proof of Theorem 5.2.2

Since the constraints of the problem are linear, and, maximizing U(p) is equivalent to mini-

mizing −U(p), showing that the utility function,U(p), is strictly concave will be enough to

show that Problem 2 can be formulated as a strictly convex optimization problem. We start

by checking the concavity ofRnt. As Rnt is a function ofpt, let ht = Rnt (as in the proof of

Lemma 5.2.1’s part (i)). The first and second derivatives ofht are defined as∂ht
∂pt
=

WLn/(ln2)
(1+Lnpt)

and ∂
2ht
∂pt

2 =
−WL2

n/(ln2)
(1+Lnpt)2 respectively. As,W, Ln, and (1+ Lnpt)2 are all positive,∂

2ht
∂pt

2 is definitely

negative for allt = 1, . . . ,K. Hence, from the second derivative test [191],ht, thusRnt, is

strictly concave inpt. Furthermore, letln =
∑K

t=1 τntRnt for an arbitrary usern. As all τnt’s

(for t = 1, . . . ,K) are nonnegative, and, at least oneτnt is positive for usern, from part (i) of

Lemma 5.2.1,ln is a strictly concave function ofp. Note that this is true for all users, i.e.,

ln is strictly concave for alln = 1, . . . ,N. Thus, from part (ii ) of Lemma 5.2.1,fn is strictly

concave inp for all n = 1, . . . ,N. The rest of the proof is straight-forward, since the utility

function,U(p), is a positive linear combination offn’s and thus (from part (i) of Lemma 5.2.1)

is strictly concave inp. Hence, the proof is complete.
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B.3 Proof of Lemma 5.2.3

i) Let us definem =
∑K

i=1 diqi whereqi is an affine function ofτni, and,di ≥ 0. For

m to be affine, it needs to satisfy the affinity condition, i.e.,m(λτ1 + (1 − λ)τ2) =

λm(τ1) + (1− λ)m(τ2), where 0≤ λ ≤ 1 andτk = [τk,n1 . . . τk,nK]T is a point onm.

Thus, proving thatmsatisfies the condition completes the proof of part (i). We start by

m(λτ1 + (1− λ)τ2) =
K∑

i=1

diqi(λτ1i + (1− λ)τ2i ) =
K∑

i=1

di (λqi(τ1i) + (1− λ)qi(τ2i)) (B.7)

= λ

K∑

i=1

diqi(τ1i) + (1− λ)
K∑

i=1

diqi (τ2i) = λm(τ1) + (1− λ)m(τ2) (B.8)

whereτ1i , τ2i are theith entries of theτ1 vector andτ2 vector respectively, and, Eq. (B.7)

follows from the “affine” property of themi function. From Eq. (B.8), one can clearly

observe thatm function is an affine function of time variables. Hence, any nonnegative

linear combination of affine functions is affine, and, the proof of part (i) is complete.

ii) From part (i) we know thatm is an affine function. In this part, we need to prove that

an increasing function,s, of m, s(m(τ)), is a concave function. Hence, we start by

m(λτ1 + (1− λ)τ2) = λm(τ1) + (1− λ)m(τ2) (B.9)

s(m(λτ1 + (1− λ)τ2)) = s(λm(τ1) + (1− λ)m(τ2)) (B.10)

where Eq. (B.9) and Eq. (B.10) follow from affine property ofm and increasing prop-

erty of thes function respectively. By using concavity of thes function, one can further

write the following expression

s(λm(τ1) + (1− λ)m(τ2)) ≥ λs(m(τ1)) + (1− λ)s(m(τ2)) (B.11)

Then, combining Eqns. (B.9)-(B.11), leads us to the final result of concavity, as follows:

s(m(λτ1 + (1− λ)τ2)) ≥ λs(m(τ1)) + (1− λ)s(m(τ2)) (B.12)

Thus, we conclude that increasing concave functions of affine functions are concave,

which completes the proof.
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B.4 Proof of Theorem 5.2.4

Similar to the proof of Theorem 5.2.2, showing that the utility function,U(τ), is concave will

be enough to show that Problem 3 can be formulated as a convex optimization problem. We

start by checking the concavity ofsn for n = 1, . . . ,N. As Rnt is a known constant for every

n ∈ {1, . . . ,N} andt ∈ {1, . . . ,K}, let dt = Rnt, and,qt = τnt for an arbitrary usern (as in the

proof of Lemma 5.2.3’s part (i)). It is well-known that a linear function is an affine function.

