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ABSTRACT

EFFICIENT RESOURCE ALLOCATION IN ENERGY HARVESTING WIRELES
NETWORKS

Tekbiyik Ersoy, Neyre
Ph.D., Department of Electrical and Electronics Engimegri
Supervisor : Assoc. Prof. Dr. Elif Uysal-Biyigtu

December 2012, 186 pages

This thesis presents various studies on eneffigient design of wireless networks. It starts
with a survey on recent shortest path based enefigient routing algorithms developed for
ad hoc and sensor networks, making a comprehensive clasisifidor these algorithms. In
addition to energy féicient design, sustainable and environmentally friendlglagment of
wireless networks demands increased use of renewableyettogever, this calls for novel
design principles toféciently utilize the variation in the availability of the engg. The the-
sis continues with an investigation of state-of-the-agorgce management and scheduling
algorithms developed for energy harvesting wireless semstwvorks. Building on the state-
of-the-art, the main contribution of this thesis is to fotata and solve a utility maximizing
scheduling problem in a multiuser broadcast channel witerargy harvesting transmitter.
The goal is to determine the optimal power and time allocatiim users between energy ar-
rivals. The structural properties of the problem are aredyand its biconvexity is proved.
A Block Coordinate Descent (BCD) based algorithm is devetbfp obtain the optimal so-
lution. Two simple and computationally scalable heurgstleTF and ProNTO, which mimic

the characteristics of the optimal policy, are proposedalfyj, an online algorithm, PTF-On,

iv



that will bypass the need fofitine knowledge about the energy harvesting statistics vislde
oped. PTF-On uses a Kalman filter based energy harvestigicpom algorithm, developed

in this thesis, to predict the energy that will arrive in tlhwufe.

Keywords: Energy harvesting, optimization, block cooadadescent, biconvex, proportional

fairness.
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ENERJ HARMANLAYAN KABLOSUZ A GLARDA ETKIN KAYNAK PAYLASTIRIMI

Tekbiyik Ersoy, Neyre
Doktora, Elektrik ve Elektronik Mihendigji Bélim
Tez Yoneticisi : Dog. Dr. Elif Uysal-Biyikglu

Aralik 2012, 186 sayfa

Bu tez, kablosuz@arin enerji verimli tasarimi tizerine yapilan gesitligaialar sunmaktadir.
Tez, kablosuz tasarsiglar ve algilayici glarda, & omrini uzatabilecek, yakin zamanda
literatiire katilan, en kisa yol atama tabanli enerji varyol atama algoritmalarinin arastiril-
masi, ve bu algoritmalara yonelik yeni bir gruplandirma tetminin sunulmasi ile basla-
maktadir. Enerji verimli tasarimin yanisira, gunimizdeds uygulamanin sirdurdlebilir
ve cevre dostu olmasi gerekmekte, ve, bu da yenilenebidrjiesistemlerinin kullaniminin
artmasi ile mumkin olmaktadir. Fakat, yenilenebilir biegnkaynajinin varlgi, eneriji
miktarlarindaki anlik dgisimleri etkin bir sekilde dgerlendirecek yeni tasarim prensiplerini
gerektirmektedir. Bu dogrultuda, tezin devaminda enexnjintanlayabilen kablosuz algilayici
aglarda kullanabilecek en yeni kaynak paylastirma ve gedeime algoritmalarinin arastiril-
masi konu edilmistir. En son gelismelergsida, bu tezin baglica katkisi, ¢cok kullanicili
bir ttmegonderim kanalinda, enerji harmanlayabilme @xeklk sahip bir gbndericinin bu-
lunduju durumda, fayda enbiyitme amach bir cizelgeleme prabienformile edilmesi
ve ¢Ozllmesidir. Amag, enerji harmanlari arasindaki zadilimleri icin, optimal gig ve

kullanicilar arasi zaman paylastirimini belirlemekitoblemin yapisal 6zellikleri incelen-
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mis ve iki ylizU disbikey (biconvex) oldu kanitlanmistir. Optimal ¢6zUmu elde etmek igin
Blok Koordinat Alcalma (BCD) tabanl bir algoritma geligimistir. Basit ve sayisal olarak
Olgceklenebilen ve optimal ¢ozimun karakteristik 6zedlikhe uyum sglayan iki bulussal
yontem, PTF ve ProNTO, tasarlanmigtir. Son olarak, orinalgoritma olan ve gelecekte
harmanlanacak enerji miktarlarinin énceden bilinmesanegtirmeyen, PTF-On algoritmasi
tasarlanmigtir. PTF-On, bu tezde gelistirilen bir Kainfdtre tabanli enerji harman tahmin
algoritmasi kullanarak ileride harmanlanacak olan errejman miktarlarini kestirebilmek-

tedir.

Anahtar Kelimeler: Enerji harmanlama, eniyilestirmeglbkoordinat algalma, iki yuzu dig-

bikey, orantisal adil.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Related Work

1.1.1 Sustainable Machine to Machine Networks

The progress in short range networking, growth of wireleebita networks, and advances in
device networking have allowed the development of a newntgolgy, Machine to Machine
communications (M2M) [10], [11], which has recently re@xconsiderable attention. M2M
is mainly a combination of three common technologies: wsslsensors, the Internet and
personal computers. In M2M, a field node or a group of field sbdi@ the vicinity of an
event) gather data and send it wirelessly through a netwark (wireless sensor network),
where it's routed, often over the Internet, to a server oudlof servers. At that point, an
application program (or a software agent), translates #ia thto meaningful information
(e.g., an accident has occurred, items need to be restoetel based on information from
the sensors and a set of rules, and then, sends commandstriileosor actuators, which
issue the electrical signals necessary to make machinestdion. Hence, M2M technology
enables the next generation of wireless sensor networkglabal connectivity to billions
of processes, devices, and machines through the InternatreTis an immense potential
for future applications of this technology. Some of the ently envisioned applications are
building automation and structural control, transpootatand logistics, healthcare, public
safety and surveilance, and, environmental and utiliti@itoring. We summarize some

of the major existing and potential M2M applications in Higu.1l. The vast majority of

! Field nodes can be sensors of properties such as temperatumédity, flow measurement, and position
finding system, as well as controllers and actuators for inashsuch as air conditioners, elevator pumpsfitra
lights, etc.



M2M applications - perhaps 70 percent - have intrinsic emrinental benefits that promote

environmental sustainability [12].

Building
Management
« HVAC Control/
Automation
e Lighting Control /
Automation
o Structural Health
Monitoring
* Energy/ Utility
Monitoring
* Building Awareness /
Security
* Entry Control
* Fire Detection,
Intruder detection
* Elevators, doors,
etc.

Transportation and
Logistics (ITS)

* Mass Transit

 Stop Light
Management

* Parking Control

* Toll Payment

* Inventory Monitoring

* Vehicle and Asset
tracking

* Driver safety

* Accident notification

* Location positioning

Medical

* Portable Devices

* Remote Healthcare

 Individual
Monitoring for the
Elderly

* Consumer Medical

Local Communities
and Public Safety

« Site surveillance

* Air Quality
Monitoring

* Billboards

* Point of Sale

* Vending Machines

* Public lighting

® First-responder
Sysems

* Border/ Perimeter
Security

Energy/ Utilities

* Smart Grid

Monitoring (Smart
metering)

* Substation

Integration

* Distribution

Automation

» Utility Sub-metering
* Oil/Gas Production

Monitoring

* Water treatment and

supply

* Billing of utilities (

Oil, water, electricity,
heat, etc.)

Manufacturing /
Indusrial

 Plant Operations /

Safety

* Instrument

Calibration

¢ Machine Health

Monitoring

* Process Control and

Automation

 Condition-based

Maintenance

Figure 1.1: Current and future M2M applications (Photo @sedL [2], 2 [3], 3 [4], 4 [5],

5[6], 6 [7])

With increasing awareness of the potential harmftéas to the environment caused by £0

emissions and the depletion of non-renewable energy sguttoere is a growing consensus

on the need to develop more enerdlieggent systems and networks [13]. In recent years,

researchers and industry analysts have pointed out thétaiugn of M2M can result in a

“greener” ICT infrastructure. In particular, it is suggestin [14] that a combination of M2M

and dematerialization services (such as eliminating papekkeeping in favor of electronic

records) could reduce Europe’s energy bill by at least 4bbiEuros and reduce C{&mis-

sions by at least 113M tons per year in 2020 across 25 EU desirfiEU-25).

However, the authors estimate that a billion mobile corinastwould be required to achieve

these savings, 87% of which are Machine-to-Machine (M2M) tl#e use of M2M networks

increases, the information generated by end users williatsease. The reliable distribution

of this content will require increasing investments in asfiructure and maintenance, and a

matching electricity bill to run the underlying ICT (Infomtion and Communication Tech-

nologies). These could significanti\ffset the potential savingstered by M2M networks
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unless innovative energyieient technologies are employed in the design of these mie$swo

Today, ICT equipment and services are responsible for e&féunf all electrical power con-
sumption in the EU, and about 2% of carbon emissions. As M2Miegtions and deploy-
ments continue to increase, the ICT sector will inevitabigwg This growth, together with
increasing energy costs and the need to reduce greenhosisenggsions make it important
to design M2M networks as energffieiently as possible on every stage from computation
and storage to communication. Yet, despite the growingarekeinterest in M2M, its energy

efficient design per se has not beeffisiently addressed in the literature.

With this in mind, Chapter 2 is devoted to overview an arragtafe-of-the-art techniques and

technologies that may be incorporated in various stage$ageds of M2M design.

1.1.2 Energy Hficient Routing in Machine to Machine Networks

Although still in its nascent phase, M2M is a promising tembgy. M2M networks make
use of multi-hop routing in order to route data in a wirelesgnork. Since each node in a
wireless multi-hop network acts as a router, one of the mesnds in multi-hop routing is
energy éiciency. In the last decade many enerdiycient routing algorithms have been de-
veloped for use in multi-hop networks, such as ad hoc andseesworks. Ad-hoc networks
are dynamically formed multi-hop networks that can be dggdowithout the need for any
fixed infrastructure, such as base stations. The nodes tcoafipemselves into a network
and cooperatively maintain network connectivity. Someksan which treat the problem of
energy by reserving the network connectivity are [15], B¢nsor networks often have nearly

an ad-hoc structure, except perhaps having a central dégatam unit or sink.

The growing interest in sensor applications has createced fog protocols and algorithms
for large-scale self-organizing ad-hoc networks, comgstf hundreds or thousands of nodes.
Hence, in the past decade, wireless sensor networks (W3Ms)deen the topic of consider-
able researchffort due to their potential for civilian and military applit@ns and their ability
of being incorporated in M2M networks. Although M2M netwsrtto not only consist of sen-
sors, WSNs are a key component of machine-to-machine (M2khnecunication. Therefore,
sometimes sensor networks are referred to as M2M netwof{s YYSNs are made up of a

large number of small sensors that are networked via low paireless communications. A
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sensor network enables cooperation, coordination, atabmyhtion among sensor nodes and
thus it diferentiates itself from a mere collection of sensors. Theahtmain functions in a
sensor network are sensing, controlling and actuatingsd fienctions could be on separate
nodes or co-located on the same physical node. Thus, theetbrae types of nodes; sensors,
controllers and actuators [17]. These nodes are geneglipged with data processing and
communication capabilities which are used for collectimgl disseminating environmental

data. Figure 1.2 shows a schematic diagram of sensor nodeoc@mts.

| | | |
Sensor module e g Processorand lg s Transeeiver
memory |
v, LS
A
|
.

| Powrer Unit

A

Power Generation

Figure 1.2: Basic components of a typical sensor node

The sensing circuitry measures ambient conditions relatetie environment surrounding
the sensor and transforms them into an electric signal.eBsirtg such a signal reveals some
properties about objects located and events happening iridimity of the sensor. The sensor
sends such collected data, either to other sensors or backegternal base station (BS). A
base station may be a fixed or mobile node (sink) capable aofeimg the sensor network
to an existing communications infrastructure or to therimé¢ where a user can have access

to the reported data.

Due to the inherent multihop characteristic, routing is amant in WSNs. Since a WSN con-
sists of energy-constrained sensor nodes, the resourdes étwork (such as energy supply
and bandwidth) should be used wisely. Therefore, at thear&tiayer, it is highly desirable
to use energy aware and energy conserving routing algaitbrrouting and relaying of data
from the sensor nodes to the BS. In developing energy awaremergy conserving routing
techniques, WSNs are modeled as graphs. Then, a shortestopéing (SPR) algorithm is
applied on this graph. Therefore, once an appropriate liekimhas been defined, the optimal

shortest path routes can be computed in polynomial timermadlistributed fashion [18].
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There have been previous surveys on the characteristiptications, and communication
protocols in WSNs [19], [20]. The surveys in [19], [20] adsked several design issues and
techniques for WSNs describing the physical constraintsemsor nodes, applications, archi-
tectural characteristics, and the protocols proposed layadrs of the network stack. In [21],
a comprehensive list of recently proposed routing pro®wi®lpresented, and routing algo-
rithms used in WSNSs were classified as data-centric, hieialcand location-based. As can
be observed from [19] and [21] early literature on wirelessvorking addressed the design
of efficient routing algorithms without optimization of the engrmgquired to send the mes-
sages. A comprehensive survey of routing techniques peapfos wireless sensor networks
is presented in [22]. The techniques mentioned in the sunmesg the common objective of
trying to extend the lifetime of the sensor network while ootmpromising data delivery, as
well as addressing routing challenges and design issuesntna dfect the performance of

routing protocols in WSNSs.

The motivation and scope of Chapter 3fei from those of previous related surveys in that
the focus is on link-cost based shortest path routing altees and mechanisms proposed

for WSNSs as well as other ad-hoc networks are considered.

1.1.3 Resource Management and Scheduling in Energy Harvéisg Industrial WSNs

The collaborative nature of wireless sensor networks (W®Ngegs several advantages over
traditional wired systems, including self-organizatioapid deployment, flexibility, and in-
telligent processing capability [23]. Recently, WSNs hfuend their way into a wide variety
of applications and systems with varying requirements dradacteristics [24], [25]: ocean
water monitoring and bathymetry, avalanche rescue, otsgating, remote monitoring of oil
and gas reservoirs, and, preventive and predictive maintan(PdMj, which is considered to
be an important example of the class of industrial WSN appibas that provide measurable

value in real deployments.

Resource management is just as critical in the industridt@mment as in other deployment
scenarios. This may seem counterintuitive since most tniduplants have ample power sup-

plies and distribution systems. However, as also disculgd€tishnamurthy et. al. in [25],

2 Predictive maintenance is a general term applied to a famhilgchnologies used to monitor and assess the
health status of a piece of equipment (e.g., a motor, chdtecooler) that are in service [25].



operating and safety regulations call for each piece offqgent to have a dedicated power
circuit, thus requiring separate power connections fosgenodes. Hence, to reduce installa-
tion costs, the WSN must either be battery powered (and gnaglgressive resource manage-
ment) or make use of energy harvesting. Since industrial ¥/&H expected to be deployed

in harsh or inaccessible environments for long periodsrétirecently, employing energy
harvesting (via ambient energy sources such as solar [#@htional [27], [28], wind [29]

and thermal energy [30]) to replasapplement batteries that power WSNs, has earned much
interest. Detailed information aboutfiirent types of energy harvesting approaches can be
found in [30], which is a useful source that investigatesdheent energy harvesting WSN

applications in several areas, and, provides examplesdirlg development enterprises.

The most popular source of the ambient energy is the sunr 8odagy is becoming widely
used, due to its high power density compared to other soof@abient energy [31]. Conse-
guently, numerous researchers have designed energy tiagveiscuits to d€ficiently convert
and store solar energy [32], [33], [34], and, most of theistsithentioned in Chapter 4 focuses
on solar energy harvesting. As claimed by Yu and Yue [35hrsehergy harvesting is a com-
paratively fledged technology for WSNs used for outdoor iappbns. However, for indoor
applications, it is not suitable since thi@eency of photovoltaic cell is very low under low in-
door light luminous intensity. For indoor applicationseanay prefer the micro-scale indoor
light energy harvesting system developed in [35], or, thergyn optimized sensor node [36]

designed to harvest the energy from indoor light, for buaiidclimate control application.

Moser et. al. argue in [37] that, depending solely on enemyédsting gives rise to new
challenges and will trigger the revision of conventionaaerce management. If, e.g., the
size of a solar cell limits the available poy@mergy of an electronic device, decisions such
as when to provide how much power, rate, service, etc. habe tmade in order to satisfy
the needs of the user as well as possible. Successful demtamstof perpetual operation
with indoor EH WSNSs have already been made, that are drawtaegten to the importance
of routing and scheduling mechanisms that are aware of teeggrharvest process. For
instance, in an indoorfice environment, Hande et al. [38] used monocrystalliner sxhs

to scavenge energy from 34 W flourescent lightbulbs in omeupply (via supercapacitors)
the routers of a WSN. The routers, operating in pairs, aediesrtually perpetual operation
by resource-aware operation. The authors in [38] stredsadirt scenarios with mobility,

resource management mechanisms for other forms of eneaggrsging (such as vibration-



based or thermal) should be investigated in future work.

Resource (energy) management in WSNs equipped with enengiedting capabilities is
substantially and qualitatively fierent from resource management in traditional (battery-
powered) WSNs. As stated by Mao et. al. in [39], conservativergy expenditure in en-
ergy harvesting networks, may lead to (i) missed rechargpmprtunities because the battery
buffer is full and, (ii) long delays because the energy is notdéitly used to transmit at
high enough data rates. On the other hand, aggressive usagergy may result in reduced
coverage or connectivity for certain time periods, not totisen complete battery discharges
that could make the nodes temporarily incapable of trarisfptime-sensitive data. In indus-
trial applications, this may lead to loss of production anayrsometimes create hazardous
situations [40]. Thus, new resource allocation and sclieglschemes need to be designed to
balance these contradictory goals, in order to maximizeéterork performance. This is the

main motivation for Chapter 4.

1.1.4 Proportional Fair Resource Allocation on an Energy Havesting Downlink

Management of energy consumption is vital for the sustdibabf many wireless communi-
cation systems. Therefore, especially in the past decagegy dficient scheduling policies
have been investigated [41, 42, 43]. Due to recent advanaasergy harvesting technologies,
emerging communication devices have been powered by gediale batteries which are ca-
pable of harvesting energy through solar cells, vibratibgoaption devices, thermoelectric
generators, wind power, etc. Although energy harvestilggval sustainable and environmen-
tally friendly deployment of wireless networks, it requrgticient utilization of time-varying
energy. Hence, the focus should be shifted from minimizimgrgy expenditure to optimizing

it over time.

It is well known (.9, [44], [45], [46]) that optimization of a broadcast chanielg, the
downlink) shared by many users calls foffdrent choices of rate and power allocation to
different users depending on the gains, channel conditionsaraisof these users, and most

importantly, the objective of the optimization.

There has been considerable recent resedfolt ®n optimizing data transmission with an

energy harvesting transmitter. In [47], the authors develpacket scheduling scheme that
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minimizes the time by which the energy harvesting trangmitielivers all packets to the
receiver of a single-user communication system. In [488, dlathors extend this work to
the multi-user case and, propose an iterative approachrédates the two-user broadcast
problem into a single-user problem as much as possible, leamd utilizes the single-user
solution in [47]. [49] treats the time minimization probldar the two-user broadcast channel
differently, as it proposes an iterative solution technigue dnsidering two energy arrival
slots at a time. These approaches are extended by [50] ahtb[fie case of a transmitter
with a finite capacity battery. [52] extends [47] one stepHer to propose the directional
water-filling algorithm, which is able to find the optimal egg management schemes for
energy harvesting systems operating in fading channel$) fiviite capacity rechargeable
batteries. Both [51] and [52] investigate the following Hagline problems; maximizing the
number of bits transmitted with a given deadline constrant minimizing the transmission

completion time with a given number of bits to transmit.

Unlike the broadcast related studies mentioned above,ifb@ptigates the dual problems
in a multiple access communication system. By using the rgdéired iterative backward
waterfilling algorithm [53], the transmission completiamé minimization problem can be
simplified into convex optimization problems, and solvdficently. [54] solves the short-
term throughput maximization problem for a battery-lirdienergy harvesting transmitter in

a single link topology.

In [55], the authors consider the problem of energy allacativer a finite horizon for point
to-point wireless communications, taking into accountnaetivarying channel and energy
source, so as to maximize the throughput. In [56], Gatziatasal. consider an infinite-
horizon online throughput maximization problem for a rechargeable senstwork. The
authors propose a queue stabilizing transmission polidi découpled admission control
and energy allocation to maximize a function of the long teate achieved per link. Chen
et. al. [57] claim that infinite-horizon based solutions t@nhighly indficient, especially in
the context of networks with energy replenishment. Hennbkei [56], [57] investigates the

finite-horizon throughput maximization problem for a regjeable sensor network.

The work in Chapters 5 and 6ftér from the previously mentioned studies particularly iith
aim to maximize the throughput in a proportionally fair wiaking into account the inherent

differences of channel quality among users. Due to charaateradtthe utility function, the



problem presented istiaconvexproblent which is nonconvex, and has multiple optima. This
allowes us to decompose the problem into two parts (powecation, time allocation) and
present a Block Coordinate Descent based optimizatiorrittign BCD, that converges to a
partial optimal solution. Although BCD is guaranteed tovenge to a partial optimal solution
and thus the partial optimal utility, it is computationaélxpensive and when there are tens of
users and energy arrivals, forming invertible hessianioestnneeded for the optimization of
the power variables) may be computationally excessive.cklewe next restrict our general
case assumption to the case where energy interarrival timeesqual, in Chapter 6, so that
we can analytically derive the characteristics of the oatisolution, and then, build on those
to develop simple heuristics, PTF and ProNTO that closelgkithe performance of the BCD
solution. Note that, not all generality is lost, since hatvemounts are arbitrary and the
absence of a harvest in a certain slot can be expressed widttvash of amount zero for the
respective slot. Periodic sampling is consistent with fitacas in many energy harvesting
systems, transmitters have supercapacitors that canterervested energy and supply in

every predetermined time window.

1.1.5 Prediction Based Proportional Fair Resource Allocabn for Industrial Wireless

Sensor Networks

As previously discussed in Chapter 4, resource managesgrgtias critical in the industrial
environment as in other deployment scenarios. In many tridu8VSN applications, an area
needs to be covered with a wireless sensor network (WSN),uttipie WSNs, monitoring
different parameters, orftrent locations. Often, these subnetworks of simple de\sead
data via gateway nodes (or cluster heads) to a remote baiem dtewated at a centralfiice,
where the signal processing to produce strategic decisiorsson a more powerful computer.
It is often also the central computer that maintains thetheafl the network by regularly
recomputing the network topology. It is then necessaryHerliase station to broadcast cer-
tain network details and commands to the gateway nodesaiSabte and environmentally
friendly development of such industrial applications riegglincreased use of renewable en-
ergy, i.e., solar, wind, etc. Thus, in chapter 7, we addressase where the base station is

supplied with solar energy harvesting. However, unlike twtx@have done in Chapters 5 and

3 The problem of optimizing a biconvex function over a giveiygbnvex or compact set, where a function
f: XxY — Ris called biconvex iff (x,y) is convex iny for fixed x € X and is convex irx for fixedy € Y [58].



6, this time we focus on a more realistic scenario and thusptioated problem; thenline

problem, in which the energy arrival amounts within a framersot known apriori.

1.2 Contributions of This Thesis

The contributions of this thesis study can be stated asistlo

e An overview of the state-of-the-art techniques and teaties that may be incorpo-

rated in various stages and layers of sustainable M2M design

— Despite the growing research interest in M2M communicatiand the impor-
tance of energyféciency in M2M networks, we are not aware of a detailed study
on energy #iciency in M2M networks. By this means, we believe that theres
ach presented in Chapter 2 will be a useful reference foethd® are interested

in energy #icient design of M2M networks.

¢ A detailed survey on link-cost based shortest path routitegreatives, and a compre-

hensive classification of the discussed algorithms, surnzethin Table 3.2.

— Several surveys on both ad hoc and sensor networks exist iitdhature. How-
ever, the motivation and scope of the study presented int€h8pdifers from
those of previous related surveys since the focus is ondosk-based shortest
path routing alternatives and mechanisms. To our knowletlgs is the first
studysurvey devoted to the shortest path based enefiggiemt routing algo-

rithms. It should be noted that, this survey is a publishedck&a9].

e An overview of the state-of-the-art resource managemetitseheduling algorithms,

developed for energy harvesting WSNs:
— This study will soon be available as a book chapter [60].
e Proportional fair resource allocation related contribns:

— The proportional fair resource allocation problem propldee an energy harvest-

ing downlink.

— Derivation of the structural properties of the proposedjem.
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— An optimization algorithm that converges to an optimal soly BCD.
— Derivation of the optimal solution based characteristics.

— Simple and #icient heuristics that closely track the performance of thenaal

algorithm.

— Although there has been a considerable recent resefitmh @n optimizing data
transmission with an energy harvesting transmitter, wenateaware of a study
on an energy harvesting downlink that takes into accounintierent diferences
of channel quality among users to maximize the throughpuat pgnoportionally
fair way. The study in Chapter 5 entails not only the optimedvprrate allo-
cation to users between energy arrivals, but also the optima allocation that
will maximize a proportionally fair utility function. Chder 6 provides simple,
practical, and close-to-optimal algorithms that can ojgena order of seconds,
and by this means, it can be considered as a useful sourchdee tvho desire
forming fast and proportionally fair allocations in an egeharvesting broad-
cast system. The studies in Chapters 5 and 6 are combinednoafqournal
paper which is accepted for publication [61]. Parts of tretadies are presented
in 27th International Symposium on Computer and Infornmaeziences (ISCIS
2012) [62], [63].