As qt is a linear function ofτnt for any usern, qt is affine. Now, letmn =
∑K

t=1 τntRnt for

an arbitrary usern. Note that allRnt’s are nonnegative constants known apriori. Thus, from

part (ii ) of Lemma 5.2.3,sn is concave inτ for all n = 1, . . . ,N. The rest of the proof is

straight-forward, since the utility function,U(τ), is a nonnegative linear combination ofsn’s

and thus (from part (i) of Lemma 5.2.1) is concave inτ. Hence, the proof is complete.

B.5 Proof of Corollary 1

A function f : X × Y → ℜ is called biconvex iff (x, y) is convex iny for fixed x ∈ X and is

convex inx for fixedy ∈ Y [58]. Since the constraints of the problem are linear, showing that

−U(τ, p) is biconvex will be enough to show that Problem 1 can be formulated as a biconvex

optimization problem.−U(τ, p) is a function of two set of variables;τ andp. From Theorem

5.2.2, givenτ, −U(p) is convex. Similarly, from Theorem 5.2.4, givenp, −U(τ) is convex.

Hence,−U(τ, p) is biconvex, which completes the proof.
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APPENDIX C

PROOFS OF THE THEOREMS AND LEMMAS MENTIONED

IN CHAPTER 6

C.1 Proof of Theorem 6.2.1

The proof is done by contradiction. For any given time allocation τ, consider a given power

sequence,PC = (p1, ..., pd−1, pd, ..., pK), in which the power level decreases at some time, say

d > 1. In such a case, we can defer some energy, 0< ∆ ≤ pd−1Td−1 , from the (d − 1)th

slot to thedth slot forming a modified schedule,P′
C
= (p1, ..., p′d−1, p

′
d, ..., pK), that will not

violate the energy causality conditions (as shown in Fig. C.1). Clearly, we can continue

this deferral operation untilp′d−1 < p′d and still not violate the energy causality conditions.

Applying the same method for every possible decrease leads us to a nondecreasing schedule,

P
↑
C
= (p′1, ..., p

′
d−1, p

′
d, ..., p

′
K), wherep′1 ≤ p′2 ≤ ... ≤ p′K .

Figure C.1: Maintaining Energy Causality After Energy Deferral

From Lemma 6.2.3,U(τ,PC) = U(τP
↑
C ,P

↑
C
). Thus, for time allocationτ∗ = τP

↑
C , P↑

C
is
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optimal. This completes the proof.

C.2 Proof of Lemma 6.2.3

Let, R′n = Rn
↑

whereRn
↑

is as defined in Definition 6.2.2. Note that Eq. (6.7) forces

log2(1+ Lnp′1) ≤ . . . ≤ log2(1+ Lnp′l ) ≤ . . . ≤ log2(1+ Lnp′K) (C.1)

1+ Lnp′1 ≤ . . . ≤ 1+ Lnp′l ≤ . . . ≤ 1+ Lnp′K (C.2)

p′1 ≤ . . . ≤ p′l ≤ . . . ≤ p′K (C.3)

Hence, sortingRn in increasing order, forces nondecreasing powers (orderedscheduleP↑
C

mentioned previously), which indeed forces all otherRi (wherei ∈ {1, . . . , i − 1, i + 1, . . . ,N})

to be sorted in increasing order, to formR′i . Now, we have new rates,R′i for all usersi =

1, . . . ,N. Remember that the utility of a user is defined as in Eq. (6.4).Thus, changing

the order ofRi vector does not change the value ofUi if the order ofτi is also changed so

that the previous element pairs are matched again. Let us explain this, with an example. Let

Ri2 < Ri1, RNK < Ri2, and,Ri1 ≤ Ri3 ≤ . . . ≤ Ri(K−1). Then,τ′i , and,R′i vectors are defined as

R′i = [RiK Ri2 Ri1 Ri3 . . . Ri(K−1)]T andτ′i = [τiK τi2 τi1 τi3 . . . τi(K−1)]T . Hence, it is straight

forward to write that

τ′i
T
R′i = τiK RiK + τi2Ri2 + τi1Ri1 + . . . + τi(K−1)Ri(K−1)

= τi1Ri1 + τi2Ri2 + . . . + τi(K−1)Ri(K−1) + τiK RiK

= τi
TRi (C.4)

whereτi andRi are as defined in Eq. (6.2). As it can be observed,Ui = U′i as long asR′i = Ri
↑

andτ′i = (τi)Ri
↑

. Here,τi
Ri
↑

indicates theτi vector ordered according toRi
↑
. Under these

circumstances,Ui = U′i for all i = 1, . . . ,N, and, the overall utility does not change,U = U′.