¢ A Kalman-filter based energy prediction algorithm, K-SE#R] anonline proportional
fair resource allocation algorithm, PTF-On, that can dips&ack the performance of

the offline PTF algorithm.

1.3 Organization of The Thesis

In Chapter 1, the motivation of the thesis study is stated ditapter also provides introduc-

tory information about the studies included to this thesigng with their related works.

In Chapter 2, we overview an array of state-of-the-art tephes and technologies that may
be incorporated in various stages and layers of M2M designstaft by describing a typical
M2M architecture and its components, as well as issueserklat their design. Next, we

discuss possibilities for the energy conservation in thegeof these components.
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In Chapter 3, we focus on the problem of enerdirceent routing and its significance in
wireless networks, followed by a definition of link cost basghortest Path Routing (SPR).
Then, we describe various shortest path based endifigient routing algorithms designed
for wireless ad-hoc or sensor networks, and, the candigtdtedst metrics that could be used

in accordance with shortest path based algorithms.

Chapter 4 overviews a selection of state-of-the-art resbaranagement and scheduling al-
gorithms, developed for energy harvesting WSNs, selectgaiticular with respect to their
suitability to the industrial WSN environment. The treathimcludes an explanation of the
operating principles, as well as the design settings faeatagorithms. The drawbacks, ad-

vantages, and possible application areas of these algariéine also discussed.

Chapters 5 and 6 are devoted to the proportional fair resa@llocation problem on an energy
harvesting downlink. In Chapter 5, we describe the systerdaeil@nd, make the problem
statement precise to study the mathematical structureeqirtbposed problem. The proposed
BCD algorithm is described in this Chapter, followed by aailetl analysis and discussion of
the nature of the solution found by BCD. We also test the msigined from analysis about

convergence and the nature of the solution, by running tharithm on numerical examples.

Chapter 6 discusses the structure and properties of themalpgblution. Depending on these
properties, PTF and ProNTO heuristics are proposed in thiapt@r. The numerical and

simulation results are also presented.

Chapter 7 presents our latest study, i.e.,adhkineversion of the problem proposed in Chapter
5. The chapter explains how we leveraged the PTF heuristiotdpose a stand-alone algo-
rithm, PTF-On, that can predict the base station’s energyaaiprofile throughout the day,
and then, act upon this energy arrival profile to maximizettineughput in a proportionally

fair way.

Finally in Chapter 8, the summary of this study, and, a disicisabout the possible future

directions is presented.
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CHAPTER 2

TOWARDS SUSTAINABLE MACHINE TO MACHINE
NETWORKS

M2M communications (M2M) is a rapidly growing technologyatrautomates the commu-
nication among heterogeneous groups of devices. M2M hasvegtincreased attention re-
cently due to its potential for reducing the energy consimnpnd greenhouse gas emissions
caused by current communication technologies and humatitiast In order not to Giset the
potential savings by the overall energy consumption of astatfon, storage and communi-
cations needed to realize M2M networks, it is necessarysmdehese networks with utmost

energy diciency at every layer of their architecture.

This chapter starts by laying out the components of an M2Mitecture, and continues
by a wide scoped consideration of solutions from recentditee that can be employed to-
ward energy fiicient design of each of these components. The array of snkisurveyed
include, energy #icient hardware and protocols for wireless sensor and actuatworks
and, performance-improving techniques for other wired wirdless networks that serve to

support M2M networks.

2.1 M2M System Architecture and Design Issues

2.1.1 M2M Architecture

M2M is a combination of various heterogeneous electronitnmunication and software
technologies. A typical M2M system, illustrated in Figurd,2comprises of the following

basic components [64], [65]:
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Figure 2.1: M2M architecture

¢ Intelligent and communication enabled modules and devigé®gse devices include
sensors, actuators, RFID tags, PLCs (Programmable Logitr@) I/O modules and
any other device, machine or appliance that incorporatesnarmnications module.
The wireless communications module can be built into théesyor integrated as an
add-on component. These devices are programmed to readoaretimes react to,
actions and conditions such as motion, pressure, or tetuperaWe will refer these

devices as intelligent devices.

e M2M Area Network: This network provides connectivity beemeintelligent devices
and M2M Gateways. Examples of M2M Area Networks include: dloetworks such
as M-BUS and Wireless M-BUS, and, Personal Area Network (R&bhnologies such
as IEEE 802.15, SRD (Short Range Device), UWB, Bluetootigh&e, sensor net-

works, etc.

¢ M2M Gateway: An M2M gateway is responsible for extracting data from an intelli-
gent device and preparing it for the network. The gatewag ag®oprietary protocol or
device driver to interact with the intelligent device, anahslate the data into a format
that another device, application or human can understarainliyl an M2M gateway
facilitates communication among the various devices aodiges a connection to a

backhaul that reaches the Internet. The M2M gateway canthawny diferent embod-
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iments [66]; it needs to support one or more of the local netyootocols as well as the
backhaul connection to the Internet. The backhaul conmectiay be Ethernet, cable,
DSL, fiber, or cellular. We refer the interested reader td fé6information about the
issues related to the design of M2M gateways. Although tkedas on home M2M
networks in [66], the converged M2M gateway structure psggbby the authors is a
single product that uses advanced protocols to controf &#tleohome network devices

and thus, it provides insight into how an M2M gateway showdibsigned.

There can be several gateways in an M2M network. Every gatéveapable of an-
alyzing a certain amount of data transmitted from varioges$yof intelligent devices.
According to Kim and Choi [67], when an M2M application querithe sensing infor-
mation of a certain geographical region to an M2M platforng platform should find
out the devices that cover the requested region and seéet2ZM gateways to route the
request to those devices. Since the M2M platform knows ggibgeal locations of the
registered devices and M2M gateways only, the M2M platfolnoutd speculate about
the coverage of M2M area network (M2M-AN) which consists lé M2M gateway
and associated devices including both registered and isteegd devices. In this case,
determining the smallest feasible M2M gateway set (listpséhcollective coverage
spans the target region is important for minimizing the irmybverhead, transmission
power and processing resources. We refer the interesteérréa[67] for details of
four algorithms proposed by Kim and Choi in order to seleethMt2M gateway list for

geographical region based query from certain M2M appbeesti

e Communications network: The Communications network in a2Mviapplication is
the central connection component between an intelligenicdeand a remote client.
It provides communications between the M2M Gateways anddhwte clients (or
software applications). Examples of Communications neke/include: xDSL, IEEE
802.11, Local Area Networks (LAN), GERAN (GSM EDGE Radio &ss Network),
UTRAN (UMTS Terrestrial Radio Access Network), W-LAN, WiMA (Worldwide
Interoperability for Microwave Access), and the cellulanumunication technologies
like GSM (Global System for Mobile communications), GPR®(@ral Packet Radio
Service), EDGE (Enhanced Data rates for GSM Evolution), 3@, (Long Term Evo-

lution), CDMA, etc. A large number of M2M applications tranis relatively low data

1 In some M2M applications, M2M gateways can be included tdMB&1-AN structure.
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volumes, so the potential transmission speed has littl@ifgignce for them. Among
many choices mentioned above, the pricing model of GPRS &@HEmakes them
attractive for M2M applications. Some gateways also supp&s (Global Positioning
System) technology in order to transmit location data bygisatellite communication.
Communications network allows the system to send infoionatb a back-end server,
which processes the data and sends it via the Internet t@diléyf that monitors and
controls the machine, via protocols such as TIERnd the short message Peer to Peer

Protocol.

e The remote client or application: This is the destinatiothefinformation. The remote
client can be either a hardware or a software that receiveddta. More specifically,
clients can be cell phones, web browsers (e.g., Internetoestp Firefox, or Google
Chrome, etc.), email clients and smart messaging (SMSgedgvamong others. These
clients use a software application which allows the reakigata to be analyzed, re-

ported, and acted upon.

2.1.2 M2M Design Strategies

There are basically three infrastructure design strasdgiM2M implementations: push strat-
egy, pull strategy and pughull (hybrid) strategy. In push strategy, the intelligemvide
initiates the communications and sends data through an M&sgy over the network to a
remote client. In order to perform this operation, the deviecognizes pre-defined conditions
and triggers itself to send alarms, alerts, e-mails, datkcammands to an M2M gateway.
Then, the gateway connects over the network on an as-neededtd send data to the remote
client. For instance, if the temperature level in a roomsrigleove a predetermined threshold,
the intelligent device sends a command via the M2M gatewayR&.C or JO unit to enable
power to a cooling device. Depending on the device’s caipiasil it may also be possible
to send an email to a technician’s cell phone. In this scen#re gateway connects over the
network only when the temperature threshold is exceedetl.stPategy, on the other hand,
requires a server and an always-on LAN, or Internet conoedti ensure continuous report-
ing. Hence, it is more expensive than the push strategy.diPthil strategy, there is a server
on the network which is tasked with polling (periodicalligtintelligent devices for data. The

server is capable of broadcasting the data throughout teepgise, sending alerts, alarms,
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messages, or commands to other devices. An advantage efrtitisgy is that it enables the
user to check whether the server is consistently estabjsttmmunications with the intel-
ligent device or not. The hybrid strategy is a combinatiorthaf push and pull strategies.
The hybrid method is used when the user demands to accesgdligént device at any time
and rely on the the device to take action when an event isarggly However, if the M2M

gateway has an Internet connection and, acts as a Web sthevérybrid method introduces
many issues [64] such as the need for a static IP address dbrietlligent device which

necessitates greater security precautions such as indiidewalls.

Having laid out the typical architectural components, weraady to discuss the construction

of these for sustainable operation of the whole M2M network.

2.2 Requirements for M2M Network Design

Despite the promising real-time monitoring applicationd &emendous benefits, M2M com-
munications is still in its infancy and faces many challenygeamely, meeting the following

requirements [68], [69] are met.

1. Scalability: Scenarios with hundreds or thousands efligent devices are easily fore-
seable, considering, for example, the smart grid. Netwookogols that scale well are

thus needed.

2. Sustainability Energy Hficiency: To reduce the need for human intervention for true
automated operation, sustainable operation for monthgarsyat a time is desirable.
Usually, a mass of intelligent devices are deployed in M2Mvoeks. Hence, as sup-
ported by Lu et. al. [70], M2M communications should focus emergy éiciency
by optimizing M2M nodes’ sensing, processing, and transimis, and ultimately pro-
long the lifetime of the whole M2M communications. Protoaathitecture that support
sustainable, low power operation with adaptive duty cyilsleepwakeup scheduling,

etc. are thus needed.

3. Reliability: Low reliablity in sensing, processing, atrdnsmission, leading to high
error rate in monitoring, data loss or long delays will cetiareduce the applicability
of M2M infrastructures. Hence, M2M infrastructures needé&designed to ensure

certain reliability requirements at every layer.
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4. Mobility: In certain applications where intelligent degs are built on moving ma-
chinery, for example, or are intrinsicly mobile or portahtewill be required that the

network provide seamless mobility.

5. Priority/ Identification: Management of services witlfdrent priority classes is likely
to be arequirement. Interrupting routineffrato transmit important or urgent messages
or serve a flow with higher priority is expected in many auttorascenarios. To
accomplish this, the network needs to support identificatibintelligent devices or
groups of intelligent devices by permanent or temporary, IDsation or combination

thereof (e.g. URIs or IMSI).

6. Heterogeneity: Often, the M2M System should be able tpeui@ variety of diferent
device types, e.g. active intelligent devices and sleejpitgdligent devices, upgradable
/ not upgradable intelligent devices, and, M2M gateways. ddethe M2M network

should be capable of interfacing heterogeneous M2M Areavbhis.

7. SecurityPrivacy: M2M network should be designed in a way that prevemautho-
rized use of the intelligent devices and the M2M Gateway. htiukd be capable of

protecting privacy.

Recently, a considerable attention has been paid to theyfapht of architecture and soft-
ware challenges in M2M networks not only from the IT indudity also from academia [70].
However, the energyfiiciency related issues in M2M networks have not been wellczrpl

On the other hand, energyfieient design can increase the applicability of M2M and over-
all impact to global energyficiency [70]. In the next section we focus on methods and

technologies that can be used for designing sustainablerserdy dicient networks.

2.3 Sustainable M2M Networks

This section will make an overview of energffieient design at various components of an

M2M network.
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2.3.1 Energy Hificient Solutions for Intelligent Devices

Intelligent devices form the core of an M2M network, and nally the availability of the

devices themselves is critical for the reliability of thetwmerk. Intelligent devices used by
M2M applications are often wireless sensor nodes or comeation modules that incorpo-
rate sensors. These are typically powered by batteries ibé fiapacity which need to be
replaced after a certain period of use. However, for mangectiM2M applications such as
Environmental Monitoring and Structural Health Monitayi(fSHM), battery replacement is
impractical - nodes may be crammed into hard-to-reach nop#sstributed over wide areas.
Hence, in order for M2M networks to operate successfully effidiently, M2M applications

must overcome the maintenance problem, probably througiy umedes that can automati-
cally replenish their energy from the environment. Thiseapt, sometimes called ambient

energy harvesting, has attracted great interest from geareh community in recent years.

Today, the main sources of ambient energy considered iifabuse in wireless sensor
networks are solar, mechanical (vibration or strain) amdrttal energy [71]. Solar power is
one of the most common and mature forms of energy harvestimgesfully used in many
current implementations. One of the most poignant exaniplaplug-and-play solar energy
harvesting module (Heliomote3 [72]) which is capable of pdng commonly used sensor
nodes, including Crosshow’s Mica2 and MicaZ, Moteiv's ElWale’s XYZ, Intel’s Stargate,

and ISI's PASTA.

Harvesting of vibrational, kinetic and mechanical energpayated by movements of objects
is particularly suitable around roads, bridges, and raiks. One method of harvesting vi-
brational energy is through the use of a piezoelectric dagpawhile kinetic energy can be
harvested using a spring-loaded mechanism. For examglié; sensors can be powered by
the short duration vibrations generated by a vehicle dgivomer them. Recently, Torah et
al. developed an autonomous and energy aware wirelesstioonaionitoring sensor system
(ACMS) powered by harvested vibrational energy [73]. TREem employs a kinetic energy
generator (EG) which converts mechanical energy, in the fof vibrations, into electrical
energy using an electromagnetic transduction mechanisespi2 the small volume of the
EG (150nn?), it produces sfficient power for the entire microcontroller subsystem from a

very low vibration source of Oris? with no additional battery or power supply.
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Table 2.1: A comparison of possible wireless technologiedf2M-ANs

Zigbee

Bluetooth Wi-Fi UWSB (Ultra Wide Band)
UWB Forum and
s rting Organizati . " L /AT
upporting Organization ZigBee Alliance Bluetooth SIG Wi-Fi Alliance WiMedia Alliance
868 MHz (Europe)
RF Frequency 915 MHz (USA & Australia) 2.4 GHz 2.4 &5GHz 3.1-10.6 GHz
2.4 GHz (Worldwide)
Data rate Up to 250 Kbits/sec 1 Mbits/sec 11 & 54 Mbits/sec 100-500 Mbits/sec

Topology

Mesh, Star, Tree

Star

Star

Star

Range

70-300 meters

10 meters

50-100 meters

4-20 meters

Max. number of nodes

65536

32

128

Transmission

=70-80 mW
Power

=100-110 mW =770-780 mW =780-790 mW

Power
Consumption

Reception

= 80-90 mW
Power

=100-110 mW =760-770 mW =770-780 mW

Industrial control & monitoring,
WSNs, building control &
automation, etc.

Wireless connectivity between
devices such as phones, PDAs,
laptops, etc.

Streaming video,
home entertainment

applications

Wireless LAN connectivity,

Typical Applications
W g broadband Internet access

Battery Lifetime Months to years Days to weeks Hours Hours to days

Thermal energy harvesting, on the other hand, exploitsrbyespty of certain semiconductors
to generate electricity from temperaturdfeiences or gradients (e.g. between the human
body and the surrounding environment). The practical ehgk here is to harnessticient
energy from small gradients occurring in daily life, suchbasween a person’s skin and the
surrounding air. Chandrakasan and Ramadass [74] have duated devices which can
exploit differences of just one or two degrees Celcius to produce tirgufakD0 microwatts)
yet usable amounts of electric power. A system powered with shermal energy harvesting
devices could, for example, enable 24-hours-a-day mangasf heart rate, blood sugar or

other biomedical data, through a device worn on a patient’s a

2.3.2 Energy Hficiency in M2M Area Networks

2.3.2.1 MAC Standards for M2M-ANs

M2M-ANs can employ various MAC standards (wireless netwagktechnologies) such as
UWB, Bluetooth, WiFi, etc. The chosen technology can dréagally impact the rate, range,
capabilities and the cost of the network. Table 2.1 presartemparison of some of the

popular wireless networking technologies appropriateM@M networks.
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UWB (IEEE 802.15.3a) uses an extremely wide band of RF specto transmit data, and
thus, it can transmit more data in a given period of time th&mbore traditional technologies
(Bluetooth, WiFi, Zigbee, etc.). The shortcoming of thishtrology lies in its high power
requirements. Also, the IEEE 802.15.3a task group was lésson 2006, making further
support for UWB unattainable in the future, if UWB is selettes the communication tech-
nology in an M2M-AN. WiFi (IEEE 802.11) also, is suited forghi-data-rate applications
over large areas. As discussed in [75], this technologyysngm enormous infrastructure
for residences and support for IPv6 addressing. The mairicgiming of WiFi is similar to
that of UWB: the high power requirement. Hence, WiFi is cdaeséd impractical for M2M
communications. Bluetooth (IEEE 802.15.1) technologypsuis IP addressing and is well
suited for low-poweftow-data-rate applications. However, Bluetooth netwadsown as
piconet3 support up to only eight devices communicating simultaiso To provide scala-
bility, M2M-AN requires a number of piconets (each consigtof eight devices), being able
to communicate with one another via their master devicess, hlowever, leads to increased
communication latency. Another drawback of Bluetooth &t threquires periodical waking

up (= 3 secs) and synchronization with the master device of tranpic

When energy ficient operation and longevity (rather than high rate, ssififsited features,
or a long communication range) are the main concerns, theegigtandard stands out among
currently available technologies. ZigBee is an open glstaidard that operates on the IEEE
802.15.4 physical radio specification, in unlicensed bandsiding 2.4 GHz, 900 MHz and
868 MHz. ZigBee was developed particularly for wirelessides, ensuring low power and
long life time. It supports power-saving modes, batterjirojzed network parameters, and
application configurations to address the needs of low-doatpower multi-hop wireless
networks. We refer the interested reader to [76] for detigut how to plan and develop

Zigbee networks.

2.3.2.2 Protocols and Algorithms for M2M-ANs

Today, the most widely used M2M area network (M2M-AN) pagadlis a WSN. The lifetime
of a WSN, which is used as an M2M-AN, directlffects the performance of the whole M2M
network. Thus, the problem officient utilization of a finite energy resource on nodes is of

great importance. Over the last decade, various solutians Ibeen proposed for this problem
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in the research community. A large part of thifoet targeted energy conserving protocols at
the network and link layers. A comprehensive survey of peimgi new solutions for WSNs,
such as techniques for energffigient data acquisition, can be found in [77]. We refer the
interested reader to [78] for a recent survey of MAC and raufirotocols that have been pro-
posed for WSNs with the goal of prolonging the network lifei. In the MAC domain, they
list protocols that conserve energy by reducing collisjddie-listening, overhearing and ex-
cessive overhead. In the routing domain, the authors dides major categories of routing
protocols, namely data-centric routfngnd hierarchical routifg Due to the inherent mul-
tihop characteristic, energyffeient (or energy aware) routing is very important in WSNSs.
Among energy aware routing techniques, shortest path bagecaches focus on model-
ing WSNs as graphs. The main aim in doing this is to apply atshbpath based routing
algorithm on the network graph to determine the most enefiygient route. In Chapter 3
and [59], we survey shortest path based eneffigient routing alternatives that can be used
in M2M networks. A novel comprehensive classification ofstalgorithms is also available

in Chapter 3 and [59].

In the previous section, we discussed energy harvestingadstthat can be used to power
the sensors used in WSNs. Energy management in wirelesonkstwquipped with en-
ergy harvesting capabilities is substantiallyfelient from energy management in traditional
(battery-powered) networks [39]. Thus, new resource atioo schemes should be designed
to balance these contradictory goals, in order to maxinfieenetwork performance. In Chap-
ter 4, we focus on resource allocation schemes that couldsée for sustainable operation
of Industrial WSNs. These shemes can easily be used in M2M; Akl Industrial WSNs are
often used as M2M-ANSs.

Another typical M2M-AN is the Wireless Sensor and ActuatatiMork (WSAN), a hetero-
geneous network that consists of sensor and actuator nddethe actuating task is typi-
cally a more complicated and energy-consuming activity tii@ sensing task, actuators are
resource-rich (i.e, line-powered) nodes equipped withebgirocessing capabilities, higher
transmission powers, and longer battery life. There arebagic architectures for data pro-

cessing in WSANs: Automated architecture (AA) and Semiaatted architecture (SA). In

2 Protocols in this category employ data-aggregation ancesiores caching to reduce the number of trans-
missions and amount of data to sink.

3 Protocols in this category divide the network into clusterere clusterheads gather data from field sensors,
aggregate and transmit the data.
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AA, sensor nodes sense the environment and report the dattutator nodes which then ini-
tiate appropriate actions based on the received data. I88#%0r nodes route sensed data to
a sink which may then issue action commands to actuator nddegansmitting the sensed
data to the sink typically results in fast energy depletibmaxes around the sink, this type
of architecture tends to have a disadvantage in terms ofanktlifetime. In AA, however,
sensed data is reported to actuators afiitrdint actuators may be triggered based diedi
ent events, resulting in a more evenly distributed comnatitn load and thus more even

draining of energy.

2.3.3 Energy Hficiency in Wide Area Communication Networks

2.3.3.1 Energy Hficient Solutions for Wireless Connectivity

Considering the part of an M2M architecture from the gateteaie end user, the power con-
sumed on the access network is often the dominant compohtira overall power consump-
tion of the M2M architecture. Indeed, [79] reports that tinergy consumption of wireless
access networks account for more than 55% of the whole coneation sector. Today the
most profitable wireless access network choices for M2M agksrinclude radio access net-
works (RANs) and cellular networks. According to [13], a®608, the energy consumption
of the cellular communication systems corresponded to BiOrbkWh of electricity usage
annually, and, about 40 million metric tons of g@missions each year which is equivalent
to annual greenhouse gas emissions from about 8 million ddesce, in this section, we
will mainly focus on energy consumption of RANs and cellut@tworks. Today, the most
attractive alternatives for reducing the energy consumptif RANs and cellular networks
are: varying the cell size, switchingfasome BSs, and, sometimes, switching between op-
erators [80], [81]. Therefore, the energffigient solutions mentioned in this section will be

related to the above-mentioned three alternatives.

a) Cell Size: Large vs. Small: Cell sizes are categorizeal fimacro-, micro-, pico-, and
femto-cell$. A small-sized cell based approach requires many baserstgBSs) with
low transmit power level. A large cell based approach, onatiier hand, requires a

few BSs with a high transmit power level. This short sect®devoted to thefeect of

4 Femtocells enable connecting miniaturized, lower poweselstations to wired backhauls such as home
digital subscriber lines or cable modems [82].
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cell sizes on the energy consumed by the network, and, teetie of the appropriate

cell size for M2M networks.

As cell size is reduced, energffieiency and system capacity can significantly increase.
According to Leem et. al. [83], if the path-loss exponenaigen as 4 and the per-energy
capacity of a macro-cell is normalized to 1, the per-eneapacities of a micro-, pico-,
and femto-cell are 16, #0and 16 in downlink and 64, 18, and 182 in uplink, re-
spectively. Therefore, for the setting in [83], even thougany BSs are required in
small-cell based approaches, using small cells leads tifis@nt reduction in energy
consumption. Moreover, the amount of €&mission of one BS transmitter is approx-
imately 181 kg in a year, if the cell radius is 1 km, and, if thedl cadius is reduced
to 500 m, 100 m, and 10 m, the amount of £€mission in a year reduces to 45.25
kg, 1.81 kg, and 18.1 g, respectively [83]. Hence, it is enidbat small-cell based
communication systems not only reduce energy consumptibrlbo help protecting
the environment. Bhaumik et. al., however, claim in [84} & optimal cell size from
an energy perspective depends on a number of factors, inglbése station technol-
ogy, data rates, and fiec demands (explained in [84]). This claim is relevant to M2M
networks as the technology, fii@ demands, and, data rate requirements change from
application to application. It is the service requiremesfteach M2M application that
leads to the definition of the media (and thus the cell sizegdder transmission of
M2M data. M2M applications have traditionally only requireelatively low data rate
connections, for which cellular 2G technologies, such aRSFEDGE and CDMA
have been perfectly adequate. In 2006, however, high ratdess M2M applications,
such as, remote information display, and in-vehicle camsgstems, began to be de-
ployed. While high speed wireless M2M will likely only reent a small proportion
of total M2M connections over the course of the foreseealtleré, these applications

will continue to exist, increasing diversity in M2M netwodeployments.

The appropriate cell-size for an M2M network depends onythe bf the application it

is used for. An M2M network with macro cells isfective in providing area coverage
for voice and low-speed data ffi@, but limited in providing high data rates per unit
area. Hence, larger cells are needed for energy saving waiamate is low. If an M2M
application require high data rates, however, small-catigdl approaches are more ap-

propriate since they can be verffertive in accommodating high data rates with low
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energy consumption. For some hybrid applications, a hibreal cell structure, con-
sisting of cells with diferent sizes and ranging from macro to micro cells, can also be
used. We refer the interested to [85] for an energy-awamraittkical cell configuration
framework that has theoretical results as well as practjoadelines on how wireless

network operators should manage their BSs.

When trdfic demands, rather than the data rate, is the primary conoeanfapplica-
tion, one should prefer approacfeshitectures that consider fii@ demands in choos-
ing cell sizes. A multi-layer cellular architecture that@matically detects tific de-
mands at dferent locations and selects the best cell size from a fewnaliges has
been proposed in [84]. It was shown that the simple 2-layehitcture developed
in [84] is compatible with current cellular standards (GSMMTS, WIMAX), and,
can save up to 40% power compared to a traditional statialaethetwork. Instead of
choosing the cell size among a few alternatives, one magiprefdapt the cell size to
traffic load. In such a case, tleell zoomingapproach [86] which adaptively adjusts the
cell size according to tfAc load, user requirements and channel conditions seems to
be the best choice. Cell zooming can not only solve the proliktraffic imbalance,
but also reduce the energy consumption in cellular netwdristead of providing fur-
ther details about the cell zooming approach, we refer ttexésted reader to [86] in
which the implementation issues of cell zooming, includiaghniques, benefits, and

challenges, are discussed in detail.

b) BSs: Switch-ff or Sleep: In a recent document [87], it is reported that thdidRBase
Station (RBS) energy consumption is the dominant part of total energy wogion
of a wireless access network. Oh et.al. agree with [87],ntamgpthat the base stations
contribute to 60% - 80% of the celluar networks’ total enecgnsumption. Thus, the
introduction of sleep modes and switchinfj-smechanisms in the operations of base
stations are today considered as the most promising agmedo reduce the energy
consumption of cellular access networks. Sleep modes atielparly efective at the
network periphery, where the degree offi@aggregation is low, and where the network

is less vulnerable to possible failures, service degradasince the number offected

5 For a cellular network in a city, the tific load in the daytime is relatively heavy iffice areas and light in
residential areas, while the opposite things happen inwbrieg. For a static cell deployment, this causes some
cells to be under light load, while others are under heavs.loa

6 RBS is also referred to as the base transceiver station (Bib8g B (in 3G Networks) or, simply, the base
station (BS).
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users is limited [80]. The sleep mode mechanisms proposé88byenable savings in
energy (for 2G and HSPA (High Speed Packet Access) systaéhesilynamic scheme
switches resources ON and OFF as a function of the instamtanghange of the load
in the system, which in turn follows the users arrivals angaditires. The semi-static
one, on the other hand, allows the resources to remain dctive relatively longer
time interval, in order to minimize the number of activafdeactivation commands. It
was shown in [88] that the dynamic approach is mosflicient when the load in the
network is high, and, the semi-static approach is as goodwhetrdfic load is low.
Thus, semi-static one is preferred for lowffia since it requires fewer activation and
deactivation procedures. Another sleep mode based appradich can be useful in
M2M networks, has been presented in [89]. By introducingadufiee that dynamically
puts low loaded cells into sleep mode, during which BS'soa&djuipment is #ectively
powered down, the authors report a daily energy saving of 88ét a period of 12
hours. At this point it should be noted that, this is achiewétiout any degradation to
user satisfaction and thus network performance [89]. Hewekiis comes with a reduc-
tion in average user data rate. Until now, we discussed theflte of using sleep mode
in which the BS experiences a litle or no activity. Howevarprder to achieve signif-
icant energy savings, what is called for is a more carefudlyighed approach that will
allow the system to shut entire BSs and transfer the cornelipg load to neighboring
cells during periods of low-utilization [13]. [90] is one tife most well-known studies
that deal with this problem. [90] studies the BS switchingitglgy using a simplified
analysis and shows simulation results for several switghbifiBS ratios. However, [90]
does not analyze the dominant factors for minimizing thegneonsumption based on
the BS switching, the tffic profile and the BS density. The fiia profile during day
time is higher than that during night time. Moreover, thera diference in the tifdic
profile observed on a normal weekday and on weekends. HowR®srare planned
to support the day time tfizc. Therefore, infrastructures of access networks are under
utilized during the night time and the holiday period. Thixessitates the use dfec-
tive dynamic BS switching strategies. A basic dynamic BSavimg strategy which
considers the time varying characteristic of theficgprofile has been proposed in [91].
The first-order analysis performed in [91] reveal that theoant of energy saving is
dependent upon the ftia ratio of mean and variance and the BS density. The results

of [91] provide a guideline on how to manage the BS resouroessgo obtain energy
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saving. Another dynamic BS operation approach has beerogedpin [92]. Litjens
and Jorguseski [92] apply a well-structured approach ferdirivation of the potential
energy savings that can be achieved by switchifid)MTS/HSDPA sites in &-peak
hours, while maintaining a prespecified requirement on tieeage or cell edge perfor-
mance. The authors report possible energy savings of upotat @0% depending on
the network operator’s performance target and the spedifite energy consumption
model. However, the results presented in [92] are valid éodyUMTS/HSDPA net-
works and thus, can not be generalized. A generalized fidgr@pproximation of the
percentage of power saving one can expect by turnfhg $s during low tréic periods
has been derived in [13]. The most important contributiofil8], however, is not the
approximation itself, but the discussion of related chmgks. We refer the interested
reader to [13] for a useful discussion on challenges anchfiatesolutions in switching
approaches, including maintaining coverage, enablingpe@dion between operators,

and providing E911 service.

Recently, telecommunication operators, alongside rekees, have started paying attention
to energy issue, and begun to study green solutions. Fropetispective of the operators, re-
ducing energy consumption is not only a matter of being gesehresponsible, it is also very
much a cost issue. Many service providers and cellular mi&teperators have been explor-
ing ways to increase energyfieiency in all components of access networks. The following

is a summary of recent technologies, developed fgdint service providers and operators:

e Ericsson: Ericsson has developed a number of energy oatiimizinnovations [93]
that reduce the total cost of ownership, while at the same improving the environ-
mental performance of mobile network growth worldwide. @fi¢hese innovations,
Base Transceiver Station (BTS) Power Savings feature, sMoylkputting the radio re-
sources of the network that are not being used into standloleroring periods of low
traffic. It is reported that, depending on networlffiapatterns, the feature can reduce
energy consumption by up to 25 percent in the radio accesgoret According to
the company, if all of its currently installed GSM base stasi had this feature, GO

emissions would be reduced by one million tons per year.

e Motorola: Motorola has unveiled a new desigor its WIMAX base stations (BSSs)

7 The new design was showcased at the Global Green Teleconmvianiher 2009 in Dubai.

27



that costs less to build and operate. According to Motoral@d costs for these new
designs are 35% lower than traditional BSs and power consomig reduced by 60%.
Moreover, Motorola estimates that maintenance and powsts dor a hybrid site (a
combination of solar and power generators) over a five-yedog are 157774 USD,

which compares favorably with the maintenance cost of @28 USD for a shelter-

based WIMAX BS driven by two generators.

¢ Nokia Siemens Networks (NSN): NSN's Flexi Base Station,chitiias been recognized
as the world’s most progressive mobile network technoldglgeaannual GSMA Global
Mobile Awards 2009, can be deployed with WCDYHSPA and upgraded to LTE with
software alone. Itis reported that a typical Flexi BS rugiWdCDMA/HSPA consumes
over 70% less than previous generations, without impagigrformance. Moreover,
Flexi can work without external air conditioning, typigalbringing a 30% reduction in

site energy consumption.

e Vodafone: Vodafone reports in [94] that by 2020 it will reéuits CGQ emissions by
50% against its 2008, primarily by improvements in energyhfeiency and increased

use of renewable energy such as solar power, wind power @hdédlis.

Controlling or reducing the energy consumption in the f@hemunication network equipment
and related infrastructure is another way of improving tiieiency of communications net-
works (CNs). [95] presents a collection of ideas from opesa&nd manufacturers on methods
of reducing their operational energy use. The documentison telecommunication equip-

ment and infrastructure equipment (power station, airingpkcontrol of equipment, etc.).

Until now, we have considered the energy consumption ofsscoetworks. To verify the
effectiveness of the mentioned technologies and methodsinifpigrtant to accurately mea-
sure the energyfgciency of the network. Metrics need to be specified to adedyuabmpare
different configurations and to evaluate tlfiéceency from various perspectives. We refer the
interested reader to [96], [97] and, [98] for such eneigiency metrics. [96] characterizes a
network’s power consumption in Watts per unit area for giseverage and spectratieiency
requirements. Other metrics like Energy Consumption R@iOR) and Energy Consump-
tion Gain (ECG) is discussed in [97]. A cell's energffigency and area energyfieiency

measured bpit per Jouleandenergy giciency per unit areare investigated in [98].
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2.3.3.2 Energy Hficient Solutions for Wired Connectivity

While perhaps secondary nowadays to access networks, éhgyezonsumption in the wired
network part of an M2M architecture is increasing in impoda, especially as applications
increasingly depend on data centers reached over the étitdkesearch and development ef-
forts include #icient hardware, energyfecient Ethernet [99] and, more recently, optimizing
network trdfic for energy conservation. Virtualization of load throudbud computing is
clearly a very promising technology for scalable energyins&ired networks. In the rest,

we overview these flierent avenues of research.

a) Energy Hicient Hardware: By using rapid heat-dissipating raw matgrihighly dfi-
cient power supplies, intelligent cooling systems, anchaded silicon solutions, some
switch vendors (e.g., 3Com, D-Link) have gained signifieaqiipment-level improve-
ments in energy ficiency. For example, D-Link’s line of gigabit Ethernet sshies
for small and homeffices can reduce power consumption by both hibernating unused
ports and adjusting signal strength based on cable lengit.claimed that the DSG-
2208 desktop switch can achieve up to 80% power savings, a@ugo conventional
switches by the same manufacturer. It is worth noting thatgssupplies and proces-
sors are also typical heavily power consuming componemsirefd networks. Dffer-
ent processor manufacturers emploffatient strategies and technologies to conserve

energy [100], [101].

b) Improving Energy Hiciency by Optimizing Network Ti#ic: As mentioned in the pre-
vious section, in order to improve energfieiency, some vendors work from the bot-
tom up and use the mostheient components available for their equipment. Other
vendors, on the other hand, working from the top-down, sedkdt optimize network
traffic across the network to reduce the stress on equipment. dingato [102]: “In
the high-end market, the focus includes improving opegaditiciency by controlling
individual hardware components, and optimizing th&ency of network-attached de-
vices by using technologies such as virtualization”. \dtization is a key technology
for energy-éicient operation of servers in data centers. It partitiomamatational re-
sources and allows the sharing of hardware. Many servides oieed only a small
fraction of the available computational resources of a-datder server. If such ser-

vices are virtualized and run within a virtual machine, defieg on their utilization,
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many virtual machines can exist on a single physical seegulting in consolidation
of resources and significant energffi@ency [103]. These virtual machines can be
moved, copied, created, and deleted depending on managdewsions. Due to the
server consolidation, less hardware investment is needexdlg further reducing the

energy wasted for cooling.

A good example of virtualization is the Cloud Computing, @iallows services to
run remotely in a ubiquitous computing cloud that providealable and virtualized
resources. This technique allows peak loads to be movedssodepulated parts of
the cloud and it can provide higher utilization of the hardsvénrough aggregation of
a cloud’s resources. It also facilitates the identificatiddrthe main sources of energy
consumption, and the significant trad@sdoetween performance, QoS and eneffiy e
ciency. In fact, it is pointed out in [103] that cloud commgtiprovides insight into the
manner in which energy savings can be achieved in large soal@uter services that

integrate communication needs.

Gelenbe and Silvestri [104] have focused on optimizing vinetwork trdfic in order

to improve energy féiciency, proposing and studying a dynamic approach wheke lin
drivers angor nodes are turned on offan response to tific load in the network, with
ensuing changes in the paths followed by théfitago as to meet the QoS (Quality of
Service) needs of the flows. Optimization in the context dfvoek routing is carried
one step further by monitoring the current flows and prealicthe future flows in the
network. The authors also considered the design and impietien of the Energy
Management System Middleware (EMS), a software componétht thive following

tasks:

1) Observe ongoing tfac flows, monitor the status and power consumption of nodes.

2) Select a network configuration thdters sificient QoS to ongoing and predicted

flows, with lower energy consumption.

3) Manage and sequence dynamic changes in links and nod#sei@ute tréic

accordingly.

The results of experiments ran on a network testbed [104datel that EMS canfiec-
tively reduce the energy consumption in wired networks levhpilaranteeing an accept-

able level of QoS.
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¢) Energy Hiicient Ethernet: For data center managers and equipmenorselodking for
greener alternatives, the IEEE 802.3az initiatifiers further reducing the power con-
sumed by Ethernet equipment. IEEE 802.3az, or the Enefiygidht Ethernet (EEE)
standard [99] fiers a series of enhancements to the twisted-pair and baekithernet
networking standards that allow for less power consumpdiming periods of low link
utilization. The goal of EEE is to reduce power usage by 50%hare while remaining
fully backward compatible with already deployed equipm@&tiristensen et. al. claim
in [99] that the adoption of the new IEEE 802.3az EEE standdalidresult in large

energy and economic savings likely exceeding $400 millienygar in the US alone.

2.4 Challenges and Open Issues

Having extensively discussed the above topics, we providevigw on various challenges
and research opportunities in the area of M2M networks. A&IaM-AN is the core of the
M2M network, we first list the M2M-AN related research issuasd then, discuss the general

issues that need attention for sustainable and reliablatpe of M2M networks.

2.4.1 Open Research Issues for M2M-ANs

1. Channel modelling and link quality characterisation: Due to the area of deploy-
ment, M2M-ANs may be subject to strong RF interference, aag be damaged due to
harsh physical environmental conditions such as corrgsiold, heat, and high humid-
ity caused by weather, or the area of operation (factorypamndy etc.), not to mention
the malicious acts of human beings. The above-mentioneditiamms may cause the
network topology and wireless connectivity to change whemain intelligent devices
fail or the measurements are not suitable for drawing goeatlasions. Hence,f&-
cient wireless channel modelling and link quality chardst&gion methods need to be
developed so that the system designers can employ to ptedigterformance of the

network.

2. Energy Efficiency: The availability of energy harvesting capabilities chafrgen ap-
plication to application. Today, there exists numerous Mahplications that operate

on limited battery power, requiring communication protsc@nd resource allocation
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schemes, developed for high enerdiyadency. Energy ficient protocols such as rout-
ing solutions are needed where M2M-ANSs are usually expectéanction over years
without having to change the battery. In [59], we present mmehensive survey
on wireless unicast routing alternatives for M2M-ANs. Heee as also discussed
by ETSI in [68], an M2M network should support all of the fallmg communica-
tion modes; anycast, unicast, multicast and broadcast Way, whenever possible, a
global broadcast can be replaced by a multicast or anycastlér to minimize the load
on the communication network. Hence, routing techniquesiad¢o be developed for
above-mentioned communication modes, by taking into atcthe long sleep cycles,

changing radio environment, change of topology, and thidufrpower.

3. QoS (Quality of Service): There exist various M2M pplications that requirdfeient
levels of QoS. Therefore, as also stated by [69], in orden&bke dficient prioritisation
of certain M2M applications that have some critical requiesits to meet, such as those
belonging to protection and control functions, algorithiiat will help M2M-ANSs to
support diterent levels of quality of service (QoS) are required. Famagle, in intru-
sion detection based M2M applications, an alarm notificafer the system requires
immediate attention, and thus a realtime communicatiorerevlapplications based on

periodic reporting activities require reliable commurticas.

4. Dynamic Environment:. As the topology of the intelligent devices (mostly sensor
nodes) in an M2M-AN changes due to several reasons suchegs islede schedule,
and mobility or node failure, there is a need for dynamic geots that can adapt to

changing network topologies to make sure that the netwaorktfons as normal.

5. Data Aggregation: With the large scale development of M2M networks, and thus
M2M-ANS, there are a large amount of information collectegrotime. Hence, re-
searchers need to focus on methods of combining or aggnggdtising or inferring
data intelligently, so that a conclusion, on what actiongeded or how to configure the

parameters in the system for optimum functionality, can fasvd.

2.4.2 Open Research Issues for M2M Networks in General

1. Standardization: As shown in this thesis, M2M communications require an irgeg

tion and convergence among variousfelient communications systems. Therefore,
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apart from individually designed protocols, standardiratof a unified M2M archi-
tecture is highly demanded to promote rapid developmentagpudication of M2M
networks. Recently, there has been a new and exciting stéindtion dfort in ETSI.
ETSI has constituted a technical committee, ETSI M2M cor@ajtwith the purpose
to develop an end-to- end architecture for M2M communicetidMoreover, according
to [105], mobile operators around the world have been coatstig platforms to inte-
grate M2M services with infrastructure networks and laumghM2M projects (e.g.,
GSM Association’s Embedded Mobile Initiative) to acceterthe adoption of wireless

interconnectivity of diferent M2M components.

. Protocol Re-design: The current leading transmission protocols of the Intetrsetd
by the communication networks, T@P, are reported to be ifiecient [105] for M2M
networks’ trdfic, due to the redundant and energy-wasting overhead cothpatee
low data volume needing to be transmitted. Hence, in nearduthe researchers need
to seek the ways of designing new transmission protocotgdffiact the special needs

of M2M communication.

. Security: Last but not least, security is an essential requirementrtbeds to be met
in all sub-layers of an M2M network, in order to ensure that whole system func-
tions smoothly and safe from any sorts of attack and intrusids, due to their need
for dispersed and decentralized methods, conventionatisemodels are not directly
applicable to the highly distributed and low-cost devicesdiin M2M networks, new
security models and methods that can protect pritgourity in every layer of an M2M

network, needs to be explored.
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CHAPTER 3

ENERGY EFFICIENT WIRELESS UNICAST ROUTING
ALTERNATIVES FOR MACHINE-TO-MACHINE NETWORKS

Energy dficiency is one of the important design objectives for maciinmachine net-
work architectures that often contain multi-hop wirelesbreetworks. Constructing energy-
efficient routes for sending data through such networks is itapbnot only for the longevity
of the nodes which typically depend on battery energy, bsw &r achieving an environ-
mentally friendly system design overall, which will be inngaive as M2M networks scale in
number of nodes as projected. The objective of this chaptty provide a comprehensive
look into energy-#icient routing alternatives to provide a reference for systiesigners as

well as researchers.

By considering the fact that energsfieient routing is required in newly evolving M2M net-
works and, the fact that ad hoc and sensor networks are ysi@afiponents of M2M net-
works, most of the energyfiicient routing algorithms surveyed in this thesis will begbo

that appeared within the literature on ad-hoc and sensaonles, primarily in the last decade.

This chapter provides a detailed account of enelffigient unicast routing alternatives, with
a particular focus on those based on additive link cost. @nieeomain contributions of this

chapter and the thesis is a detailed and comprehensivéfickssn summarized in Table 3.2.
We believe that Table 3.2 could be useful as a reference toetier who needs to quickly
look up an algorithm with specific properties, rather thaamdréhe complete chapter. Note

that, the work in this chapter is also available in [59].
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3.1 Energy Hficient Routing

In wireless ad hoc and sensor networks, the problem of rgpuitas received more attention
than any other design and operation problem. Many wirelessng algorithms have been
proposed in the last couple of decades. Flooding and bretdoating is often necessary
during the operation of the wireless network, such as toodisxcnode failure and broadcast
some information. Multicast routing, on the other hand ggncommon in wireless networks,
and it is used to communicate in a one-to-group fashion. Mae it involves wireless
multicast advantage (WMA) [106] which means that if a nod@smits a packet by spending
high power, it is possible that more than one node receivedtsmission. Finally, unicast
is always in an end-to-end fashion and it is the most commod &f routing in networks.
The case of unicast routing, although a special case of ecagting, involves no wireless
advantage, however, choosing a good path from source tmalésh requires knowledge of
node and link states. This is especially the case when pditetime maximization is an
objective. Given a selected route, nodes on this route legtwlee source and destination who
act as routers deplete their energies with each packet ¢éimasafd. Of course, there are other
energy-consuming tasks, as discussed in detail by Ephesniid[107], in particular, often
idle listening, or actively receiving data require sigrafit current consumption, depending
on the type of receiver. For example, the reference valugammdmission powep;, receiving
power,P;, and power consumed in listeninig,, for a Lucent silver wavelan PC card (802.11)
are 1.3 W, 0.9 W, and 0.74 W respectively [108]. FreeScale NC92 SARD (802.15),
on the other hand, use®; = 0.1404VN, P, = 0.1404V and P; = 0.0018N [109]. In the
transmitting mode of operation, an ad hoc battery operatate ronsumes energy in two

ways [107]:
1. In the front-end amplifier that supplies the power for thtual RF transmission (the

radiated energy as well as the internal heat losses in tea@agnd the amplifier itself)

2. In the node processor that implements all the signal g#ioer formatting, encoding,

modulation, memory access, and other signal processirggidms.

The first one is known as the transmission energy and the demm is the processing en-
ergy. In receiving mode, the consumed energy is only of tlegssing type and includes

the low-noise amplifier that boosts the output of the reogiantenna to levels suitable for
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demodulation, decoding, Hering, etc. Finally, in the listening mode, a node typicéiyens

but is not actively receiving. Hence, the energy consumed#n of the processing type but
also possibly of some transmission type. The reason forighaspossible network protocol
requiring a listening device to emit periodic beacon signas distance over which point-
to-point transmission is made increases, transmissiorggfie bounded to be the dominant
component of energy consumption. It is for this reason treatyrstudies related to multihop

wireless networks (e.g. [110]) have focused on transmitgsne

When the above-mentioned ad hoc node is capable of sensinmgléensor nodes used
in M2M-ANSs), there is one more way of energy consumption; egnthe information col-
lection (or sensing) based energy consumption. Although,type of energy consumption
seems to be important in designing enerd@iyceent routing mechanisms, most of the algo-
rithms mentioned in scope of this chapter do not considertiipe of energy consumption.
We refer the interested reader to DAPR protocol [111] (intiBac3.3.3.3) which is the only

algorithm using this type of energy consumption in its limdstdefinition.

Gupta and Hirdesh argue in [112] that network technologgesiin M2M networks should
ensure availability, reliability and cosffectiveness, and that the mesh network backbones
that can be used in M2M networks should be structured fomopéd communication and
energy-éficiency. There can be fliérent definitions of energyfiiciency for a routing algo-
rithm [113]. For example, consider a sequence of packetsidel to be sent from one source
to a given sink. Minimizing the energy consumed for each patiansmission is an obvious
solution that optimizes locally the energy consumption[1t4] some other objectives such
as minimizing the variance in each node’s battery powerl lemrthe maximum node cost
are discussed. However, focusing on individual nodes irsyiséeem instead of the system as
a whole might quickly lead the system to a state the netwodisisonnected, although most
nodes have high residual power. Shah and Rabaey suggeft Thatmore meaningful metric
for routing protocol performance is network survivabilityetwork survivability depends on
how well a routing protocol (or algorithm) is designed to tise energy of each node in the
network dficiently and thus elongate the time that the network staysetted. This is also
known as the network lifetime and it is defined as the timel metiwork dies or becomes par-
titioned. Yet, it may not be so straightforward to define Véss network lifetime, as argued
in [107]: Is it when the first node runs out of energy? Is it wiaginaction of them does? Or

is it when all nodes do? In networks where the nodes need tk eallaboratively (such as
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ad-hoc and sensor networks) after death of the first noder ntides are loaded more heavily
and deaths occur much faster [115], [116], [117]. Thereforaximizing the time until the
death of the first node seems to be key. Indeed, many studitx iscope of this chapter

define network lifetime as the time until the first node runsafibattery power.

3.2 Link Cost Based Shortest Path Routing

In Shortest Path Routing (SPR), the goal is to send packels awetwork in such a way
that the path cost from the source to the destination is niit@ich Modeling a network as
a directed grapl@, one assigns to each directed edgen() in G a real numbed; ; which
represents the cost of using a particular edge in the netwiorkhe case of an undirected
graph, one can sek ; = d;;. If an edge does not exist between nodad nodg, dj = co.

Let (n;,...n) denote a path. Accordingly, its length is defined as

d1,2 + dz’g + ..+ d|_1,| (3.1)

The goal of shortest path routing applied @nis to find the minimum length path from to
n. The network graph mentioned above is an accurate depicfitiie network topology if
the nodes are interconnected with dedicated wired linesveider, it should be noted that in
the wireless case, the notion of a link between the nodes); saydn; depends on the transmit
power, channel variations, as well as other factors, andeatynamic. Hence, it requires a

separate treatment [107]:

In its simplest form, considering interference as noisel tking a constant channel code

rate, the criterion for successful reception can be writtefollows:

SINR> y (3.2)

wherey is a threshold that depends on the detector structure, mibaiilemodulation, and
codingdecoding used an8INRis the received Signal-to-Interference-plus-Noise Ratiihe

receiver. SINRdepends on the channel characteristics, transmit andveeagtennas, RF
transmission powelR) and transmission rat&], and, interference caused by other usérs.

andR determine the amount of signal energy packed in each symiddb@cause of this, they
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are highly adjustable. Especially,influences the amount of energy consumed on a link and
determines which links are feasible and hence which patihdeaised for routing to the final
destination. Hence, in wireless networks, whether a lirikte»or not depends on the chosen

values ofP andR.