This completes the proof.
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C.3 Proof of Lemma 6.2.4

For the proof of Lemma 6.2.4, we use the KKT optimality conditions. After defining the

Lagrangian as in Eq. (6.11), one can list the KKT conditions,for the optimal solution, as

follows:

C1: ∇τL(τ∗, µ∗, λ
∗
) = 0 which is equivalent to

[
∂L
∂τ11
, . . . , ∂L

∂τNK

]
= [0, . . . , 0], and thus, leads

us to:

∂L
∂τnt

= −
∂U(τ∗)
∂τnt

+ µ∗N(t−1)+n + µ
∗
n+NK − λ

∗
t = 0 (C.5)

where for∀n ∈ {1, . . . ,N} and∀t ∈ {1, . . . ,K},

∂U(τ∗)
∂τnt

=
1

ln2
Rnt∑K

i=1 τniRni
(C.6)

Substituting Eq. (C.6) into Eq. (C.5), we obtain the following set of optimality condi-

tions for∀n ∈ {1, . . . ,N} and∀t ∈ {1, . . . ,K}:

λ∗t = −
1

ln2
Rnt∑K

i=1 τniRni
+ µ∗N(t−1)+n + µ

∗
n+NK (C.7)

C2: Due to the nonnegativity property of the Lagrange multipliers, the second set of opti-

mality conditions are defined as:

µ∗j ≥ 0 f or j = 1, . . . ,NK + N (C.8)

C3: Similarly,v j(τ
∗) ≥ 0 for j = 1, . . . ,NK necessitates:

τ∗nt ≥ 0 (C.9)

K∑

t=1

τnt ≥ ǫ f or n = 1, . . . ,N, and, t = 1, . . . ,K (C.10)
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C4: In order for the equality conditions to be satisfied, we need to havew j(τ
∗) = 0 for all j

corresponding the equality constraints. This leads us to the following set of conditions

for j = 1, . . . ,K:

N∑

n=1

τ∗n j = T j (C.11)

C5: The last set of conditions are due toµ∗jv j(τ
∗) = 0 for j = 1, . . . ,NK+N and are defined

as:

µ∗N(t−1)+nτ
∗
nt = 0 (C.12)

µ∗n+NK(
K∑

t=1

τ∗nt − ǫ) = 0 f or n = 1, . . . ,N, and, t = 1, . . . ,K (C.13)

The optimal time allocation should jointly satisfy the set of conditions described in Eqns.

(C.7)-(C.13).

Let, An = τ
∗
n1Rn1 + τ

∗
n2Rn2. Then, for the special case, (N = 2 , K = 2), the set of KKT

conditions described in Section 6.2.2 reduces to Eqns. (C.14a)-(C.14g).

∂L
∂τnt

=
1

ln2
Rnt

An
+ µ∗2(t−1)+n + µ

∗
n+4 − λ

∗
t = 0 (C.14a)

µ∗i ≥ 0 (C.14b)

τ∗nt ≥ 0 (C.14c)

τ∗n1 + τ
∗
n2 ≥ ǫ (C.14d)

τ∗1t + τ
∗
2t = Tt (C.14e)

µ∗2(t−1)+nτ
∗
nt = 0 (C.14f)

µ∗4+n(τ∗n1 + τ
∗
n2 − ǫ) = 0 (C.14g)

whereµi ’s for i = 1, . . . , 6, are the lagrange multipliers andn = 1, 2 andt = 1, 2. Combining

the set of equations described above leads us to the following optimality conditions for the

time allocation:
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µ∗2t−1τ
∗
1t = 0 (C.15a)

(
R1t

A1ln2
−

R2t

A2ln2
+ µ∗2t−1

) (
Tt − τ

∗
1t

)
= 0 (C.15b)

Solving the set of equations in Eq. (C.15), one can obtain theoptimal time allocation de-

scribed in Table C.1. Due to the convex nature of the problem,the solutions presented in

Table C.1 represent the global optimums, when the rate improvements of the users,Γn =
Rn2
Rn1

,

are equal. Note that, as the optimal solutions for all cases depend on the lengths of the slots,

whenT1 , T2, it is hard to develop a direct relation between power allocation and time allo-

cation. Therefore, we next analyze the case of equal slots toreveal the link between these two.

When all slot lengths are equal (T1 = T2 = T), the optimal time allocation illustrated in Table

C.1 reduces to the one presented in Table C.2, posing the desired relation. By inspecting Table

C.2, one can observe the properties mentioned in Lemma 6.2.4. All cases are summarized in

Table C.2, which completes the proof.
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Table C.1: Overall Optimality Conditions for the Special Case of Two Users and Two Slots.
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Table C.2: Overall Optimality Conditions for the Special Case of Two Users and Two Slots

(T1 = T2): Categorized according to the relation between the powersallocated in the first and

second slots. For a given power allocation, the optimal timeallocation differs according to

the relation between the rate improvements of the users.
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