Shortest path routing requires using a link metric whichraefithe properties of an arbitrary
link. In a wireless network, dierent link quality metrics can be defined: link bit error rate
delay, transmission energy, and residual energy. In gi@cthe metric of choice should map
to the usual global objectives such as the total delay, tirput, blocking probability, and
total energy consumption. In this thesis, we focus on thdistuthat define metrics in order
that the resulting routing algorithm choosing the optimathg will achieve a well defined

global objective. We will revisit the topic of link quality etrics in Section 7.

Once link costs that map to global objectives are determittezl routing algorithm makes
a straightforward implementation of SPR. At the basis of thmethods described in this
chapter lie the two well-known methods for calculating s$éstr paths, Bellman-Ford and
Dijkstra algorithms, and it may be worthwhile to briefly debe these two algorithms before

proceeding.

The Bellman-Ford algorithm computes shortest paths frooh @ade to a given destination
node by iterating on the number of hops. Let the destinatmaterbe 1. LeD; denote the
length of the shortest path from nodé € [1, ..., n]) to node 1, and IeDih denote the shortest
path from node to node 1 that contains at mdst- 0 arcs. The algorithm for computirg;

is given by the following steps [18] :

1. Initial conditions. Seb = 0,¥h € [0,1,...], D? = o0, Vi € [2, ..., n] and seth = 0.

2. Evaluate

DM = minj[d; j, DY), Vi # 1, (3.3)
and leth=h+ 1.

3. If D' = DI vi, stop. LetD; = D" Vi. Otherwise go to step 2.

The above computation assumed synchronous operation. istrinuted environment, a dis-

tance vector approach is taken to compute shortest patissame additional mechanisms
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are included to cope with erroneous or outdated informatiotink failures.The centralized
Bellman-Ford algorithm terminates in at massteps and has a worst-case complexity of
O(n®). To determine all shortest paths in a network, it must bertimes, wheren represents

the number of destination nodes.

When the link costs (the arc lengttlg) are nonnegative, an alternative to this method is Dijk-
stra’s algorithm. Dijkstra’s algorithm iterates on pathdéh. To illustrate, let the destination
node be 1, and Idb;, i € [1, ..., n], denote the shortest path length of iHeclosest node to
node 1. Finally, Let P be a set pErmanently labelediodes for each of which the shortest

path distance to node 1 has been determined. Then, applgltheihg steps [18]:

1. Initialization. SeP = 1, D1 = 0 andD; = dj1, for j # 1.
2. Find the next closest node. DetermirgeP such that
D = minjgp[Dj]. (3.4)

Add nodei to the set of permanently labeled nodes, iR P U i. If P contains all

nodes, then stop; the algorithm is complete.
3. Updating of labels. For ajlg P set
Dj = minjep[Dj, dj;i + Di] (3.5)
Go to step 2.
Dijkstra’s algorithm terminates after— 1 iterations and has a smaller worst-case complex-
ity, O(n?), than that of the Bellman-Ford algorithm. We refer the ries¢ed reader to [118]

and [18] for more detailed information about distributeglementation of these basic meth-

ods.

3.3 Shortest Path Based Energy flicient Routing Algorithms

3.3.1 Energy Aware Routing Algorithms

Energy aware routing algorithms, in general, have the comaixjective of maximizing net-

work lifetime by considering the residual battery energyewtperforming routing [114],
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[119], [120], [121], [122], [123], [124], [125], [126]. Tt seek to perform well with re-
spect to the objective of finding paths that consume minimnergy as well as the objective
of finding paths which do not rely on nodes that are signifigadépleted, without com-
promising either of these two conflicting objectives. Instsection, we present a detailed

overview of these algorithms.

3.3.1.1 MMBCR and CMMBCR Algorithms

Toh et al. [120], [127] proposed the online algorithms MMBQ@®n-max battery cost rout-
ing) and CMMBCR (conditional MMBCR) to select energffieient source-to-destination
paths. The MMBCR algorithm uses a min-max route selectiohrtigiue. It chooses a path P
for which the minimum of the residual energies of the node® é& maximum. Since MM-
BCR tries to avoid routes with nodes having the least bageergy among all nodes in all
possible routes, the battery energy of each node is depietee evenly as compared to pre-
vious schemes like MTPR (Minimum Total Transmission Poweutihg) [128], MTE (Min-
imum Total Energy) routing [129], [127] and MBCR (Minimum Bery Cost Routing) [130],
[127]. However, since MMBCR does not try to minimize the tatansmission energy along

a path, it may also lead to a high overall consumption.

Recognizing that to maximize network lifetime one needsctiieve some balance between
the energy consumed by a route and the minimum residual emérthe nodes along the
chosen route, a conditional variant of the MMBCR algorithisvelso proposed in [120]. In
this scheme (called CMMBCR), we look for a minimum energyrsetto-destination path in
which no node has residual energy below a threshold. Heheealgorithm uses minimum-
energy routing when there is at least one candidate pathrevthe remaining battery power
(energy) in all the constituent nodes is above the battenyeption threshold.. Once one
or more of nodes on all possible paths falls belglCMMBCR switches to MMBCR which
equitably distributes the battery consumption among tlfferdint nodes. Thus, it protects
against the early exhaustion of a few nodes. These alg@idrmamong the earliest solutions
for extending the life span of ad hoc networks. For more tetadut them, we refer the

interested reader to the survey in [131].
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3.3.1.2 Max-minzPy, Algorithm

In [121], the authors propose an online message routingitlign max-minzPy, , for the
network lifetime maximization problem. HerBni, is the energy required by the minimum
energy path, and is a parameter. The algorithm selects a path that uses eaéengpst
ZPnin, While maximizing the minimum residual energy fraction.elesidual energy fraction
(energy remaining after royteitial energy) of node after sending a messagejtis defined
asR; j = (Ei(k) — w; j)/Ei whereE;(k) represents the current residual energy of nioaled E;

is the initial energy level of nodie The authors use a general metric settingaigr where the
energy consumption for a transmission depends on the destagtween the sending and the

receiving nodes:

Wi,j = k.dfj (3-6)

wherek and « are constants for the specific wireless system (usually 2 < 4). The

algorithm works as follows:

1. Find the minimum transmission energy path (the totalstm@asion energy on this path

is Pmin) by usingw; ; metric in Dijkstra’s algorithm.
2. Find the minimunR; j on that path and let it bBmjn.
3. Find all edges whos& ; < Rmin and remove them from the graph.
4. Find the minimum transmission energy path on the new graph

5. If the energy consumption z.Pni, or no path is found then the previous shortest path

is the solution, stop. Otherwise, go to step 2.

The authors in [121] provide a competitive analysis of tlagorithm by comparing its per-
formance to the optimal solution obtained by linear prograng. However, it should be
noted that in the analysis, it is assumed that the messagegeaerated cyclically, or in each
interval of time the set of messages are the same. As the ¢ibrgbound depends on the
amount of residual energy left over in the network as welhasgeriodicity of the messages,
it is not clear how good the bound is. Despite the mentionesvdacks, this approach has

inspired many studies. The algorithm has the disadvantBigeirng centralized and requiring
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knowledge of the power level of each node in the system. A iigilslted version of it al-
gorithm is proposed in [114]. The distributed version of rmax zPy,;, uses the distributed
Bellman-Ford algorithm and requiresmessage broadcasts for each node when there is no
clock synchronization. When all clocks are synchronizetly @ne message broadcast is

needed.

3.3.1.3 Zone Based Routing Algorithm

In[122], Zone based routing was proposed. Zone based gocdin be defined as the modified
and scalable version of max-miy,;, algorithm. It uses a hierarchical approach in which the
area covered by the sensor network is partitioned into sgnallips of sensors. Each group
of sensors in geographic proximity are clustered togethex zone. Each zone is treated as
an entity. Zone based routing algorithm which was improved discussed in more detail

in [114] consists of three small algorithms:

¢ An algorithm for estimating the power level of each zone

¢ An algorithm for computing the best path for the messageiwiach zone (modified

max-minzPnin)

¢ An algorithm for computing a path for each message acrossszon

The algorithm mainly works as follows: The sensor nodes im@ezautonomously direct
routing inside the zone. While doing this, they also pgstbté in estimating the zone power
level. Using this zone power level estimate.{) each message is routed across the zones.
A global controller (the node with the highest power) masatiee zones. If the network
can be divided into a smaller number of zones, the scale &ghkbbal routing algorithm is
reduced. The global information needed for sending eaclsagesacross is summarized by
Pest Of each zone. A graph, called zone graph, is used to representcted neighboring
zone vertices. A link in this graph means that the curreneziam go to the next neighboring
zone in that direction. Each zone vertex has a unit powet.|&axh zone direction vertex is

labeled by itsPest computed by a modified Bellman-Ford algorithm.
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3.3.1.4 Energy Aware Routing Algorithm for Low-Energy Networks

Energy Aware Routing Algorithm proposed in [17] (called EABw in this thesis) tries to
ensure the survivability of low-energy networks. EAR-Logheme uses sub-optimal paths
occasionally to provide substantial gains. EAR-Low is &tiga protocol (such as the Ad-hoc
On-demand Distance Vector Routing (AODV) [132] and dirdad@fusion [133].) It is difer-
ent from previous reactive protocols in that instead of figdk single optimal path and using
it for communication, it keeps a set of good paths and theopsis one of them based on
a probabilistic fashion. Choosing among multiple sub+optipaths ensures that the optimal
path does not get energy drained and the network degradesfglia as a whole rather than
getting partitioned. In order to achieve this goal, mudtiphths are found between source and
destinations. Then, depending on the energy metric, eahligpassigned a probability of be-
ing chosen. When data needs to be sent from a source to aadiestjrone of the previously
found paths is randomly chosen depending on the probakilitBy having paths that fiker

in time, the energy of any single path will not drain quicklynger network lifetime (longer

network connectivity) is achieved as energy is dissipatedenaqually among all nodes.

The proposed Energy Aware Routing (EAR-Low) protocol cetssof three phases [17]: The
first phase is theetup phasén which localized flooding is used to find all routes between
a source-destination pair and their costs. In second pliasa,communication phaséhe
data is sent from sources to destinations by using the pditehwre chosen probabilistically
according to the energy costs (metrics). The last phasesisotiie maintenance phase
which localized flooding is performed by the destination exdol keep the paths alive. The
energy metric that is used to evaluate routes is an energyeanetric that has been proposed

by Chang and Tassiulas [134]:

Cij = qﬁF{* (3.7)

whereCjj is the cost metric between nodesindj and, g; represents the energy used to
transmit and receive on link (j). Here,R is the residual energy at node@ormalized to the
initial energy of the node and andg are the weighting factors. These factors can be chosen
appropriately to favor either the minimum energy paths erphths with nodes having the

most energy.
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Compared to directed filusion [133], this protocol provides an overall improvemeh#0
percent in network lifetime. Moreover, fierence in energy usage among nodes is lesser as
compared to dfusion and, this results in 21.5 percent less average enengyumption. How-
ever, the approach necessitates gathering location iatismand setting up the addressing

mechanism. Hence, comparing to directeffiudiion, the route setup becomes complicated.

3.3.1.5 EAR and DEAR Protocols

The authors in [117] proposed EAR (Energy Aware Routing) REAR (Device and Energy
Aware Routing) protocols for a heterogeneous wireless adnatwork where there exist
different classes of nodes. EAR is the implementation of theiBuséd Bellman-Ford (DBF)

routing protocol [18] which uses the following metric as timé cost function:

Cj=,fiR) (38)

C; is the cost of sending packgtrom noden; to nodeny via intermediate nodesp, ..., Nk_1
and f;(R) denotes the cost or weight of node Since f; represents a node’s reluctance to

forward packets, it was chosen as:
1

fi(x) = R (3.9)
whereR; represents the residual energy of nadBy using the reciprocal of residual energy as
link cost, as the energy of a node decreases, the cost of thgihgode increases. Hence, that
node is not chosen as a forwarding node and its energy is ptatdd. The benefit of EAR
protocol comes from the dynamic load balancing amofigint nodes. The authors in [117]
compared the performance of EAR protocol with a few conesati protocols (AODV, DBF,
DSR [135], WRP [136]) using the system lifetime as the penfance measure. Simulation
results have shown that the system lifetime was the higheshvEAR was used and the
percentage increase in system lifetime with respect to O8d-iacreased with an increase in
the number of nodes. Moreover, the system lifetime incretasethe edge density increased
since the load was balanced over a larger number of routesievtw, the authors mention
that the savings are valid only for a static ad hoc network . eivihodes move independently
with respect to one another, it is not necessary that thdtdevimultiple paths from a source

to a destination at all times. Hence, the savings obtainedsiyg EAR is small (or even
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zero) due to the lack of multiple routes. By considering kbt advantages and drawbacks
of EAR protocol, the authors in [117] proposed DEAR protofml such a heterogeneous
ad hoc network where there exist twdidrent classes of nodes; battery-powered nodes and

externally powered nodes.

DEAR protocol is less dependent on the availability of thdtiple paths; rather, it makes use
of device awareness to enhance the routing. With both ersardydevice awareness, the sys-
tem lifetime is further increased by taking advantage ofetktea capability and resources of
externally powered nodes while at the same time balancéfigctamong the battery-powered
nodes. DEAR actively redirects the packets to the (extBhnpbwered nodes for power-

saving operations. The device-aware redirect scheme igraebas follows:

Each node maintains a routing table and an additional retdiedle. Unlike conventional
routing tables, the routing table includes an additionddl framed as the device type (binary
field in which O indicates battery powered and 1 indicatesretlly powered). The redirect
table consists of the destination address and the addréss wdde to be redirected. We refer
the interested reader to [117] for more information aboetftirmation of these tables and
the algorithms used to update the routing table and theewtdiable. Whenever a routing
table update is received, a node updates its routing tablesimg the update algorithm. Af-
ter updating its routing table, the node browses throughoiiting table and determines the
minimum cost to reach any externally powered device. Oncdtady powered node receives
a packet to be forwarded, it extracts the destination addrem the header and looks at the
corresponding entry in the redirect table. According tortdirect table entry, the node either
forwards the packet to the next hop or redirects it to a paeticnode. Whenever an externally
powered node receives a packet, it checks if the destinafitimee packet is one of its neigh-
bors. If so, it unicasts the packet to that particular destim. If not, it boosts its transmit

power to cover the entire network and then it unicasts th&egddo its destination.

Reportedly, [117] the DEAR protocol achieves better sysliégtime as compared to other
considered energyfiicient routing solutions from the literature, as well as EAR.course,
this performance superiority increases with increasinmimer of powered nodes that this
protocol exploits. Finally, as expected, it was shown thiatmwthese powered devices cover
a larger area, DEAR can reduce the number of hops per routthambrcentage increase in

system lifetime compared to EAR increases.
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3.3.1.6 EERP protocol

In [137], the authors proposed an Energ§idtent Routing Protocol (EERP) to maximize the
lifetime in sensor networks. The proposed protocol is gintib directed diusion in certain

ways. Both the Directed ffusion and EERP are sink-initiated and reactive routingagprot
cols. Multiple paths are maintained from source and demtimgsink). However, Directed

diffusion sends data along all the paths at regular intervalée EERP uses only one path at
all times; the path that expends minimum energy at all inégtiate nodes. The main aim of
EERP is to find the route (path) with lowest energy from theeatio the sink depending on

the energy metric and data sent on that path.

The protocol has three phases [137]: Interest PropagatiasePin which localized flooding
occurs to find all the routes from source to destination aaul #nergy costs, Data Communi-
cation Phase in which the paths from source to destinat®clawsen according to the energy
costs, and, Route Maintenance Phase in which localizedifigasl performed intermittantly
from destination to source to keep all the paths alive. EER®opol is similar to the one
proposed in [17] in that both protocols have the three phasa#tioned above. However,
these two protocols fler in Data Communication Phase. In Data Communication Pblase
the protocol described in [17]: “The paths are chosen pritibtitally according to the en-
ergy costs and each of the intermediate nodes forwards thgédaket to a randomly chosen
neighbor in its forwarding table, with the probability oftheighbor being chosen equal to the
probability in the forwarding table”. However, EERP does aonsider any probability as-
signment for choosing neighbors. It uses merely the ideaattasst path (cost) routing. The
data communication phase of EERP is realized by modifyirgBBliman-Ford Algorithm
to compute the least energy path from the source to the sihk. nfodified algorithm uses
the link cost metric which was defined in eq(3.7) and keepstafitentative shortest paths,
which are then iteratively refined. The algorithm operageftows: Initially, all vertices (on
the network graph) are unmarked and the path costs to eaehareckither the weights on
the edges@;;j in eq(3.7)) oreo. The algorithm then marks the node that is head of the path
from the source node whose cost is minimal among those pdtbsesheads are unmarked.
The corresponding tentative path is declared final. Thenalfjorithm updates the other path
costs by computing the minimum between the previous patts @l the sum of the (final)

path cost to the newly marked node plus the costs on the edwyediliat vertex [137]. The
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procedure mentioned above continues until all verticesranked.

Simulation results reportedly show that EERP consistepéigforms well with respect to
energy-based metrics, e.g. energy consumption and netvfetikne and hence increases
the throughput. EERP protocol reduces the energy consampér node as compared to Di-

rected Difusion Protocol (DDP) and provides an increase of 11.4 penceretwork lifetime.

3.3.1.7 Flow Augmentation Algorithm

The flow augmentation (FA) algorithm [138] is a minimum costtprouting algorithm which
uses link costs that reflect both the communication energguwoption rates and the residual
energy levels at the two end nodes. The algorithm has reteesiderable attention as it
can achieve a lifetime close to the optimal network lifetini#ained by solving the linear

programming problem.

FA algorithm is mainly an extension to what has been predeint§l34]. The main dier-

ence between two algorithms is that in [138], the problenxiereed to include the energy
consumption at the receivers during reception. Moreolerproblem is formulated for fixed
information-generation rates as well as for some arbitirsfigrmation-generation process. In
fixed information-generation case, the amount of infororato be generated within a certain
time interval is known a priori. The algorithm aims to find flewv that maximizes the system
lifetime under the flow-conservation condittonOn the contrary, in arbitrary information-
generation case, the amount of total information geneiiatedme time interval is not known

a priori but FA algorithm makes routing decisions on the flypas information is generated.

Chang and Tassiulas [138] observe that the flow augmentitiggbeuld avoid nodes with
small residual energy since the main aim is to maximize th@rmim lifetime over all nodes.
By taking this into account, the FA algorithm uses a new linktanetric which combines the

above mentioned parameters in one:

Cij = (&))" EE® + ([))“E;“E}® (3.10)

where

! Flow-conservation condition: At nodegor each commoditg, the sum of information-generation rate and
the total incoming flow must equal the total outgoing flow
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e = el + eampdﬁ and § = R (3.11)

wheree', &}, eamp andd;j are the energy consumed in the transceiver circuitry atrivest
mitter and the receiver, respectively, the energy consubnyethe output amlifier, and, the
distance between nodand nodg. xi, X2, and,xs in eq. (3.10) are the weighting factors for
each item andg;, Ej, and,E;, E; represent the initial and the residual energy levels of aode

i andj respectively. The transmission energy consumed at htmiransmit a data unit to its
neighboring node is denoted b}{ whereas the energy consumed by the receiver is denoted
by € i

In fixed information-generation case, if there is enouglidred energy for a packet, the path
cost in FA algorithm is computed by the summation of the liokts Y Cj; ,on the path. After
running the Bellman-Ford algorithm in order to determine shortest cost paths, if any of the
commodities cannot find a path to its destination, then, thalgorithm stops. Otherwise,
the algorithm augmentsQ©?2 on each shortest cost path of its commodity and update the
residual energy accordingly. In arbitrary informatiomgeation case, on the other hand,
instead of1Q®© of flow, all packets generated in between the routing infdionaupdates are

assigned the available shortest cost path.

FA algorithm provides significant improvement over otherstssMTE, CMMBCR [120] and
Max-min zPmin [121] in terms of maximizing the system lifag, (or the amount of infor-
mation transfer between the source and destination nodeEr limited energy resources.
Simulation results are claimed to show that, in the fixed rimfation-generation case, the
average gain in the system lifetime obtained by FA algorittan be about 50-78 percent
compared to MTE, whereas in the arbitrary information-gatien case the lifetime obtained
by FA algorithm can be more than three times longer than thMTE. Simulation results
with both fixed and arbitrary information-generation prexenodels also indicate that the
FA algorithm can achieve network lifetime that is very clésehe optimal network lifetime

obtained by solving the linear programming problem.

2 ) is the augmentation step size which is equivalent to the amoiinformation routed between routing
information updates an®Q© is the information generation rate for commodity
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3.3.1.8 CMAX Algorithm

The network lifetime competitive ratio results presentefll21] motivated the study reported
in [123]. The algorithm proposed in [123], CMAX, is known asvery competitive on-
line algorithm which then inspired many other studies. Thamobjective of CMAX is
maximizing the total number of messages that can be sucdlgssént over the network
(network capacity) without any information regarding fidumessage arrivals or message
generation rates. CMAX uses a combined cost metric (theggreensumed and the residual
energy). Hence, it needs knowledge of residual batteryggregreach node. Moreover, the

algorithm uses only one shortest path computation. It wask®llows:

1. Consider routing message k on the netw@e(N,A). Eliminate all links(i,j) € A for

which Ej(k) < &; and form a reduced network.
2. Associate weights; with each link(i,j) in the reduced graph.
3. Find the shortest path fros to dy in the reduced graph with link weights;.

4. Letyy be the length of the shortest path found in Step3< ~ if no path was found).

If vk < o, route the message along the shortest path, otherwis¢ itejec

The authors use the following metric fox;:
wij = g;(1%® - 1) (3.12)

where
_ EiK

oi( =1~ =

(3.13)

Here, 1 andy are two constants chosen appropriateffk) is the fraction of nodé's energy
that has been used at the time message k arriveg arslequivalent to the metric defined
in eg. (3.6). Unlike [134] and [121] which aim to maximize thetwork lifetime, CMAX
algorithm was designed to maximize the network capacityspide the choice of dierent
objective, simulation results show that the CMAX algorittmutperforms other algorithms
proposed before with respect to optimizing both lifetimel @apaticy. Certainly, the most
attractive part of the study is the part in which the authti@asthat the algorithm achieves a
logarithmic competitive ratio. In order to obtain the coritiee ratio result, the authors per-

mit admission control (by using step 4 of the algorithm) st the algorithm can occasionally
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reject the messages that will overuse the network resaukt@sever, it was shown in [123]
that even if the CMAX algorithm is run without the admissiamtrol option, its performance
is excellent. Distributed version of CMAX was also propogefll23] and simulation results
has shown that by an appropriate choice of the broadcasindistand broadcast frequency,

D-CMAX can achieve performance close to CMAX.

3.3.1.9 OML Algorithm

Park and Sahni improved the idea used in [123] and they pegp@$/IL (Online Maximum
Lifetime) algorithm [119]. OML is an online heuristic whosgain objective is to maximize
the network lifetime. Although both algorithms use expdi@rmetrics as well as other
similar ideas, OML difers from CMAX in many ways. First, OML performs two shortest
path computations to route each message (where CMAX usgsoor). Secondly, OML
performs two pruning operations. Third, OML algorithm useseighting function which
assigns a high weight to edges whose use on a routing pate aawsde’s residual energy to

become low. More specifically, OML works as follows:

1. Consider routing message k on the netw@e(N,A). Eliminate all links(i,j) € A for
which Ej(k) < &; and form a reduced network (§(N’,A)).

2. Find the minimum energy pat from s, to di in G'. If there is no such patP;, the

routing request fails, stop.
3. Compute the minimum residual energynRE for nodes other thad on P;.

4. Eliminate all links(i,j) € A’ for which Ej(k) — &; < minREand form a reduced network
(G"=(N"A").

5. Compute the weightsij with each link(i,j) in G".
6. Find the shortest pat® from s to dy in G” with link weightsw;.

7. Route the message along the shortest path, otherwist iteje

The authors use the following metric fo;:
wij = (&) +pi))(1"® - 1) (3.14)
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where

minRE
ai(k) = —— 3.15
and
0 Ej(k)-&j>minR
pij = {c otherwisl% (3.16)

Here, 1 andc are two constants chosen appropriatglyis equivalent to the metric defined in
eg. (3.6).Ei(K) is the current energy at nodégust before the route and; (k) is the fraction
of nodei’s initial energy. As it can be seen from the equation abovielLGind CMAX
algorithms have 1% — 1) in common. Although, both algorithms hav&?(¥ — 1) term

in the edge weighting function, the two algorithms uséedéentq;(k) functions. In the case
of CMAX, «i(K) (3.13) function discourages the use as relays of nodeshtwat depleted a
large fraction of their initial energy. However, these nedaght still have a large amount of
energy remaining. OML algorithm prevents such a scenaridiggouraging the use as relays
of nodes whose current energy is low. The authors perforiowsranalyses by changing
transmission radius and node density and, simulation teeshbw that OML outperforms
CMAX with respect to network lifetime, and its performanedéss sensitive to the selection
of heuristic parameters. However, it should be noted thbagh OML performs better
than CMAX, OML has few drawbacks. The main drawback is that letwork lifetime
competitive ratio results presented in [123] does not hold@ML. Another drawback is
the extra complexity added by comparisons and the secomteshpath selection. Despite
these drawbacks, one should know that OML is superior toiguely published heuristics

for lifetime maximization. Distributed version of OML watsa proposed in [119].

3.3.1.10 E-WME Algorithm

In [124], the authors presented a routing framework in whiedy formulated and solved the
problem of energy-aware routing with energy replenishmentcontrast to the previously

discussed studies in which the resources used were newvarered and receiving energy
was not considered, in this study, the receiving energy o eemde was considered and the
resources of the network were allowed to be replenished bypgde processes. The authors

developed an energy model to characterize the performdrsigch network in the presence
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of energy constraints. The energy model captures hetegogsnenergy sources fidirent
replenishment rates, battery sizes, etc.) and allowsnguti an energy-opportunistic way.
By using this energy model the authors proposed E-WME (Brepportunistic Weighted

Minimum Energy) algorithm.

The proposed algorithm is shown to achieve a competitive tiaat is asymptotically optimal
with respect to the number of nodes in the network. E-WME ritlgm leverages the work
in [123]. If no nodes with renewable energy sources exigt, ERWWME algorithm reduces
to that of [123]. E-WME is easy to implement since it requitesal short-term energy re-
plenishment information and assumes no knowledge aboudt#tistical information on the
packet arrivals. The authors describe E-WME algorithm iar different cases; case of con-
stant replenishment rate (constant case) in which the fadémergy replenishment of each
node is constant (in time) and the general case in which tianging replenishment rate was
allowed in each node. The authors proposed two similar osefdar these two cases. For
the sake of simplicity, we will only mention the metric foretlirst case (constant case). We
refer the interested reader to [124] for information abbetmetric used for the second case
and more detailed information about the analysis of therdalgn. For the constant case, the

algorithm uses the following cost metric associated witthazoden:

Wo(j. R) = %I”T”QMWHUH)I(D%(R(D) (3.17)

where
Pn(j)’

n

An(j) = 1- (3.18)

HereR is the path from the source to the destinatiap,is the battery capacity of nodg
An()) is the fraction of the maximum storable energy used up teenmodnd P,(j) is the
residual energy at nodewhen considering routing requgstLastly, [(j)en(R(j)) represents
the energy requirement for packesf lengthl(j) andu is an appropriately chosen constant.

The algorithm works as follows:

1. Consider routing messagen the networkG=(N,A).
2. For an incoming routing requestcheck if the least cost routefrom s; to d; satisfies
Cosk(j) = > wn(j,R) < () (3.19)
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wherep(j) is the revenue gained by forwarding tfié packet.
3. If yes, accept the request and route the pack® @n

4. Otherwise, reject the request.

By defining the cost metric as an exponential function in edédual energy, the E-WME is
capable of closely adapting to the changes in the networggmeofile and provides a clear
guidline of how to balance the importance of residual endlrgytransmit and receive energies
and the quality of replenishment. Simulation results shibthat E-WME has better through-
put than other algorithms such as MBCR [130], CMMBCR [120] &ftex-min zPmin [121].
E-WME has several advantages: It is optimal in the sensemifmEing the competitive ratio
and strikes a balance between saving communication codistnibuting the network load.
Moreover, it can be integrated with distance-vector-likegative and on-demand routing pro-
tocols. However, by considering the fact that many sensdes@are battery powered and can
not be replenished, this algorithm becomes applicatioiBpe Moreover, we believe that
the performance of this algorithm should be compared withABMind OML which appear
to outperform MBCR, CMMBCR and Max-min zPmin algorithms.

3.3.1.11 SWP Algorithm

The authors in [125] suggested that a good energy-awaregotgichnique should balance
two different goals: choosing a path with maximal residual energy cioosing a path
with minimal energy consumption. Hence, they proposed aghased energy-aware routing
strategy that balances these conflicting objectives bytoaming the routing problem into a
multi-metric widest path problem. The authors claim that pnoposed Shortest Widest Path
(SWP) algorithm outperforms the best known online algamith literature (OML). SWP al-
gorithm uses two diierent metrics: The first metric was defined as the residuabgradong

a path (the minimum energy level of any node in the path). Eleersd metric was the energy
consumed along a path (the sum of the weights on the edgeg tierpath). The residual
energy of a path is a concave metric, whereas the energy m@&usalong a path is an addi-
tive metric. In [125], the authors presented a polynomiaktcombinatorial technique which
can provide a good balance between these metrics by firstmmang the concave metric

and then minimizing the additive metric. The auhors jusiifgheir study why this order of

53



optimization - concave first, additive second - is bettentthee other possible order - additive
first, concave second. The SWP algorithm consists of tiferdint phases in which it uses

these two metrics. The algorithm works as follows:

1. Consider a network grapgb=(V, E).

2. Modify G into an energy grapkG = (V, E’) as follows: Leave the vertices intact but
replace each single undirected edgé&simvith two directed edges such that the weight
of one directional edge will be equal to thefdrence between the originating node’s

energy level and the transmission cost along the edge.

3. Given a source nodgand a destination nodg run the two-phased routing algorithm

on EGto find a suitable path betwesmandt.

4. Phase I. Apply a variant of the Dijkstra’s algorithm (déised in [125]) to find a path
with the maximum residual energy and let it have a residuatggnof B (there could

be several paths in the network betwesmdt with a residual energy of B).

5. Let E" be the set of edges whose residual energy is lesBtharune those edges from

EGand form a pruned grapEG’. (Pruning operation was explained in detail in [125])
6. Phase Il: Use Dijkstra’s algorithm to find the least enargst path orEG’.

7. Restore all edges back G and go to step 3.

The simulation results showed that the performance of tiepqsed technique, shortest-
widest path (SWP), is superior than that of the best knowtimguapproach proposed in the
literature (OML heuristic proposed by Park and Sahni [L18{pwever, unlike the lifetime

definition used for OML, the results were obtained under gseimption that the lifetime was
the number of packets that could be transferred in the n&twmtil s session failures occur (s
is a parameter to be set by the network manager). Accorditigetsimulation settings used
in [125], SWP outperforms OML with respect to both netwofktime and the average resid-
ual energy in the nodes for several values of transmissidin fdoreover, SWP consistently
outperforms OML as the node density increases. The authension that the proposed ap-
proach can be easily combined with other QoS metrics suchklag,dvhich can be beneficial

for resource constrained networks.
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3.3.1.12 SWCRP and SFWP Algorithms

In addition to the shortest widest path (SWP) discusseiteaviohanoor et al. proposed two
other online energy aware routing algorithms: SWCRP and BFY26]. These algorithms
too are two-phased strategies and are derivatives of the@§@oRthm. As mentioned earlier,
SWP first maximizes the concave metric (the residual enefgypath) and then minimizes
the additive metric (energy consumed along a path). Theaters of SWP aim to provide
a good balance between the concave and the additive mefftos.first algorithm, which
is called the Shortest Width Constrained Path or ShortegthAConstrained Residual Path
(SWCRP), finds paths with a suitably high residual energyg, then minimizes the energy
consumed along such a path. By sacrificing the high resichegg of the absolute widest
path, the algorithm uses a path with a slightly lesser (coetbto maximum) residual energy
but which consumes less energy along the path. In order toisidte edges whose widths are
below a certain lower bound are removed (temporarily) fromdraph. Then, the minimum

energy path is computed on the remaining edges, and thisgpasied for routing.

The second algorithm, Shortest Fixed Width Path (SFWP)imdlas to the first algorithm
in the sense that it finds a minimum energy path among the plagthdrave a high residual
energy. However, unlike SWCRP, SFWP does not change tldust€nergy with each route
calculation. Instead of this, it fixes the width (residuaérgy) of the path at a certain value.
Then, it prunes the edges with residual energy which is less the fixed value, and finds
the minimum energy path on the pruned graph. The algorithpeats this procedure until no
path can be found for the given width, at which point the widtldecreased (by a constant
factor) and so on, until the source and destination get disected. In [126], the authors
compare the performance of the proposed algorithms withothéne maximum life-time
(OML) heuristic proposed by Park and Sahni [119] and the maxzPy, algorithm pro-
posed by Li et al. [121]. Previously, we had mentioned thatlOis the best known routing
approach proposed in the literature. The simulation reslibw that using the widest path
approach usually improves the network lifetime and the stigath (SWP) and its derivative
algorithms (SWCRP and SFWP) are able to send more packeweat €nergy cost. Because
of this, there is more residual energy available for the sattempared to other algorithms.
Hence, the performance of the proposed algorithms is suptriboth the max-mirzPnin

algorithm and OML algorithm.
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By considering the fact that it is highly desirable to havastrithuted implementation of any
routing algorithm, Mohanoor et al. also developed disteduversions of their algorithms.
The distributed algorithms work as follows: A rooted spagntree is constructed on the
wireless network graph. Then, the global information idemied in such a way that each
node sends all the information it has to its parents all aeor@nce the complete network
information is collected at the root, the root transmits tinformation to all the nodes (de-
scendants) using the links on the spanning tree. The pesfurenof the distributed versions
of SWP, SWCRP and SFWP algorithms with varying transmissimlius and varying node
densities are presented in [126]. Similar to the centrdliz@se, simulation results show that
the distributed implementations of SWP and its derivatieesl to better network lifetimes

than the distributed implementations of OML and max-itn.

3.3.1.13 OLSRE Protocol

OLSR (Optimized Link State Routing), [139], is a proactivaiting protocol where nodes
periodically exchange topology information in order toaddish a route to any destination in
the network. OLSR uses multipoint relays (MPR&) minimize flooding of control tric
and thus reduce the number of retransmissions of broadastages. The OLSR routing
protocol has been standardized by IETF [139]. In [140], Makih and Minet extended the
OLSR routing protocol to respect energ§i@ency concerns. This extended version is called
energy dicient routing based on OLSR (OLSRE) (later called EOLSR #1]). Instead of
using the number of hops to compute the shortest path (inaf@@eSR), OLSRE uses a new
metric that takes into account the energy consumption. #lieg to this new metric, the cost

of transmitting a packet is computed as follows:

COStransmissioki) = Etrans + N * Ercy (3.20)

wheren is the number of non-sleeping nodes belonging to the immt zone of the trans-
mitter i, and, Eyrans and E;c, represent the energy dissipated in transmitting and theggne
dissipated in receiving a packet respectively. The autheesthe following definitions for

Etrans andEgrans:

3 Using MPRs reduces the size of the control messages beaatiser than declaring all its links in the
network, a node declares only the set of links with its negghlthat have selected it as MPR
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Etrans = Ptrans * Duration (3.21)

Erc\/ = PrCV * Duratlon (322)

whereDuration is the transmission duration of a packet, aRgans and Py, represent the
transmission power and reception power respectively. rAfedining the link cost as men-

tioned above, the cost of an end-to-end transmission on atmPds computed as follows:

Cos(P)= > COShansmissiofi) (3.23)

iesende(P)

The goal of OLSRE is to find the path that minimizes this cosen¢g, in OLSRE, each
node computes its route of minimum energy towards any otbde rin the network, using
the Dijkstra algorithm, witfcostransmissiodi). The above-mentioned routing strategy used by

OLSRE is called (one hop-by-hop enerdii@ent routing) RE in the thesis.

As it can be understood from the discussion above, the liskwesed in RE does not consider
the residual energy (energy-awareness). The main reasamcfoding this protocol in this
category (Energy aware routing algorithms) is that thedresi energy is taken into account
in MPR selection phase. Unlike OLSR, which takes intermedi@des as MPRs, in OLSRE
MPRs are selected according to the residual energy of tHeessend their one hop neighbors.
These new MPRs are called (Energy MPRs) EMPRs. To avoid ér@gwute changes and
assure load balancing, the selection of EMPRs is changsgdvdmin the topology changes
or the residual energy decreases over a given thresholdil&@ion results presented in [140]
show that this protocol uses the minimum energy consumpidin, and, is moreficient than
multipath routing. Moreover, compared to OLSR, OLSRE mazé&s both network lifetime
and user data delivered. Indeed, the authors claim that Blengs the network lifetime of
50% compared to OLSR for a network of 200 nodes. At this pdishould be noted that, the
network lifetime evaluated in [140] fiers from the one (the first node failure) used by most
of the studies mentioned in this chapter. The network fifetpresented in the results is the
time to the first network partitioning. As soon as the netwigrkio longer connected, vital

information can no longer be transferred to its destination
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3.3.1.14 FML and FMO Algorithms

Fuzzy maximum lifetime (FML) algorithm and fuzzy multi-&gtive (FMO) algorithm are
two dficient online routing algorithms developed by Minhas et. [B2]. FML attempts
to maximize the network lifetime objective whereas FMOv&tsito simultaneously optimize
lifetime as well as the energy consumption objectives. Tikendjuishing aspect of these al-
gorithms is the novel use of fuzzy membership functions aebkrin the design of link cost
functions. Among these two algorithms, FML is the most appgaone since, as claimed
by the authors, it outperforms the OML heuristic both in terof the network lifetime and
the average energy consumption. FML algorithm operateslisvs: When a routing re-
guest is initiated, a fuzzy lifetime membership is compudtedach edge using the following

equation:

1-(Er -y if a.o<re(vi)<o

D=t Y  (re(v) = TX)if TX; ) < 3.24
My ao—TX; (re(vi) Xij) i ij <re(v) <a.o (3.24)
wherea andy are algorithmic parameters, and,is the initial energy level which is the
same for all nodesT X;; denote the energy expended in transmission of a k-bit pacicts
modeled as defined in [142]. Finalkg(vi) andce, represent the residual energy and current

energy of nodey; respectively.

As it can be seen from the expression above, the membergiitidn strongly discourages
the inclusion, on the selected routing path, of those inggliate nodes that have depleted
their energy beyond a certain threshold value. The nextistgpassign a weighty;j, to each

link in WSN using the following expression:

wij = 1— g (3.25)

Following the weight assignment, the maximum lifetime gag¢hween a source and a destina-
tion is found by using Dijkstra’s algorithm. Experimentaktilts presented in [142] show that
with rising node density, FML shows a consistent increasiegd in the obtained lifetime re-
gardless of the transmission radius used, whereas OML ett@to show a similar increasing
trend at higher transmission radii. It also seems that FMbithm has a complexity advan-

tage over the OML algorithm since it requires only one stsbrath computation. FMO
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algorithm, on the other hand, is more complex than FML athorisince it tries to simultane-
ously optimize two routing objectives: maximizing netwdifletime and minimizing energy
consumption. FMO fiers a flexible control over choosing a desired balance betwes
two routing objectives. The FMO algorithm operates in a Eiminanner as the FML except
the computation of two additional parameters that need todeel in assigning weights for
each link; namelyfuzzy minimum energy membershifd multiobjective membershii42].
Therefore, rather than providing further detail about #dgorithm, we refer the interested
reader to [142]. A multipath extension to [142] is also aafalié. The multipath version is
called FML-MP [143], and, strives to maximize the netwoffietime metric by distributing

the source-to-sink tfac for a given routing request along a set of paths.

3.3.1.15 Keep-Connect Algorithms

Most of the algorithms explained in this chapter considerrtatwork lifetime as the time the
first node failure happens. However, Pandana and Liu claij ithat in many practical sen-
sor applications, the death of the first node may not influgineénformation collection task,
and therefore, the network lifetime should be defined asithe tintil there is no route from
any source to any destination (the time until the networlobess disconnectgdisintegrated).
Using this definition as the network lifetime, Pandana anddrgue that the network connec-
tivity is an important criterion that needs to be considered routing algorithm. Thus, the
authors propose a class of routing algorithms called keemect algorithms that use com-
putable measures of network connectivity in determiningy ho route packets. The algo-
rithms embed the importance of a node when making the rodkirogsion. The importance
of a node is quantified by the Fiedler vatuaf the remaining network graph when that par-
ticular node fails. The keep-connect algorithms are; MHKGnfmum Hop while Keeping
Connectivity), MMREKC (Max-Min Residual Energy while Keeg Connectivity), MMKC
(Max-Min remaining Connectivity) and MTEKC (Minimum Tot&nergy Keeping Connec-
tivity algorithm). MHKC, MMREKC and MTEKC are modified vexsis of the Minimum
Hop (MH) [144], MMRE [145] and MTE [145] algorithms respeetly, and, MMKC is a
special case of MMREKC algorithm in which the residual egesfjnodes is set to 1. As the
MTEKC algorithm outperforms the other proposed algorithim{4d], we only provide the link

4 The Fiedler value qualitatively represents the connegtivi a graph in the sense that the larger the Fiedler
value is, the more connected the graph will be.
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cost and SPR (shortest path routing) method related defaitese algorithms in Table 3.1

and refer the interested reader to [1] for more detail aboegd algorithms.

Table 3.1: Link costs and SPR methods used in MHKC, MMREKC BHdKC algo-
rithms [1]

Algorithm / Method Link cost

MH / Standard Dijkstra c(u, w) = 1

MHKC(y) / Standard Dijkstra c(u, w) = £ [W(uw)¥ + W(w)Y]
MMRE / Modified Dijkstra c(u, w) = mm{é’ t).E,01)}
Variant of MMRE / clu,w)=E,(t) + £, ()
Modified Dijkstra

MMREKC(y) / c(u, w) =

Modified Dijkstra E,OW ()Y + &, ()W (w)Y
MMKC(y) / Modified Dijksta || c(u, w) = W(a)? + W(w)?

In table 3.1,¢,(t) and g,(t) represent the residual energy at titnfor transmitting nodeu
and receiving nodev, respectively.c(u, w) is the link cost between nodesandw, W(.) is
the connectivity weight calculated by using tkeep-Connecalgorithm (keep-connect using
Fiedler value) proposed in [1], arydletermines how important the connectivity weight should
affect the routing cost. Being filerent from the above-mentioned algorithms, the MTEKC

algorithm uses the following link cost:

c(u, w) = &(u, W)W(u)’ + & (u, wy\W(w)¥ (3.26)

whereeg (u, w) ande (u, w) are the transmit and received energy for delivering a pafckim

nodeu to nodew. MTEKC operates as follows:

1. For any source-destination pair, find the MTE path witheedigstc(v;, v;) by using the
Dijkstra algorithm.

2. If a node dies, recompute the alive nodes’ connectivityghteusing Keep-Connect

algorithm. Go to Step 1.

MTEKC algorithm minimizes the total transmit energy whilging to keep the remaining net-
work as connected as possible. Extensive simulations qeefin [1] indicate that MTEKC
not only achieves 10%-20% better network lifetime and td&divered packets compared to
MTE algorithm, but also, is more robust in terms of algebragtwork connectivity. However,

it should be noted that the algorithm never achieves botbéiseand energyfigcient and the
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most robust connectivity route. A distributed version of EKIC, that nearly achieves the
performance of the centralized version, is also proposdd]inThe distributed MTEKC is

based on the distributed reinforcement learning routiggrithm [146], and, can be charac-
terized as a version of distributed Bellman-Ford algorittivat performs its path relaxation
step asynchronously and online with edge cost defined asteeignergy required to trans-
mit packet in that hop. We refer the interested reader todd hiore information about the

distributed version of MTEKC.

3.3.2 Performance Analysis of CMAX and OML Algorithms

Having observed that CMAX and OML are among the best earlypatitors for lifetime
maximization (with lower complexity compared to those wstlperior lifetime), and have
frequently used as benchmarks in the literature, we shaditdethis section to a comparison
of these two algorithms. We performed simulations by usirggame settings used in [119],
on a randomly generated simulation topology containing&tsaers deployed on a 2010
grid. Each node has the same initial energy. Moreover, foh ¢éapology, diferent realiza-
tions of packet streams are randomly generated. Averagerietifetime over 10 diferent
networks is plotted with respect fian Figure 3.1. In addition to this, we tested the algorithms
on some other network topologies and we have seen that tf@mpances of the algorithms
are dependent on changing network topologies. However,essiomed in [119], OML per-
formed better than CMAX in all scenarios. Moreover, as it barseen from figure 3.1, OML
algorithm was less sensitive to the selectiomaind sent more packets until the first node

died (within the network lifetime).

Figure 3.2 and 3.3 illustrate the average residual enenggldeof 20 nodes after the first
node dies, in the cases of using CMAX and OML algorithms. #Viee in the figures is a
measured average residual energy level (over 10 networkd@mouting sequences) of the
nodes, for the correspondingvalue. Whent increases, the residual energy levels decrease
which means that the algorithm sends more packets by usigshenergiesféciently. As it

can be seen from the figures, in the case of using OML algorithenaverage residual energy
levels of the nodes are much lower than the ones for CMAX élgor Moreover, OML

is less sensitive to changingvalue. This means that OML algorithm sends more packets

within the lifetime of the network and hence it spends morergym Moreover, the OML
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Figure 3.1: Average network lifetime over 10ffdirent networks (topologies consisting of
20 nodes) each of which use 1Gfdrent routing sequences. In each network and routing
instance, the nodes start with an initial energy of 30. Tiedithe values plotted indicate the
average value of the network lifetime obtained by averagiwey 10x 10 = 100 instances for
that specificl value.

results show that after the death of the first node, other s\gd¢he network have similar
and very low energy levels. In contrast, residual energglsein CMAX exhibit a quite high
variation after the death of the first node. Hence, althoughymodes have enough energy
levels to send more packets, because the first node diesthaglycan not send their packets

within the lifetime.

3.3.3 Delay Optimization and QoS Related Energy Hicient Routing Algorithms

In the design of communication as well as networking tealesg there is a fundamental
tradedt between energy and delay, such that, optimizing enefiggigncy inevitably will
come at the expense of increasing packet delay in the netwdolvever, low latency is an
important requirement in many application scenarios, guli@ations have varying delay
tolerances. Consider, for instance, an M2M security sysidrch is supposed to send an
alarm to a control center when an intrusion, a fire, etc., tealed. Obviously, sending the

alarm packet within tolerable delay is imperative, whateékie energy cost may be. So, while
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CMAX: Avg. residual energies of the users over 10 networks
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Figure 3.2: Average residual energy levels of 20 nodes d¥el@ = 100 simulations for each

A of CMAX. Each dot on the y-axis for nodeepresents the average remaining energy level of
nodei just after the first node failure, when CMAX performs routiwgh the corresponding
Avalue. For the sake of clarity, the dots corresponding te#mel value are connected with
lines.

energy-éficient operation is important for general longevity of thewak, balancing this
with an dfort to certain delay requirements is sometimes requiredrebieer, in addition to
low latency, there may be other quality of service objestiae well. The rest of this section is
devoted to studies that address delay and other QoS ressiaesi within the design of energy

efficient routing algorithms.

3.3.3.1 Energy-Aware Routing Algorithm for Cluster-BasedSensor Networks

The authors in [147] proposed a novel energy-aware roufipgoach for sensor networks.
The approach (called EAR-cluster in this thesis) requiretsvark clustering and assigns a
less-energy-constrained gateway node that acts as aledtraetwork manager. The gate-
way node takes charge of sensor organization and networkgeament based on the mission
(sensing or relaying) and available energy in each sensmwifg the energy usage of each
sensor node and which nodes need to be active in signal gingeshe gateway node sets

routes for sensor data, monitors latency throughout theeluand arbitrates medium access
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Figure 3.3: Average residual energy levels of 20 nodes d¥el@ = 100 simulations for each

A of OML. Each dot on the y-axis for nodeepresents the average remaining energy level of
nodei just after the first node failure, when OML performs routinghathe corresponding
value. For the sake of clarity, the dots corresponding testraeed value are connected with
lines.

among sensor nodes. Hence, the gateway node configuresngmssand the network to

operate #iciently in order to extend the network lifetime.

Younis et al. [147] observe that the gateway node is not aggfmnstrained as the sensor
nodes and therefore it is better for the gateway to send comsnt the sensors directly
without involving relays. Hence, their problem becomestkah to routing sensor data to the
gateway and thus they use a least-cost (or shortest-paittgstimouting algorithm in order

to solve the routing problem. The model used for testing dlgsrithm assumes that nodes,
sensors and gateway, are connected by bidirectional w#ditgks with a cost associated with
each direction. The cost of a path between two nodes (soumdalestination) is defined

as the sum of the costs of the links traversed. For each geesebled node, the routing
algorithm finds a least-cost path from this node (sourceh¢ogateway node (destination).

The proposed algorithm uses the following link-cost mdwicthe link (i,)):

Cij= ) CF forO<ks<7 (3.27)
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where

CFo = co.d, CF1 = c1.f(e)), CFa = % CFs=ocs (3.28)
J

and

CF4 = ¢4, CFs5 = ¢5, CFg = Cs.0ij, CF7 = c7.total load (3.29)

CFy is the Communication cost and reflects the cost of the wedlamsmission powe€ F;
represents the Energy stock and favors nodes with more\er@Fg is the Energy consump-
tion rate and makes the heavily used nodes less attractign,itthey have a lot of residual
energy.CF3 is the Relay enabling cost and favors the relay-enabledsfmte@outing rather
than inactive nodesCF, is the Sensing-state cost and favors selecting non-seesiiged
nodes to serve as relays, since they have not committed angyefor data processing. Fs
depends on the maximum connections per relay and extentifetbfoverloaded relay nodes

by making them less favorabl€.Fg represents the Propagation delay and favors closer nodes.
Finally, CF7 is the Queuing Cost and does not favor relay nodes with lomgeg to avoid

dropping or delaying data packets.

dij represents the distance between nadawdj, | depends on the environment ah;) is

a function of nodg’s residual energyT; is the expected time under the current consumption
rate until nodg’s energy level hits the minimum acceptable threshold. IFinde weighting
constants;’s are system-defined based on the current mission of theorietWVe refer the
interested reader to [147] for more information about th@s@hting constants, how to use
them in various cases and how to compute the total load ofveonlet It should be noted that
some of theCF;’s factors are conflicting. For example, in order to minimilze transmission
power, multiple short distances are required. Howevengusiultiple short distances leads to
more number of hops and thus the delay increases. The ppagténg algorithm provides

a balance among these factors and uses Dijkstra’s algowiitimthe link costC;; to find the

appropriate route.

In [147], the performance of the proposed algorithm wasuatald with respect to various

criteria such as the time for last node to die, time till netypartitions, average and standard
deviation of node lifetime, average delay per packet, ngtwlroughput, and average energy
consumed per packet. Based on this, it was claimed that alggladce between these perfor-
mance objectives has been struck, as consistent good iparfoe was seen with respect to

both energy-based metrics, e.g. network lifetime, as veetheoughput and end-to-end delay.
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It was shown that although other algorithms (such as min boging, min. distance, Min
Distance Sqg.) may slightly outperform the proposed alborifor some metrics, the same
algorithms were shown to perform poorly with respect to mhélowever, the algorithm in
[147] pays a computational price as well as an overheaduseocan each link multiple cost

metrics need to be calculated, stored and shared.

3.3.3.2 Energy-Aware QoS Routing Protocol

Akkaya and Younis [148] proposed an energy-aware QoS mpyiimotocol for sensor net-
works. The proposed protocol extends the routing appraaghvi7] and finds QoS paths for
real-time data with certain end-to-end delay requiremeiiise protocol pursues a cluster-
based approach and only focuses on the QoS routing of datinvahe particular cluster.
Hence, the main aim of the protocol is to find an optimal pattheogateway node in terms
of energy consumption and error rate while meeting the erehtl QoS requirements. The

protocol operates as follows:

First, the candidate paths are calculated without corisigi¢he end-to-end delay. In order to
do this, the protocol uses an extended version of Dijksakgsrithm and finds an ascending
set of least cost, delay-constrained paths for real-tint& idaerms of link cost. This link cost

captures nodes’ energy reserve, transmission energyratecand some other communication

parameters, and is defined as follows (for a link between sioded)):

Cij= ) CF for0<ks<3 (3.30)

where
C
CFo = co.dlj, CF1 = c1.f(Ej), CFz = T—Z CF3 = ca.f(g)) (3.31)
]
Here,d;; represents the distance between the nodeslj and f(E;) is the function for finding
current residual energy of nogleT; is the expected time under the current consumption rate
for the nodg energy level reaches the minimum acceptable threshold @ndlis the function

for finding the error rate on the link between naded nodg.

Finding paths that meet the requirements for real-tim@&dre not the only aim. The protocol

is designed in such a way that the throughput for non-reas tinaffic is maximized as well.
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In order to do this, a specific queueing model is used. Thetselaueuing model for the
protocol allows the throughput for normal data not to redoigeemploying a network wide
r-value (related to the service rate), which guaranteeiceservice rate for real-time and
non-real-time data on each link. Hence, once the candiddles are obtained, these paths are
checked to see which one meets the end-to-end QoS requiremetnying to find an r-value
that also maximizes the throughput for non-real-timéitralf there is no feasible r-value, the

connection of that node to the gateway is simply rejected.

Simulation results show that the proposed protocol cogrsist performs well with respect to

both energy-based metrics, e.g. average lifetime of a rexieell as contemporary metrics,
e.g. throughput and average delay. Although the througigoutal-time data may decrease
depending on increased number of packets, the throughpuiofereal-time data does not

change much since r-value ensures that there is a constdinatésl bandwidth for such data.

3.3.3.3 DAPR Protocol

DAPR (Distributed Activation based on Predetermined Reutel1], a distributed and inte-
grated protocol for sensor management and routing in lscgée wireless sensor networks,
allows sensor nodes to become active as network coveradigyqiemands and to sleep
whenever possible during the remainder of the time. In DAfRg is divided into rounds.
The beginning of a round consists of a Route Discovery Pliakkayed by a Role Discovery
Phase that is divided into an Opt In Phase (activation phaseg)an Opt Out Phase (deac-
tivation phase) [111]. Upon completion of the Role DiscgvBhase (deciding whether to
become active or not) sensors resume normal activity arfdrpgrouting until the beginning
of the next round. The sensor nodes consider the cost to thie aatwork in their decision
to become active, and the routes between a source node astirmtien node are calculated
so that minimum cumulative cost paths (shortest cost pattesised. The proposal in [111]
built on the work of [134] and [130] and developed an appitwrabased routing cost. This
new metric, the application cost, aims to avoid the use a@enin areas of critically sparse
sensor deployment as routers. Unlike previously mentiareed metrics considering only
the residual energy or the energy transmitted, the apjaditaibst metric considers both the

residual energy of the sensor node to whom the cost is begigreesl and the residual energy
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of its redundant neighboring sensor nodes. The applicatishof a node is defined as:

Capp(nj) = maxm (x,y) € C(n;) (3.32)

where C(n;) is the area that sensoi; is capable of monitoring anai(X y) represents
the total residual energy of the nodes which are capable oiitorong a particular location
(x,y). We refer the interested reader to [111] for more diedainformation about defining
the regions covered by sensor nodes, calculating the afipliccost and obtainingoai(X, y)
value. Application costs are assigned to sensor nodes arwbsht of activating a sensor node

for a given route is a weighted sum of the work that each semsist perform:
Nd
Cact(ns) = ), Ciink(Mi, ) (3.33)
Ns

whereng andng represents the source and destination nodes respectith@ cost of a link

is calculated as follows:

Ciink(ni, nj) = Capp(ni).E¢ + Capp(nj).Er (3.34)

Here,E; andE; represent the energy required to transmit a packet and #rgyerequired to
receive a packet respectively. According to the simulata&sults reported, when compared
to other cost metrics such as number of hops and the reclppbeanode’s residual energy,
using the application cost metric provides the best netwtatime for DAPR. Although the
performances of the second metric and the application sagose when all the nodes have
the same initial energy, the benefit from using applicatiost increases when the energy is
not equally distributed. Furthermore, without sensor ngengent, the fect of the increase
in the number of sensors available to route the data is ceahdl the &ect of an increase of
data generated on the network. Hence, the network lifetswoi dfected much. However,
with DAPR which allows sensor management, the fraction plagd sensor nodes that are

used as routers increases as the sensor nodes that are ssasas (sensing only) decreases.

3.3.3.4 MDML Algorithm

Minimum Delay Maximum Lifetime (MDML) algorithm [149] is arnergy dicient routing
algorithm, specifically designed for wireless sensor netwaleployed inside underground

mines. MDML, is mainly a shortest path based algorithm ttsstsuwo diferent link costs
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based on the network fifec that needs to be routed. The authors in [149] report that the
WSN in mines carry two types of network fii@: Emergency trfic and Non-emergency
(regular) tréfic. Emergency tidic occurs occasionally and can be the result of a sudden
change in the mine environmental condition, or a safetymalsent by one of the miners.
Hence, the main objective for the delivery of emergencifitras to find a highly reliable
path that incurs minimum delay. Regularffie, on the other hand, is the result of constant
monitoring and measurements and, is not delay or relighitinstrained. The primary goal

of routing for regular tréic is to select energyficient paths that can maximize the network
lifetime. Hence, MDML was designed to ensure reliable aneely delivery of emergency
data while maximize the lifetime of the sensor network ta@eostly redeployment of sensor

nodes.

MDML algorithm makes use of a priority queue which has a dfgsto check the type

of the incoming packet (emergency or regular) and send theoappropriate queue. After
defining the type of the packet (or ffiz), the appropriate link cost is chosen. In the case of
emergency tridic, since minimizing losses and delay is more important timenggy/-dficiency,

the following link cost, which combines the hop-count (ggldink quality, and residual

energy, is used:

Cij = ETX; = f(E) (3.35)

where ET X is the ETX (Expected Transmission Count) [150] value of thé& between
nodesi, and,j, and f(E;) is a function of the residual energy of nodef(E,) takes on two
values depending on the expected lifetime of a node; 1 if Xpe&ed lifetime is greater than

the route update timer) andeo otherwise. The expected lifetim&(T)) is given by [149]:

Er

BN = (A — A€ + A€

(3.36)

whereg is energy consumed per bit andand g are the tréic rates for self generating and
outgoing trdfic repectively. As a consequence, for emergencfid¢rathe algorithm selects
the least ETX cost path among all survivable paths. As it wastioned before, the aim is
different in the regular tfic case. Therefore, the link cost metric for regulafficamainly

considers the energyffeiency and is simply a modified version of the link cost use&An
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algorithm (eq. 3.10):

Cij = (&)E™ + (&))" (3.37)

whereefj andqfj are the energy consumption for unit data transmission tweelirik (i,j), and

E andgj represent the residual energy levels of nackesd;.

After defining the appropriate link cost metric, the nextpsi® to apply the Bellman-Ford
Algorithm to find the least cost path. In order to do this, eactle maintains a routing table
to keep the next hops for each type of théticalemergency and regular); and the cost to reach
the destination. Then, a sink periodically (evergecond) broadcasts Sink Announcement
Packets (SAP). When a node receives the SAP, it calculageweth path costs for both tfas
based on the new information, it compares the new cost wilotie in the routing table, and
decides whether to update its routing table or discard the 8#ter updating its routing table,
the node broadcasts the SAP to advertise the newly compated@its neighboring nodes.

Otherwise, it drops the packet.

The simulation results show that zero loss and low delay eachieved for emergency ffia.
MDML guarantees that delay of emergencyfiianever exceeds the delay of regulafiia
The simulation results also indicate that in most cases MDBMiaws slightly lower network
lifetime compared to the FA algorithm (called Non-MDML in4Q]) which was discussed in
section 3.3.1.7. Hence, MDML compromises network lifetitm@chieve high reliability and

low-delay.

3.3.3.5 Energy Hicient Routing with Delay Guarantee

Another study that uses Linear programming in designingreergy dficient routing algo-
rithm was done by Coleri Ergen and Varaiya [151]. Ergen anghiya proposed algorithms
that maximize the lifetime of a sensor network and approxéntize results obtained by solv-
ing the linear programming problem. The use of linear progréng and, the relation of
maximizing the minimum lifetime of the nodes to minimizirtgetcost per packet was inves-
tigated in [138]. However, the proposed algorithms, LR-ENTR HR-ENR, take this relation
one step further to provide a delay guarantee on the timeabkeps reach their destination,

while maximizing the lifetime of a sensor network.
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The proposed algorithms are developed in three steps.|yf-iast energy fficient routing
protocol which aims to maximize the network lifetime is pospd for the centralized imple-
mentation of the Linear Programming (LP) solution. The pcot generates a single path
from any sensor node to the Access Point (AP) at each timettaidsathe optimal flow rates
at each link at the end. However, solving the LP problem bpgishe centralized proto-
col, requires knowing the whole network topology and padateration rate at each node.
Therefore, a distributed routing protocol [151] (whichrfe the basis of LR-ENR and HR-
ENR protocols) is proposed to learn the optimal flow ratemiteely by using a sequence of
least cost path algorithms; least sum-cost path algoriththl@ast max-cost path algorithm.
The cost of a path for these algorithms is defined as the sunawgirmam of the costs of the

links on that path. Two dierent types of link costs are used in these algorithms:

1 n
whereC; is the cost of nodg at p' iteration and is given as follows [151]:
. i P + i pexfij + psgj + (L= 35 fji — % fij)p

Ci=p e

(3.39)

where fji, pix, Prx, Psgj andp represent the packet flow rate, the energy spent in the trans-
mission of a packet in unit time, the energy spent in the rememf a packet in unit time,

the energy spent in sensing and the energy spent per unitoyntlee radio in sleep mode
respectively. In distributed routing protocol, the Bellmigord algorithm is used to calculate

the least cost path for both of the algorithms [151].

LR-ENR and HR-ENR protocols are modified versions of therithisted protocol and, they
provide a delay guarantee by limiting the length of the myifiaths from each node to the AP
(or sink). Level Restricted Energyfiicient Routing (LR-ENR) protocol executes a modified
version of Bellman-Ford algorithm to find minimum cost patlisength at mostlyax from
each node to the sink whedg,ax is upper bounded by the worst case delay. LR-ENR pro-
tocol operates as follows: By considering the fact that time is divided into frames, at the
beginning of each frame, the sink floods the network with a tenstruction packet (TCP).
TCP keeps a counter the routing path, the node cost and the cost of the trarismitiode.
When a node receives a TCP, it checks whether the couarritially set to 0) is less than

Omax If ¢ > dmax the packet is ignored. Otherwise, the node checks whétbdransmitting
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node is the next hop on a path of smaller cost than previoaslinéd paths. This is done by
checking the conditiol€; > C; + Cj; (C; > maxC;, Cjj)) in least sum-cost (max-cost) path
algorithm, in whichi is the transmitting node angis the receiving node. If the condition
holds, j updates this cost b§; = C; + Cj; (C; = maxCi, Cj;)), increases the counterby

1, adds its ID to the routing path, and rebroadcasts the paékethe end of the flooding
process, each node chooses the minimum cost routing patlisas this path until the end of

the time frame.

Hop restricted energyfiécient routing (HR-ENR) protocol can achieve higher netwiifide
time and connectivity for a given delay constraint by usingeatralized controller. The first
part of the HR-ENR protocol is similar to LR-ENR'’s. The onliffdrence is that each node
i keeps the minimum cost path of length at miokir all 1 < | < |V| where|V| denotes the
number of nodes in the network. Then, upon reception of a B@M|ar to LR-ENR, the
node checks whether the countas less thardax Wheredmay denotes the exact worst case
delay (instead of an upper bound).clk dmax the node checks its path cost and updates its
minimum cost path for that length as described before, tmeatrast the packet. When the
flooding ends, each node knows about the minimum cost pathobflength. They then send
only the cost of the paths corresponding to each lehigtithe sink. The sink finds the optimal
path length for each node based on Integer Programming rdedefibed in [151] and sends
it back to the nodes in the network. Then, the nodes use thimgapath of the optimal length

until the end of the frame.

Simulation results indicate that the network lifetime gases significantly by optimal routing
(LP formulation), and including delay constraint in eneeffjcient routing (LR-ENR and HR-
ENR) improves the network performance since the delay afiéiteork keeps increasing even
after the optimal lifetime is achieved. The simulation tesalso show that for the maximum
allowed delay where LR-ENR cannot provide connectivity,-BRR provides connectivity

of all the nodes and achieves optimal network lifetime.

3.3.3.6 FMOLD algorithm

The fuzzy multiobjective routing for maximum lifetime andnimum delay (FMOLD) al-
gorithm [152] is an extension to the FML algorithm which waeyiously discussed in sec-

tion 3.3.1.14. For a routing request, the FMOLD algorithmd$ira path that féers a good
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balance between the two routing objectives, namely maximithe network lifetime and
minimizing the source-to-sink delay. Like the FML algoriththe path search process in
the FMOLD algorithm is based on the use of an edge-weighttimmaesigned by using a
fuzzy membership function. FMOLD algorithm operates akWé: When a routing request
is initiated, the fuzzy multiobjective membership value@nputed by using the following

equation:

) - Uy )
u1 = pmin(ll gl ) + (1 - /3).‘%j (3.40)
wherey!l is the fuzzy multiobjective membership of the edge, v;) andg is a constant
(according to [152 = 0.2 has the bestffect on the maximum lifetime as well as the min-
imum delay objective.)p:tj represents the fuzzy lifetime and computed as describedcin s
tion 3.3.1.14,112“1, on the other hand, denotes the minimum delay membershige fat each

edge, and, is computed as follows:

(60— 1).pD(v)

aXoD) (3.41)

/“lirLd =1+
wherepD(v)) is defined as the length of the partially constructed paimfthe source node
to the nodey;, and,maxXpD) = max (pD(vs)) for every f such that; is in the set of all leaf
nodes of the Dijkstra’s path search tree. Similar to the FNgodthm, the last step of the
algorithm is to assign a weight,; = 1 - 1, to each edge and then use the Dijkstra algo-
rithm to find the multiobjective path between the source asstidation. Simulation results
presented in [152] indicate that FMOLD algorithm is able ¢thiave a desirable tradfde-
tween the maximum lifetime and the short end-to-end delgotibes. As expected FMOLD
outperforms FML in terms of delay, however, it should be ddteat in order to understand
the delay minimization performance of FMOLD better, itsfpenance should be compared

to the other algorithms’ discussed in this section.

3.3.4 Energy Hficient Routing and Scheduling

Although the main focus of this chapter, routing is not théy@ignificant problem for en-

ergy dficient design. Due to the shared nature of the wireless chascteeduling plays a
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big role in managing interference and thus overall perforeea Some studies have looked
into combining routing with scheduling for an overall opiz®d performance. In this sec-
tion, we overview several studies that combine scheduliitly &shortest path based routing

mechanism.

3.3.4.1 Energy Hficient Routing Using Directional Antennas

Almost all the protocols reviewed in this chapter have asslithat nodes are equipped with
omni-directional antennas. That is, all nodes have & 8@@ree coverage angle and do not
need to point at each other in order to communicate. The nilaErdiage of this approach is its
simplicity. However, in the case of using omnidirectionatemnas, the power is broadcasted
towards all directions and, therefore it attenuates rgpidth distance. Spyropoulos and
Raghavendra [113] claim that a lot of energy is wasted bygusmnidirectional antennas.
The use of directional antennas allows nodes to communirsitig less power (energy) than
omnidirectional ones. Therefore, the potential energyinggvthat come from the use of
directional antennas is significant. Hence, in [113] Spgudps and Raghavendra proposed
an energy-flicient routing and scheduling algorithm (called EER-Dii@tal in this thesis)
that coordinates transmissions in ad hoc networks where eade has a single directional
antenna. The basic idea of the proposed algorithm is to dmgmfficient routing first, in

order to find minimum energy paths and then schedule nodessrmissions, accordingly.

The proposed algorithm consists of 4 major steps: In thedtest of the algorithm, Short-
est Cost Routing, a topology consisting all the possiblkslim the network is obtained by
pointing the directional antenna intofidrent directions. Then, Dijkstra’s algorithm is used
to find the energyféicient shortest cost paths. Twdldrent metrics which were proposed by
Singh et al. [130] are used in order to relate fimdde cost with energy consumption. The first
metric minimizes the energy consumed per packet by asgjghim link cost as the energy
consumed in transmitting (and receiving) a packet overla liithe goal of the second metric,
however, is to avoid routing tfiaic through nodes with depleted energy. In order to do this,
each node is assigned a cost (or weight) which is a functidchefemaining energy of the
node. Then, the total cost of sending a packet through theechpath is minimized. This
way the network lifetime is maximized. In the second stephefdlgorithm, Link flow matrix

calculation, the amount of tfizc that has to go over each link is calculated. This is done by
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defining a link flow matrix whose entries are theffi@flows on the corresponding links. In
the next step, Topology update, by using the end-to-erfidiaformation and considering
the fact that only one link can be up for each node at a timemtagimum amount of time
each link can be up is found. The final step is to schedule iithaif links in a way to min-

imize the total time it takes to serve all links. The scheatylproblem is solved by using a

series of Maximum Weighted Matchings [153].

Simulation results show that using directional antennatead of omnidirectional ones de-
crease the total energy consumption and thus increase melifetime by a factor, which is

proportional to the antenna gain. Simulation results alsnahstrate that additional energy
savings ranging from 10 percent to 45 percent are obtaineasing energy-aware routing
instead of conventional routing schemes (e.g. minimum boging). As it can be seen from
above, since this chapter is about shortest path basedthigsy we focused on the shortest
cost routing part of the algorithm and gave some brief infation about the other steps. We

refer the interested reader to [113] for more detailed miation about the other steps.

3.3.4.2 Joint Routing and Scheduling Algorithms

Girici and Ephremides studied the problem of enerfiicient distributed routing and schedul-
ing for ad hoc wireless networks supporting connectioniegisc [116]. The authors observed
the trade-ffs between energy, delay and network lifetime and proposgdrtietric-based
routing and scheduling (link activation) algorithms. Thegosed link-metric based routing
algorithm provides a solution for the following routing ptem: Each node should select
the the next hop for a packet destined to any given destmatiothat good communication
performance is achieved in terms of energy consumed peepablke throughput (volume of
transmitted tréic throughout the network lifetime) and total delay per packe order to
find the paths that satisfy the requirement mentioned aleaah link(i,j) is assigned a value
that indicates the cost of using that link according to a okt metric. The combined link
cost metric reflects transmission power requirements ggheresidual energy of the relaying
node (volume of delivered tfizc) and, congestion on that link (delay and stability), and is

defined as follows:
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Cij = (%jax)wp(E—iﬁ’e)‘A’e(Qij)"Vd ifER ER 20 (3.42)
whereW,, We andWy are the parameters of the algorithm that are adjusted to &ényoof the
three terms. HereRj; represents the RF power required for error-free transongsom node
i to] andPmaxrepresents the maximum RF power transmission from nealpg The residual
energy of nodeé is EiR. E, is the initial energy of nodé and finally, Q;j is the congestion
on the link(i,j). After a link cost has been assigned for each link, based @aghkigned link
metrics, distributed Bellman-Ford algorithm [18] is agplifor shortest path computation.
The next step is to apply the scheduling algorithm. The sdivegl algorithm aims to find
a maximal utility link activation set (the set of links thatrcbe activated in a conflict-free
manner),S such that if any node tries to activate an outgoing link vhthher utility than
the present activated outgoing link, the resulting adtivesetS’ has lower utility tharS. In
order to do this, the communication performance is consitles a utility and each linf,j)
is assigned a dynamically changing utility valifé;:
Y7 (ER
Wij = (% (3.43)
wherea,,y,0 are algorithm parameters;; indicates the number of non-empty links adja-
cent to link(i,j), and,Qjj, EiR, Pij are as defined in eq. (3.42). The goal is to maximize the
the total utility of the link activation set)(S) = 3} Wj; [116]. The simulation results show
that the routing algorithm increases the total volume ofignaitted packets, and, network
lifetime significantly. Also, the scheduling algorithm haslight positive &ect on the net-
work lifetime, throughput. Based on the simulation stutlgan be said that the proposed link
metric-based policy jointly considering routing and sakledy, more precisely; transmission
power requirements, residual energy information, linkwusizes and transceiver utilization,

provides a better performance in terms of energy consumpicerage delay and throughput.

3.3.4.3 Energy-Hficient Interference-Based Routing Algorithm (OptSINR)

Optimal SINR Routing (OptSINR) [154], [155] is an energiiaent interference-based rout-
ing algorithm that, given a certain class of link scheduliothemes, aims to find the optimal
routes in terms of energy consumption over the entire néddw@ptSINR is a cross layer

routing algorithm in that it takes into account the inteefece created by existing flows in the
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network and exploits both the SINR (physical layer inforimat and power control (MAC
layer). The algorithm mainly deals with the problem of finglia route that minimizes the
total energy increment needed to serve the new arrival beegntire network for given SINR
constraints. In order to solve this problem, Kwon and 8Htib4] proposed two algorithms
(in which the second one is OptSINR algorithm) for twéielient cases. The first case consid-
ers the impact of admitting a new flow on the network as it tre@® an entire route. One or
more links in the route may simultaneously transmit the fldWverefore, a transmitting link
is interfered by the other links that transport the flow over toute. This causes additional
energy consumption on the network. Hence, the first routiggridhm uses SINR metrics in
order to satisfy the minimum constraints of all the links &mdhinimize the energy consump-
tion over the network. Since this algorithm in procedurenslar to the OptSINR algorithm,
it will not be discussed in detail. We refer the interesteatier to [154] for more information

about the first algorithm.

As mentioned above, in the first case, the links are activatdlde same time and hence, the
link scheduling over the network is not considered. In theosd case, on the other hand,
the links are not activated at the same time but scheduleat@iog to some link scheduling
mechanism. In order to solve this new problem with scheduind minimize the average
energy consumption, OptSINR algorithm was used. The dlguoris based on some matrix
operations and, for a given link scheduling mapit operates as follows: Firstly, a directed
graph consisting oN nodes and. links, G = (N,L), is constructed. Then, for an incoming
flow, the availability of the resources are checked. If theoteces are not available, the
incoming flow is rejected and the source is notified of theatega. Otherwise, the average
interference strength at all nodes is measured and, theaumege of the link scheduling
matrix (used to schedule the linkg), is calculated. Then, a matrix, £ F)~! is calculated
based on path loss and correlation between links. In thisxnats the identity matrix and F

is LxL matrix with (I,m) entry:

_ Gim),jyc(l)

F(, m
(- m Giqy,jay

,I #m andO otherwise (3.44)

whereGim), jq) represents the path gain between transmiffieand receivej(l) andc() is the
SINR constraint for linkd. The next and may be the most important step is to calculate th

link cost metric that will be used in shortest cost compotatiOptSINR algorithm uses the
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following cost metric for a link=(i,j):

i)

M -F) Yy Vil e L (3.45)
Gioy.in &

Cinin =

wherenj is the average of the interference and noise measured adb®&ing nodej, of
link | when link | is active and, the termiI(l — F)~ corresponds to global information in
the network. After assigning a link cost to each one of theesponding links, a shortest
path algorithm, e.g. Dijkstra’s algorithm or Bellman-Falfjorithm, is applied to find the
minimum cost path. Finally, the minimum cost path is usedetwes the incoming flow. A
nice feature of OptSINR algorithm is that it automaticalbytes around congested areas (the
areas in which the average power of the ongoing links ine®asnd thus results in mitigat-
ing the overall congestion in the network. Kwon and $hedso developed the distributed
version of this algorithm which uses local information aaduires a substantial reduction in
computational overhead [154], [155]. The simulation rssahow that both centralized and
distributed versions of the OptSINR algorithm are more gyefficient than other routing
algorithms using the minimum transmission energy or theimmum interference as a link
cost (Minimum Energy (ME), Least Interference Routing (LIR56]. Finally, it should be
noted that, for a given class of link scheduling schemesSM§R algorithm is asymptotically

optimal in the sense of average energy consumption.

3.3.4.4 EUROo Algorithm

As mentioned in the previous sections, the three key elestaditansmission power, interfer-
ence, and residual energy play an important role in chocsmeggy-#icient routes. Ignoring

one or more of these metrics, may result in algorithms whiehret energy #icient in a

real wireless environment, where all of these elementsldHmiconsidered. Hence, Kwon
and Shrdé [157] developed a unified routing algorithm called the Egesfiicient Unified

Routing (EURO0) algorithm that parameterizes all the threg ketrics: transmission power,
interference between links (or routes), and residual bateergy. EURO is algorithmically
similar to OptSINR algorithm [154]. However, unlike OptSRNEURO takes into account
the residual energy of nodes. Hence, in terms of enefiigiency, EURo algorithm is an
improved version of OptSINR algorithm. Mainly, for a givechgduling policy S, the set of

nodes N, the set of linksL, and interference constraints, EURo0 algorithm tries toesthe
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following optimization problem:

arg mirkerg.j) . (Ciniy) (3.46)
leR

st P")>P()>0 Vlel,
o) = c(l) VlelL,

EnZO VHEN,

whereP™2X1), 6(1), c(l) and, e, represent the maximum transmission power for in8INR
at link I, the minimum requirement of link in terms of SINR, and the a@mng energy at
noden respectively. In this problen;gy;q) is the cost metric for link=(i,j) and is defined as

follows:

L1y i)
Cipiny = W(I -F) ™ i(z——) VI eL (3.47)
[0JI0) Gigy.jo

whereW is a weight vector that is a function of the residual energgarfes when a new flow
arrives to the networH, is the identity matrix andF is LXL matrix with (I,m) entry given in
eq (3.44).njq) is the average of the interference and noise measured adbizing nodej,
of link I when linkl is active andiy oy represents the path gain between transmigieand

receiverj(l) andc(l) is the SINR constraint for link

Without considering scheduling, EURo0 algorithm using timi kcost metric defined above
operates as follows: Firstly, a directed grapk (N,L), is constructed. Then, for an incoming
flow, each node checks the availability of two resourcestebatenergy and transmission
power. If the battery energy is drained or the transmissiowep is saturated at a node,
the node rejects the incoming flow and notifies the rejectiothé source. Otherwise, the
interference strength at all nodes are measured andF)~! matrix is calculated based on
path loss and constraints. The next step is to calculatertsept weight vectow and link
costCiqjay. After assigningCiqji) as a link cost to each one of the corresponding links, a

shortest path algorithm, e.g. Dijkstra’s algorithm or Bedh-Ford algorithm, is applied to
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find the minimum cost path. Finally, the minimum cost pathgedito serve the incoming
flow. It should be noted that when the links are randomly soleel] the algorithm is similar
to the one mentioned above with a small modification in thke ¢iost [157]. The distributed
version of EURo algorithm (dEURO0), was also proposed in J18EURo algorithm uses only
local information and to update local information, eachenpdriodically announces its status
information to its neighbors via a control channel. Morap@dEURo0 employs a distributed

shortest path routing algorithm such as the Distributednist-Ford algorithm [18].

Simulation results show that EURo algorithm outperfornfeeotompetitive energyfécient

routing algorithms such as ME(Minimum energy), CMAX [128;WME [124], and, LIR

[156]. This is because, when there is no interference betwagtes, the metrics of E-WME
and EURo are identical so that EURo works the same as E-WMEAddltion, in the case
when the arrival rate is high, due to interference betweenlittks, the algorithms that do
not consider the impact of interference (ME, CMAX, E-WMEg anore #&ected than EURO.
The simulation results also indicate that even distributersion of EURo that uses local
information from adjacent neighborhoods outperforms iotbating algorithms. However, it
should be noted that since dEURo0 uses only truncated intaymats performance is slightly

poorer than EURoO.

3.3.5 Retransmission Aware Energy Hicient Routing Algorithms

Most of the algorithms explored in this chapter are designagke link cost metrics that are
based on the energy spent in a single transmission. Barsrge®lisra [158] argues that such
a formulation of the link cost fails to capture the actualrggespent in reliable packet delivery.
They claim that the proper metric should include the thd &ffactive energy (including that

expended for any retransmissions necessary) spent imlyeliglivering the packet to its

destination and, they propose a series of retransmissianeaalgorithms. In this section, we
describe these algorithms by focusing on their link costs thie shortest path method that

they use.
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3.3.5.1 Retransmission-Energy Aware Routing Algorithm

According to Banerjee and Misra, to account for the potéantiat of retransmissions needed
for reliable packet delivery, an accurate formulation rseta consider the link error rates
as well. Hence, they proposed a shortest path based RetsaimmEnergy Aware routing

algorithm [158] that uses a link cost which is a function oftbthe link distance (related to

energy) and the link error rate.

Retransmission-Energy Aware (RA) algorithm uses twibedént metrics designed for two
distinct operating models: HHR and EER. These operatingetsaditer in the type of re-

transmission mechanism that they use. HHR model allows liyeplop Retransmissions
where each individual link provides reliable forwardingtie next hop using localized packet
retransmissions. Hence, in this case, a transmission @nrarspecific link implies the need
for retransmissions on that link alone. Since the numberamisimissions on each link is in-
dependent of the other links, the total cost of a path is fasd linear sum of individual link

costs. RA algorithm uses the following link cost for the HH&Se:

ij= 3.48
N (3.48)

where

P
pij=Sm=05Sxerfc N*rf) (3.49)

whereE; j is the energy associated with the transmission of a pacletlmk |; j, p;  is the
link packet error probability associated with that lirkis the packet size and, th® is the

bit error rate for link; ;.

On the other hand, in End-to-End Retransmissions (EER) mtigeindividual links do not
provide link-layer retransmissions and hence, a transonigsror on any link leads to an end-
to-end retransmission over the path. Therefore, the tottlaf the path cannot be expressed
as a linear sum of individual link costs which in turn leadsatoinappropriate formulation
for a minimum-cost path computation. In order to avoid thigppropriate formulation and
be able to use a minimum-cost (shortest cost) routing dlgarian approximate link cost is

used. The link cost indicates the minimum approximate gneogt and is defined as:
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capprox_ ___ 4 3.50
& 1-pipt (3:50)
wherelL represents the average path length of the network and is &anadl links. After
assigning the link costs to the corresponding links, in lmatbes (HHR and EER), RA algo-
rithm uses a shortest path algorithm (Dijkstra’s or Bellnkand) to determine the minimum

cost path that will be used to send the incoming packet.

The EER framework results in at least an order of magnitudédri energy consumption
than the HHR case. However, the energy savings achievedebR#halgorithm is more
pronounced in EER case. Simulation results indicate traRA algorithm can lead up to
30-70 percent energy savings over MH routing (minimum hayping in which the link costs
are unity), and, EA routing (Energy aware routing in whiclink kcost is the energy required
to transmit a single packet) algorithms. The advantagesiofuRA algorithm is significant
irrespective of whether fixed or variable transmission poweised by the nodes to transmit

across links.

3.3.5.2 MRPC and CMRPC Algorithms

Misra and Banerjee proposed two power-aware algorithmeriergy-éicient routing in ad-
hoc wireless networks [159]. These algorithm@atifrom previously mentioned power-aware
algorithms. The reason for this is that instead of basing theting decisions on a function
of the battery power alone, these algorithms also consli@efact that dierent links require
different transmission powers, and also havedint impacts on reliable packet transfers.
The first algorithm, Maximum Residual Packet Capacity (MRREconceptually similar to
the MMBCR algorithm [120] which uses a max-min formulatianselect the path that has
the largest packet capacity at the critical node (the onle thiid smallest residual packet trans-
mission capacity). However, in [158], the authors showeadl @irouting algorithm for reliable
packet transfer should include the link’s packet error phility in formulating the transmis-
sion energy cost. Hence, unlike MMBCR, MRPC uses links tlaathvarying transmission
energy costs and link error probabilities. MRPC algoritheesithe following cost metric for

routing:
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Cij=— (3.51)

where

oL (3.52)

Here B; represents the residual battery power at a certain instafnio@e at node andE;
is the transmission energy required by naode transmit a packet over lini,j). D; j repre-
sents the distance between nodesidj, andp; ; is the link’s packet error probability. The

maximum lifetime of a route was defined in [159] as follows:

Lifep = min[C; ;] for (i, j) e P (3.53)

Given the cost and lifetime formulations above (eqs. 3.51&63), MRPC uses a modified
version of Dijkstra’s minimum cost algorithm for decenizaldl route computation. While
Lifep is not an additive function of the individual node-link cgst is computed over a path
by applying theMIN operator in an iterative fashion. Detailed information @bihe mod-
ified version of Dijkstra’s minimum cost algorithm and theritive process can be found
in [159]. Simulation results show that MRPC leads to supgraformance (longer network
lifetimes) than alternative suggested algorithms (MirpH®outing, Min-Energy Routing,
MMBCR and, CMMBCR) since it considers the importance of tiné lerror rates. More-
over, in contrast to MMBCR, MRPC is not only able to transminach larger number of

packets but also at a lower per-packet energy consumption.

Misra and Banerjee also presented CMRPC, a conditionaanvadf MRPC. The CMRPC
algorithm is the MRPC equivalent of the CMMBCR algorithm ggated in [120]. CMRPC
switches from minimum energy routing to MRPC only when thma@ing battery power at
the constituent nodes falls below a certain threshpl&imulation results show that CMRPC
outperforms CMMBCR in both the total packet throughput a#i a®the energy féiciency.
However, unlike the MMBCR case, CMRPC does not always ofaparMRPC. The relative
performance of MRPC and CMRPC depend on the choice of thethtbledy. While smaller
values lead to higher variability in the expiration timesgler values fail to exploit minimum
energy paths even if the residual battery capacities dfieismtly large. The reason for this is

that wheny increases CMRPC performs minimum-energy routing for a lemduration and
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the average energy per packet increases. The total netiraikghput is maximized by using

intermediate values foy.

3.3.5.3 BAMER, GAMER and DAMER Algorithms

Dong et. al. [160] proposed a number of algorithms (BAMER,MEZR and DAMER) to
compute minimum energy paths for reliable communicatioardegssy links in multi-hop
wireless networks. This problem was previously studied bndjee and Misra [158] and,
RA algorithm (which is called BMA in [160]) was proposed inder to solve the problem.
However, in [158] the problem of computing optimal enerdfogent paths was solved for
the hop-by-hop retransmission model only. The reason fieriththat for the hop-by-hop
retransmission model, it is straightforward to use a trawi#l shortest path algorithm (e.g.
Dijkstra’s algorithm) to compute minimum energy paths. Heer, the same is not true in the
end-to-end retransmission model. Therefore, Banerjedviisich only proposed an approx-
imate heuristic that defines the link cdst; in eq. (3.48) and used Dijkstra’s algorithm to
compute low-energy paths. Hence, the optimal approachéksd@nd-to-end case was left as

an open problem.

Basic Algorithm for Minimum Energy Routing (BAMER) optimwglsolves the problem of
computing minimum energy paths for reliable communicatiotihe pure end-to-end retrans-
mission model where none of the links in a wireless path guaes any reliability. Basically,
BAMER is a generalized extension of Dijkstra’s shorteshpalorithm which uses the fol-

lowing link cost (link weight):

W(, ) = 6BoNodj (3.54)

wherec and,a are both constants, ang,, N, and,d;; are the required signal-to-noise ratio
(SNR), the strength of ambient noise, and, the distancedmsstwodes andj respectively.
Although similar to the Dijkstra’s algorithm, BAMER is flierent in that it not only takes
into account the link weights, but also the link error ratoreover, the way of computing
the total cost of a path is flierent in the case of BAMER. In order to clarify thefdrence
between two algorithms (BAMER and Dijkstra), assume thatafoy pathP(i, j), C(P(i, j))

denote the energy consumption of successfully deliveripgcket along that path froimo j,
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then, for BAMER, the total cost of a path is calculated as in(8cb5) whereas in Dijkstra’s,
the total cost of the same path is found by using the sameiequaid setting\(i, j) = 1 for
all links (i,j).

C(P(s.V)) = N(u, IC(P(s, 1)) + W(u, V)] (3.55)

Here,u is an intermediate node between the source r)dmd the destination nodeand,
N(i, j) is the expected number of transmissions (including retrassions) of a successful

delivery over link(i,j) [160]:

N, J) = %r(lj) (3.56)
whereE,(i, j) is the link error rate of link(i,j). Although BAMER is originally designed
for the pure end-to-end retransmission model, an appteppigeprocessing stage which is
explained in [160] enables BAMER to solve the same problertnénmixed retransmission
model. The mixed retransmision model is a more general adistie model in which some
links may provide partial reliable delivery while the othenay not. The General Algorithm
for Minimum Energy Routing (GAMER) is proposed for that ca@AMER can be defined
as a further generalization of BAMER, where each individugé may or may not provide
per hop reliability. GAMER uses the same link cost (eq. 3&4) the algorithm is the same
with BAMER except that depending on the availability of pephreliability for a link, the
way of computing the total cost of a path changes. In GAMERnK (u,v) provides per hop

reliability, the total cost of a path is:

C(P(s,v)) = C(P(s,u)) + N(u, W(u, V) (3.57)

Otherwise, the total cost of a path is computed as in eq. J3ESMER and GAMER are both
optimal and centralized algorithms. Dong et. al. also psegoa distributed algorithm, the
Distributed Algorithm for Minimum Energy Routing (DAMER)hat approximates the per-
formance of the centralized algorithms. Unlike BAMER and I@BR which only compute
the one-to-all shortest paths from a single source to adiratbdes, DAMER computes an en-

ergy dficient path from each node to every other node. DAMER opermatageriodic round
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by round fashion and for each destinatiQiDAMER chooses for (an intermediate nodeje
next hop node that minimizes the expected energy consumetidelivering a packet from

tov.

Simulation results indicate that BAMER, GAMER and DAMER alghms dfectively im-
prove energy ficiency over the best known existing techniques (e.g. RAJ{&8BMA as
called in [160])) in the general mixed retransmission mo#ekthermore, it is shown through
simulations that high link error rates generally empha#iieedfectiveness of the proposed
algorithms. Even with the optimal setting of the algorithargameters of BMA, BAMER and
GAMER still consume less energy than BMA by up to 43 percenti BAMER consumes
less energy than BMA up to 22 percent. Moreover, DAMER is abl&nd minimum en-
ergy paths in the hop-by-hop model and leads to significarfoppaance improvement over
existing single-path or multi-path based techniques. &lgh not previously mentioned in
this thesis, multi-path routing have been utilized to inyarthroughput or reliability, possibly
at the cost of increased energy consumption. However, ireszases ( [160], [161]), multi-
path routing may reduce the expected energy consumptioncd;i¢he problem of finding
the minimum energy multi-path routing is also formally afzald in [160]. However, since
this chapter is about shortest (single) path routing alyars, energy #ciency in multi-path
routing is beyond the scope of this study. We refer the istedereader to [160], (STPS,
OCND) [161] and (SAR) [162] for good examples of enerdiyogent multi-path routing.

Up to now, we have explained many shortest path based enffiggm routing algorithms
under a classification that we have done. For the sake ofyclane illustrate this classification
in Table 3.2. The table not only shows howtdrent routing algorithms fit underfirent (or
same) categories, but also, compardgedent routing techniques according to many criteria.
In Table 3.2, N.S. abbreviation in SPR method column indgdlhat the SPR method used is
not specified in algorithm (can be either Dijkstra or Bellrtaord).
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3.3.6 Concluding Remarks About the Algorithms Mentioned inThis Chapter

Each of the aforementioned routing algorithms have their fumctional advantages and per-
formance limitations. Before choosing a routing algorittonbe used in an M2M application,
one should first consider the requirements of that specifitagtion. For example, in medical
M2M applications, algorithms minimizing delay or maxinmgi QoS such as EAR-Cluster,
Energy-Aware QoS, DAPR, MDML, LR-ENR, HR-ENR and FMOLD slubipe preferred
since in case of emergency situations, the late deliver@patient’s vital information may
be intolerable. Certain building management applicat{ers., Structural health monitoring),
on the other hand, require the network to be available #ideant for a long time and, do not
have delay as a constraint. In such a case, energy-awanegalgorithms (described in Sec-
tion 3.3.1) that consider residual energy levels and seekaiximize lifetime would be more
appropriate. For other monitoring applications such asafmb monitoring [163], in addition
to aiming to maximize the network lifetime, it is vital to caider the amount of retransmis-
sions caused by the poor channel quality in the environm@aicket retransmissions may
severely decrease network lifetime. So, in such an apfitatetransmission-aware energy
efficient routing algorithms such as RA, MRPC, CMPRC, BAMER, GEBRland DAMER
could be more useful. We refer the reader to Table 3.2 in wivielhave classified all of the
algorithms considered in this chapter with respect to iaitand characteristics that we de-
termined as significant and relevant. We intend this as aeeée chart for algorithms arat
link cost metrics for dferent applications. In Section 3.4, we provide a brief antafi link

cost metrics that can be used in accordance with the distadgerithms.

Among the many algorithms mentioned in this chapter, CMAMIO FML, EURo and
Keep-connect algorithms are the most promising in term$i@fsble objective of prolong-
ing the lifetime of a network. CMAX and OML algorithms are angpthe most robust and
well-known among these and often serve as benchmarks. Mamntly proposed energy
aware routing algorithms (such as [125], [126], [126], [JL&Ad [164]) have been compared
to CMAX and OML. FML outperforms OML and seems to be the betstrahtive in terms of
lifetime maximization (when link error rates or SINR is nakén into account). Moreover, its
two extensions; namely, multi-hop extension [143], delgiersion [152] make it attractive
for the research community. The EURo algorithm, on the otlagrd, is unique in the sense

that it considers both residual energy and SINR in its linktatefinition. Its optimization
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Table 3.2: Comparison of energffieient unicast routing algorithms considered in this thesis

(Part 1)

Developed for Centralized, Considerin,
. P SPR L. / Considering g Considering | Retransmission
Algorithms (Ad-hoc/Sensor) Distributed R Delay .
method Clustering Scheduling Aware
networks (©)/(D) (or Qos)
MMBCR Ad-hoc N.S. C No No No No
CMMBCR Ad-hoc N.S. C No No No No
Max-min
zPmin Ad-hoc Dijkstra C No No Yes No
Zone-Based Bellman
Routing Sensor Ford C Yes No No No
EAR-Low Sensor N.S. C No No No No
Bellman
EAR, DEAR Ad-hoc Ford D No No No No
Bellman
EERP Sensor Ford C No No No No
Bellman
“ FA Sensor Ford C No No No No
£
5 CMAX Ad-hoc N.S. C No No No No
8o
=
20 OML Sensor Dijkstra C No No No No
£
& E-WME Ad-hoc N.S. D No No Yes No
[
s
= swp Ad-hoc Dijkstra [ No No No No
& SWCRP,
= SFWP Ad-hoc Dijkstra C No No No No
w
OLSRE Ad-hoc Dijkstra C No No No No
FML Sensor Dijkstra C No No No No
FMO Sensor Dijkstra C No No No No
MHKC Sensor Dijkstra C No No No No
MMREKC Sensor Dijkstra C No No No No
MMKC Sensor Dijkstra C No No No No
MTEKC Sensor Dijkstra C No No No No
Distributed Bellman
MTEKC Sensor Ford D No No No No
2
= EAR-Cluster Sensor Dijkstra C Yes Yes No No
& Energy-
»
§ = £ Aware QoS Sensor Dijkstra D Yes Yes Yes No
= =
€ 2 5
o £ DAPR Sensor N.S. D Yes Yes Yes No
s = Bellman
E B
N g .—5 MDML Sensor Ford D Yes Yes No Yes
£ ¥ 3 [T RENR, Bellman
8' HR-ENR Sensor Ford D No Yes Yes No
>
o
2 FMOLD Sensor Dijkstra C No Yes No No
L=
- EER-
5 w Directional Ad-hoc Dijkstra c No No Yes No
a E =
£ £ Joint Bellman
==
3 o Rout. & Sch. Ad-hoc Ford D No Yes Yes No
< B0
= <<
g OptSINR Ad-hoc N.S. [« No No Yes No
53
&S EURo Ad-hoc N.S. C No No Yes No
o v Bellman
=
i d-EURo Ad-hoc Ford D No No Yes No
L »
g = E RA (BMA) Ad-hoc Dijkstra D No No No Yes
< 2 E MRPC,
2 ; ) CMRPC Ad-hoc Dijkstra D No No No Yes
2% ‘,,:,, BAMER,
2 3= GAMER Ad-hoc Dijkstra [ No No No Yes
S5 3
° -3
o DAMER Ad-hoc Dijkstra D No No No Yes
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Table 3.2: Comparison of energffieient unicast routing algorithms considered in this thesis

(Part 1)

Power Maximizing | Considering Considering Considering Considering Considering
Algorithms — Lifetime as idual Residual Energy | Transmission, Receiving | link-error rates |SINR (or SNR)
an Ob'|ective Energy in Link Cost Energy in Link Cost : (TMR) in Link Cost in Link Cost
MMBCR No Yes Yes Yes iy No No
CMMBCR No Yes Yes Yes T,- No No
Max-min
zPmin No Yes Yes No T,- No No
Zone-Based
Routing No Yes Yes No T,- No No
EAR-Low No Yes Yes Yes T,R No No
EAR, DEAR No Yes Yes Yes T,- No No
EERP No Yes Yes Yes T,R No No
@ FA No Yes Yes Yes T,R No No
£
'g CMAX No Yes Yes Yes T,- No No
bo
=<
= oML No Yes Yes Yes T,- No No
£
3
o E-WME No Yes Yes Yes T,R No No
@
©
5: SWP No Yes Yes Yes T,- No No
& SWCRP,
= SFWP No Yes Yes Yes T,- No No
w
OLSRE No Yes Yes No T,R No No
FML No Yes Yes Yes T,- No No
FMO No Yes Yes Yes T,- No No
MHKC No Yes No No -, - No No
MMREKC No Yes Yes Yes -, - No No
MMKC No Yes Yes Yes -, - No No
MTEKC No Yes No No T,R No No
Distributed
MTEKC No Yes No No T,R No No
=
K EAR-Cluster No Yes Yes Yes T,- No No
[ Energy-
«
u&’ 2 £ | Aware QoS No Yes Yes Yes T,- Yes No
= e =
€ L2 5
© = & DAPR No Yes Yes Yes T,R No No
5 = <
B
g .3 MDML No Yes Yes Yes T,R Yes No
= “ 2| LRENR,
S HR-ENR No Yes No No T,R No No
5
a FMOLD No Yes Yes Yes T,- No No
- EER-
& w Directional No Yes Yes Yes T,R No No
w E =
£ £ Joint
s =
H ;9_5 Rout. & Sch. No Yes Yes Yes T,- No No
=
g 2 OptSINR Yes No No No Ts- No Yes
E3
= 2 EURo Yes No Yes Yes T,- No Yes
5 a
i<
w d-EURo Yes No Yes Yes T,- No Yes
e «
; - E RA (BMA) No No No No T,- Yes No
2 S E[ wreg
2 E b CMRPC No Yes Yes Yes T,- Yes No
2 = w| BAMER,
2 5= | GAMER No No No No T,- Yes Yes
S5 3
° (-3
o« DAMER No No No No T,- Yes Yes

89



based approach comes at significant complexity cost. kjrtak Keep-connect algorithm
proposed in [1], called MTEKC, is interesting since, asestdby the authors, it explicitly
considers network connectivity in performing the routiagk. Although there is novelty in
the routing, the link cost metric used in accordance withdbenectivity weights is quite
conventional. We believe that it could be interesting andthwohile to use more complex
link costs in accordance with the connectivity weights. sTéduld improve performance in
terms of connectivity as well as network lifetime. Finalilgere are other recently reported
shortest path based energii@ent solutions that have not discussed within the scophkisf t

thesis [165], [166], [167], and, [168].

3.4 A Brief Account of Link Cost Metrics

As stated before, one of the main objectives of this studyg j@ovide a useful reference for
those who are interested in developing their own shortest lpgsed energyficient routing
algorithms with new and moreffecient metrics. Therefore, up to now, we have described
many shortest path based algorithms by focusing on the tiskmetric that they use. How-
ever, in literature, there are severél@ent metrics which are not used in accordance with an
algorithm. Hence, in this section, we present a brief disicuson some of thesefeient rout-

ing (link cost) metrics; ETX [150], [169], ETT [170], MTM [11], MIC [172], mETX [173],
ENT [173], Link Indficiency [174], and, RLQ [175]. The reason why we have chospa-es
cially these routing (or link cost) metrics is that all of thean be used in accordance with a
shortest path based (or a least cost based) algorithm. Mergbese metrics are among the

well-known metrics proposed in the literature.

One of the earliest proposed metrics is the ETX (Expectedsinéssion count) metric which
was proposed by De Couto et al. [150], [169]. ETX is definechaseixpected total number
of packet transmissions (including possible retransimissi that is needed for successfully
delivering a packet to the destination through a wirelads liThe ETX metric incorporates
the dfects of link loss ratios, the asymmetry of the loss ratiokénttvo directions of each link,
and, the interference among the successive links of a pdth.ETX of a link is calculated
using the forward and reverse delivery ratios of the link.e Tarward delivery ratiods,

is the measured probability that a data packet successiuliyes at the recipient (packet

success probability (PSP) or packet success rate (PSRYYeVhrse delivery ratial,, is the
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probability that the acknowledgement (ACK) packet is sasbdly received. These delivery
ratios are measured as described in [150], [169]. The ezdgurbbability that a transmission
is successfully received and acknowledged;is d;. A sender will retransmit a packet that is
not successfully acknowledged. Hence, the expected nuafld@msmissions, ETX of a link

l, is:

1

ETX=
df *dr

(3.58)

The weight of a path is defined as the summation of the ETX'dldinks along the path.

Hence, ETX is an isotonoic metric. The isotonic property ofetric means that the metric
ensures that the order of weights of two paths is preserviayf are prefixed or appended
by a common third path. Isotonicity is the necessary arficéent condition of a routing

metric for the existence offgcient algorithms (Dijkstra or Bellman-Ford) to find minimum
weight (or least cost) paths. Hence, ETX metric is appréogriar any minimum weight (or

shortest cost path based) algorithm. Measurements on ad&®wireless test-bed [150] show
that ETX finds routes with significantly higher throughputart a minimum hop-count metric
and, it becomes more useful to use ETX as network grows langegpaths become longer.
However, despite its benefits, ETX has some drawbacks. # doeconsider interference and

the fact that dierent links may have fierent transmission rates.

An evolution to ETX is the Expected Transmission Time (ETtric [170], [172]. Instead
of computing the number of tries, ETT metric computes thesetgd MAC layer duration for
a successful transmission of a packet on a particular liriks Way, the metric accounts for
different link transmission rates. The relationship between &Td ETX of a linkl can be

expressed as:

ETT = ETxg (3.59)
|

whereS is the packet size an@, is the transmission rate of lilk Similar to ETX, the weight

of a path is simply the summation of the ETT’s of the links oa plath. Hence, ETT is also an
isotonic metric. Therefore, it can be used in accordanck arily shortest path (or least cost)
based algorithm. By measuring the link capacities, ETT hasrain advantage of increasing

the throughput of a path, and, the overall performance oh#tevork. However, ETT has
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some drawbacks. Although it overcomes thfatent transmission rates problem of ETX,
it still does not fully capture the intra-flow (two nodes tsamtting packets from the same
flow) and inter-flow (among concurrent flows) interferencehia network. To reduce intra-
flow interference, Weighted Cumulative ETT (WCETT) was pegd by Draves et al. [170].
However, this metric is not an isotonic metric and therefdravill not be explained in this
thesis. We refer the interested reader to [170] and [172Jrfore information about this

metric.

A similar metric to ETT, called Medium Time Metric (MTM), wasdependently proposed
by Awerbuch et al. [171]. MTM is an additive (and isotonic) tniethat allows any shortest
path routing protocol to select a high throughput path. ThEWASsigns a weight to each
link that is proportional to the amount of medium time usedbgding a packet on that link.

The medium time for link and packep is defined as:

overheadl) + 324

rate(l)
reliability (1) (3.60)

7(l.p) =

whereoverhead) is the amortized average per-packet overhead oflliakd, reliability (I)
reperesents the fraction of packets which are successtdived over lind. As it can be
observed from equations (3.59) and (3.60), there is an@oe correspondance between the
terms used in both equationsiz€p), rate(l), 1/reliability(l) terms in eq. (3.60) correspond
to S, Band,ET Xterms in eq. (3.59) respectively. The onlyffdrence between ETT and
MTM metric is that unlike ETT, MTM accounts for the MAC relat@verheads. Since the
weight of any given path is computed by adding all MTM meta€sonsecutive links on that
path, shortest path protocols that use MTM find paths thatmi@e the total transmission
time. MTM has several advantages; such as minimizing medime consumption and thus,
maximizing path capacity and, residual capacity availablether flows. The experimental
results [171] show that the MTM achieves significantly higtieoughput then alternative

metrics (such as Min. hop and ETX).

The Metric of Interference and Channel switching (MIC) [}, 72 an interference-aware rout-
ing metric which improves WCETT by solving its problem of Ai@otonicity and the inability
to capture inter-flow interference. The inter-flow inteeiece problem, is solved by the fol-

lowing definiton of the MIC. The MIC of a path witN links is defined as:
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N Nj=1
1 |
MIC=—>— SRy, CSG 3.61
Nn*mm(ETT)i; + 2, CSG (3.61)

whereN, represents the total number of nodes in the networkan@ET T) is the minimum
ETT in the network. For a given linkRU is the aggregated channel time of neighboring
nodes that transmissions on the current link consumes a8@, I€presents the intra-flow
interference. The non-isotonicity problem is solved byateposing the MIC into virtual
nodes [172] while applying minimum weight path finding aitfims such as Dijkstra’s al-
gorithm. Despite its advantages such as isotonicity anddaboth inter-flow and intra-flow
interference into account, MIC has some drawbacks. Onessktdrawbacks is the overhead
required to maintain update information of the ETT for eacdk.l Because, depending on
traffic load, this can significantlyfiect the performance of the network. Another drawback is

the fact that CSC captures intra-flow interference only ia t@nsecutive links.

Besides interference, one of the most important problentiseofvireless multi-hop networks
is the fast link quality variation. Metrics based on averagieies computed on a time interval,
such as ETX, may not follow the link-quality variations. Teeocome this problem, Koksal
and Balakrishnan [173] proposed two quality-aware routiregrics: modified ETX (METX)
and Hfective Number of Transmissions (ENT). mETX proposes a mooceirate model to
estimate the expected transmission count (ETX) of a sirap&et for time-varying links. The
model assumes that the bit error probability (BER) is a ndrfindependent and identically
distributed) stochastic process. Under the assumptiomisfrhodel, mETX works at the
bit level and, computes the mean number of transmissionsufyréng the first two order
statistics (mean and variance) of the BER over a packetidaratSpecifically, mETX is

expressed as:

1
MET X= exfus + Eag) (3.62)

whereus anddg are the average channel BER and variability of the chann® BSpectively.
Similar to the ETX, mETX is an additive metric. Thereforecén be used in accordance
with a shortest path based algorithm. By combining the imp&average and variability of
the loss rate, mETX provides a significant reduction in nekwoss rate and, improves the

network performance. However, when maximizing the totedtighput problem is combined
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with the packet loss rate constraint, mETX may not béigent since the links selected by
METX may achieve the maximum link-layer throughput but inlaigh loss rates at the same
time. ENT metric is proposed to deal with the problem of oj#ing total throughput, while
bounding the packet loss rate visible to higher-layer prait If a link causes a number of
expected transmissions higher than the maximum toleratehupper-layer protocol (such
as TCP), ENT excludes this link from the routing computatma assigns to it as metric.

Otherwise, it uses the following routing metric:

ENT = exfus + 2602) (3.63)

As shown in both experimental and simulation results predioh[173], mMETX and ENT can

achieve a 50 percent reduction in the average packet lasasatompared to ETX.

Up to now, we have mentioned mangfieient metrics; ETX, ETT, MTM, MIC, mETX, and,
ENT. Although these metrics can be combined with enelfijgient metrics in order to re-
duce the energy consumption in the network (e.g. MDML athami described in section
3.3.3.4), their main objectives are not energiyegency related. Now, we will describe two
metrics that are especially designed for enerfiiciency purposes; Link Irficiency [174],
and, RLQ [175].

The Link Indficiency metric is a link quality based cost metric which waspmsed by Lal et
al. [174] for energy constrained wireless sensor netwdsgsassuming that an ARQ protocol
is employed on every link and therefore, a node will need pea¢ the transmission of a
packet until it is correctly received, Lal et. al. defines thkowing cost metric for linki as

Link Inefficiency at timet:

1

li(t) = PSR

(3.64)

where PSHt) is the probability that a packet will be successfully traitsed over linki.
When a link gets worse, the packet success probability deescand therefore, the e
ciency increases, corresponding to a larger amount of gregrent on that link due to re-
transmissions. Therefore, the expected energy consumptidink i is proportional tol;.

Hence, minimizing the sum of the Link Iffciency metrics of all links along a path, means
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minimizing the expected energy consumption along that.gatb also shown that Link Inef-
ficiency is essentially determined by one or two simple stiaé of the channel, such as deep
fade probability, and probability of SNR being over a certireshold, especially in indoor

environments where channel memory is significant.

Keeping the energy expense at a minimum is directly relaiddgt channel measurements.
However, estimating the probabilities (that will be useddomputing the Link infficiency
metric) in a short time is hard due to link quality variatiomtence, Lal et. al. [174] devise a
method for estimating link irficiency metric in a short time and an enerdigaient way. In
order to do this, the authors first model packet transmisssamprobabilistic process and then,
study wireless link quality variation over affigiently long period of time for various link
configurations. The study shows that only a few measurenoétii® channel are slicient to

obtain a good estimate of the Link lfficiency metric and hence, design dhaent topology.

Another metric which is especially designed for enerfficency purposes is the Resource-
aware and Link Quality based (RLQ) metric [175]. RLQ is a cameld link cost metric which

is based on both the energffieiency and the link-quality statistics. The main objectbfe
the RLQ metric is to adapt to varying channel conditions antha same time exploit the
heterogeneous capabilities in WSANs (Wireless Sensor adr Aletworks). In WSANS,
there exist two kinds of nodes; one type is the battery-pedisensor node whereas the other
type is the line-powered actor node. The RLQ metric for a ligtween any two nodes is

defined as follows [175]:

Clink = MtxQtx + MrxQrx (3.65)

whereat andaryx can take one of the following values depending on the typeradde: 0O
for line-powered actor nodes and, 1 for battery-powered@enodes andyi, nrx are the

normalized energy costs for the transmitter and the receive

Etx
Mix = [(Cix—data + Crx-ack) Eiink] [1 + (1 - Etx_'re.s)]y (3.66)
tx—init
Erx—
Mrx = [(Crx—data + Cix-ack) Eiink] [1 + (1 - Erx—.m'ts)]y (3.67)
rx—ini
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whereCi andC, represent the energy consumption during transmission eseption, re-
spectively. Here Eq init, Erx-init, Eix_res and, Erx_res represent the initial and remaining
energy levels of the transmitter and receiver, respegtivEli is the expected number of

transmissions and, it is computed as:

Ejink = ZK: i(1- PRR'PRR (3.68)
i=0

wherePRRstands for the Packet Reception Rate dtds the maximum number of retrans-
missions performed before ignoring the packet. As it carelea $rom the formulation above,
the RLQ metric not only considers both the transmissiongnand the receiving energy,
but also, it considers the residual (remaining) energy ob@derand possible number of re-
transmissions. Hence, RLQ is a verffigent metric in terms of both energyheiency and
reliability. Performance evaluations, via test-bed ekpents [175], show that the RLQ met-
ric can achieve high performance in termsRIRR network throughput and, the network

lifetime.
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CHAPTER 4

RESOURCE MANAGEMENT AND SCHEDULING IN WSNS
POWERED BY AMBIENT ENERGY HARVESTING

This chapter investigates the state-of-the-art resoultoeatéion and scheduling schemgs

algorithms that could be used for sustainable operationdfstrial WSNs.

4.1 Algorithms

41.1 SSEA and ASEA Schemes

In [176], the authors present both basic and advanced extfmtimodels for solar energy har-
vesting. Based on these expectation models, they suggagtyeallocation algorithms, SSEA
(Simple Solar Energy Allocation), ASEA (Accurate Solar EjyeAllocation), to achieve op-
timal use of harvested energy. Both algorithms operatecbasdime-slots. Assuming that
the cycle of energy harvests has a period paind thafT is divided into sub-periods (called
slots) of equal length, the base energy harvest expectat@aases during morning slots,
decreases during afternoon slots, and stays nearly zeinogdine night. The basis of the
expected harvest for each slot reflects relatively longrteendencies such as seasonal or
monthly trends. Nevertheless, short-term conditions, femporary environmental condi-
tions are also important, especially in locations or seasuith frequent weather changes.
Therefore, an “advanced” energy expectation that factofaster weather dynamics is also

computed.

Both algorithms focus on allocating energy fairly over tifeading to a more stable applica-

tion performance, while at the same time maximizing utiliza of the energy harvest. The
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SSEA algorithm is designed for a resource-constrainedosernsuses a basic expectation
model. Thus, it is simple, and has low overhead, but it saesfsome degree oftectiveness
in energy allocation. SSEA operates as follows: (1) Deteentine amount of residual energy
stored in the battery, and the expected amount of energy batvested during each slot. (2)
Using this information, find an appropriate energy budgeef®ry slot in a harvesting cycle.
(3) Then, go to sleep until the start of the next harvestindecyASEA algorithm, on the other
hand, is based on an advanced expectation model, and iblsuita a hode which needs a
more precise energy allocation and has adequate resoarseggort additional computation,
as it comes with a higher overhead than the SSEA scheme. Badbe expectation of har-
vested energy, ASEA solves a linear programming problemextyestart of each slot [176],

and calculates the energy to be allocated for the next slot.

Both algorithms are reported to dramatically reduce the emof occasions on which a
node stays in sleep mode during an entire slot [176]. Wherpeoed to the ideal scheme
(which assumes that the amount of energy that will be haededtiring the harvesting period
is known a priori), ASEA is shown to achieve results closeghbse of the ideal scheme in

all respects, and SSEA comes next.

4.1.2 A Practical Flow Control Scheme

Noh and Kang [31] develop a practical flow control (called R&his thesis) algorithm that
aims to maximize the amount of data collected by both flowré&nand storage centfic
WSNs. The algorithm is distributed and operates in a timieglssystem. It cooperates with
an energy allocation algorithm (called Simple Solar EneXfgcation (SSEA) in [176]) so
as to use the harvested energy optimally. Under the contstraf the energy allocated to each
time slot, at the start of every time-slot, the algorithmedetines an appropriate flow-rate
of the outgoing links, while aiming to maximize its utiliban of the energy budget for this
slot. The algorithm tries to maintain an ABP (Adaptive Back$3ure) super-flow as long as
possible, and thus, it can be seen as a modified version ofitigiae flow control algorithm

proposed in [177].

1 When there is a sink node in the network, WSN works as a flowricemetwork and aims to maximize
throughput to the sink node.

2 When the network operates without a sink, it operates asragaecentric network with the aim of mini-
mizing the amount of data loss due to storage constraints.
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Mainly, the algorithm operates as follows: In a time-sldtsystem where the unit block for
energy allocation is slot, it is assumed that, each slotvigledl into several sub-slots; the
unit blocks used for determining the transfer rate. Undisr dktting, each node determines
the transfer rate of each of its outgoing links at the begigmif each sub-slot, and maintains
this rate during the duration of a sub-slot. The transfex imicomputed by the transfer rate
determination algorithm proposed in [31] which is desigtednaintain the ABP superflow
during a sub-slot. After the node determines the transterfoa all outgoing links during a
sub-slot, it checks whether it has enough energy to operaiagithat sub-slot. If it finds
that there is not enough energy to sustain the node, thethlgois terminated while making
the node go into sleep mode and setting wake-up time to the oftahe next slot. The
flow-control scheme is shown to produce [31] the lowest arhofinlata loss (for the case
of storage-centric WSN) as well as the highest throughpolipg that it can maximize the
amount of collected data by the sink while balancing the éfiteiently when the network

operates in the flow-centric mode.

4.1.3 Fixed Power (FP), Minimum-Interference (MI) and Multi-Sink (MS) Power Al-

location Schemes

FP, MI, and MS are simple, location-based power allocatigorighms [178] developed for
structural monitoring applications with multiple sinks.ofé that, all these schemes assume
that energy harvesting nodes can only communicate withitilke, ot with each other. More-
over, as they do not consider energy harvesting statistltgajgorithms operate such that a
data packet is sent to the sink(s) whenevéiicient energy is accumulated. FP is the simplest
power allocation scheme since it assigns the same (fixawrtria power P) to all nodes. Tan
et. al. report in [178] that, for FP, a lardg®epermits direct communication with more sink(s)
(causing multi-sink redundancy), but, not only it resuttsiilonger harvesting period, but also
introduces the near-faffecf. Assigning lowP, on the other hand, shortens the harvesting
period and reduces the level of interference, at the expefnsalucing the scope for exploit-
ing multi-sink redundancy. MS and Ml schemes are designetthaopowers are assigned
according to nodes’ proximity from the sinks, i.e.for each node depends on its commu-

nication range and distance from the sink. MS is a multi-siokeme, where each node is

3 Near-far problem: At higher node densities, contentiorobees more severe resulting in nodes closer to
the sink becoming more favored.
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assigned a power level justfigient to communicate with its nearegssinks. Ml is the spe-
cial case of MS, where ¥ 1, i.e., each node is able to communicate only with its neéares
sink. This scheme minimizes the interference and nearffacte while ensuring connected-
ness. According to the simulation results obtained forotginode densities [178], FP poses
a trade-€ between throughput and fairness: throughput is maximitéaleer powers at the
expense of fairness and vice versa. The MS scheme does hatpers expected (close to
MI) as the interference outweighs the potential benefits okimsink redundancy. Finally,

by assigning the minimun® required for each node to communicate with its nearest sink,
the MI scheme enables more nodes (froffiedient locations) to have successful simultaneous
transmissions, causing its superior performance in terfimisroughput, data reliability and

fairness.

4.1.4 QuickFixySnaplt Algorithms

QuickFix and Snaplt [179] were proposed as twidatent algorithms that work in tandem, to
maximize the network utility, i.e., the sum of the utilityrfctions of the nodes, with the aim
of achieving proportional fairness in a slotted-time systelhe system is designed in such
a way that the time during a day is broken into multiple timeivals called epochs, where
each epoch consists ofslots. Quickfix is an ficient dual decomposition and subgradient
method based algorithm that operates within each epockyéalthe feasible region and the
optimum solution diering in each epoch. It exploits the special structure of &RBirected
Acyclic Graph) to form an#icient control message exchange scheme, which is motivated b
the general solution structure of a dynamic program. Quickifers a distributed solution
that does not require any knowledge of the future rechangitess. Moreover, it canfigciently
track instantaneous optimal sampling rates (for every alud routes in the presence of time-
varying recharging rates. However, QuickFix’s solutioriite proposed utility maximization
problem depends on the average (long term) energy reptaeigthrate of a node and not the
state of the battery. Hence, if fluctuations in rechargingplea at a faster time-scale than the
convergence time of QuickFix, undesired battery outageauedflow scenarios may arise,
causing missed samples and lost energy harvesting opjiasurespectively. Therefore, Liu
et. al. introduce a localized scheme called Snaplt that theesurrent battery level to adapt
the rate computed by QuickFix with the goal of maintaining Hattery at a target level, i.e.,

chosen as the half of the local battery state in [179]. Srdpdbses the rate, independently at
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each nodé based on the current state of the battery as follows: thdfoated by QuickFix is
reduced by; (different for each node) if the battery is less than half full,,asmthcreased by
the same amount when it is more than half full. We refer theradted reader to [179], for the
effect of § on the performance of QuickF&naplt. In [179], QuickFi)Snaplt is compared
to a modified version of IFRC (Interference-aware Fair Ratattl) [180], a backpressure-
based protocol, which aims to achieve max-min fairness ilNé/S he results show that the
two algorithms, working in tandem, can increase the tot&h date at the sink by 42% on

average when compared to IFRC, while significantly imprguime network utility.

4.1.5 DRABP and NRABP Schemes

Gatzianas et. al. [181] model energy harvesting as a timgngprocess and consider jointly
managing the data and batteryfiaus (queues). The authors consider infinite datéeband
finite battery bifer sizes. They assume that the energy harvesting procesnisnyless (it
is claimed that, for a more general process, a slot analgsisbe applied whose complex-
ity will grow with the network size). Two policies (DRABP ardRABP) with decoupled
admission control and power allocation are proposed wighgtbal of maximizing the total
system utility (the long-term rate achieved per link) whikisfying energy and power con-
straints. They are carefully crafted modifications of thePABased policy of [182], which
is known to achieve the optimal utility in the infinite battescenario (non-rechargeable bat-
teries). DRABP (Downlink Rechargeable Adaptive BackpuesdPolicy) is developed for
downlink scenarios, whereas NRABP (Network Rechargealolepfive Backpressure Pol-
icy) is developed for multi-hop networks (ad hoc networlensor networks, etc.). DRABP
is proven to be asymptotically optimal [181] when all nodesésificiently large battery
capacities. Both schemes operate on virtual queues, whélsanstructed in such a way
that any policy that stabilizes them also satisfies the gp@t® long-term constraints. Since
our main concern is WSNs, we focus on NRABP and refer theasted reader to [181] for

details of DRABP.

NRABP operates as follows: (1) At the beginning of dlobbserve the virtual data queues
and select appropriate packets for admission into the mktlayer, for every link, as the
solution to the related problem described in [181]. (2) @bs¢he channel state, and, choose

a power vectoP(t) = (P1(t), ..., PL(t)) for each node (wherg(t) is the selected transmission
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power in link| during slott), based on the constraints on the power-related virtualegief
each link, and the result of (1). (3) Update the states ofumbgs according to the number of
bits that have arrived and departed in this stage. It is siot81] that, under NRABP, all
gueues are bounded and thus, NRABP stabilizes any multibmponk. Performance bounds

on NRABP can be found in [183].

4.1.6 Duty Cycling and Power Management Algorithm

Reddy et. al. [184] develop a suboptimal duty cycling and @omanagement algorithm
(which we call DC-PM) for a single hop WSN, wheke EHS (Energy Harvesting Sensor)
nodes communicate with a powered destination over a wgdbding channel. The algo-
rithm manages the power harvested at the individual noddsdaty cycle across them to
avoid collisions in order to maximize the average sum dats subject to energy causality
constraint, ECC (called energy neutrality constraint - EIN{184]), at each node. The al-
gorithm is build on two basic assumptions: (i) Time is sloftiith each constant channel
(CC) slot of duration equal to the coherence timeof the channel. (ii) The harvested power
at each node is assumed to remain constant for a constant fORgslot which contains a
large number of CC slots. DC-PM consists of an inner stageofiSptimal duty cycling over
the CC slots within each CP slot and an “outer stage" of poll@cation across the constant-
power slots while satisfying ECC at each of the nodes. Algfiosuboptimal, the solutions to

both stages are very simple in form and thus convenient fptementation.

The outer stage sets the short-term power constraints htigoal of maximizing the long-
term expected sum data rate, subject to long-term energalipuat each node. It essentially
solves the power management problem for a virtual sensosevharvested power equals the
sum harvested power across the nodes. The resulting poweatadn scheme is to assign a
clipped version of the sum harvested power across all thesyaghere the clipping thresh-
olds are set to maximize the average sum throughput, suiojecsum power ECC. Hence,
the average sum throughput depends only on the sum haryestest and its statistics. 1S
determines the duty cycles of the nodes that maximizes tbage data rate (expected sum
throughput) within a CP slot. It requires that the duty cyalletted to each node be pro-
portional to the power consumed by it in the CP slot, i.e.,dbty cycle allocated to each

node is the fractional allocated power of that node relativihe total allocated power. The
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transmission depends on the channel gain threshold at easfgh which is noted to be the
same [184] at all the nodes within a CP slot. DC-PM is shownuiperform other naive
schemes mentioned in [184], such as equal duty cycling wveltleduling, and optimal duty

cycling without scheduling.

4.1.7 MAX-UTILITY and MAX-UTILITY-D Algorithms

MAX-UTILITY [185] is an epoch-based (harvested energy isdeled as an epoch-varying
function), polynomial-time, and centralized rate alldgatalgorithm, designed to maximize
total network utility, i.e., the aggregate utility of all des. It is applicable to arbitrary util-
ity functions that are concave and non-decreasing. MAXIUTY exploits the concavity of
the chosen utility function, and a special property of tbased networks to allocate rates to
nodes as evenly as possible for achieving the main goal lgf/utiaximization, while main-
taining the minimum sensing rate required by the applicatiod energy neutral operation
for every node. The algorithm is shown to be optimal [185]@nmts of assigning rates to
individual nodes to maximize overall utility, while ensugi energy-neutral operation. MAX-
UTILITY runs in multiple iterations, assigning rates to ésat of nodes in each iteration.
The algorithm uses one global variable and three per-nodebles that are updated from
iteration to iteration. The global variable is a set coritajrall the nodes in the network that
have been assigned rates so far. The per-node variablethanemaining capacity of node
i, the set of unassigned nodes in nddesubtree, the maximum common rate for unassigned
nodes in nodé’s subtree. In each iteration, MAX-UTILITY picks a criticalode (the node
with the least common rate among many unassigned nodesg @iutihent tree, and assigns
its rate to the unassigned nodes in the cirital node’s saptheen, it produces a pruned tree
by removing any newly assigned nodes. MAXUTILITY stops whates are assigned to
all N nodes. The distributed version of MAX-UTILITY is alswvalable, MAX-UTILITY-

D [185]. MAX-UTILITY-D is an entirely feasible alternativeo MAX-UTILITY, and allows
sensor nodes to collaboratively produce optimal rate agsgts. It only requires a single
coordinator node such as a routing tree root, which can benadg in the network. Each
iteration of MAX-UTILITY-D consists of two stages: (1) deteining the minimum common
rate and the critical node in the tree, by requiring all thdewto forward their maximum
common rate for the unassigned nodes in their subtree, tatie (2) Requiring the root to

disseminate the minimum common rate discovered in (1) sadie network, so that all unas-
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signed nodes in the subtree of the critical node can receigieuae this rate as their packet
rate. MAX-UTILITY is a fast and #icient algorithm that can operate with various utility
functions, and has an run time G{N3), whereN is the number of nodes. When compared
to an alternative heuristic called Random Rate AugmemtgftRA), proposed by Zhang et.
al. [185], MAX-UTILITY is claimed to deliver superior utity improvement while ensuring

energy neutral operation for all nodes.

4.1.8 NetOnline Algorithm

NetOnline is a distributed low-complexity algorithm hestically developed for maximizing
the throughput over a finite time horizon, in a sensor netwatk energy replenishment. The
main motivation for this development [186] is the fact thalhjle the finite-horizon through-
put optimization problem can be formulated as a convex dpéition problem, its solution
sufers from high complexity brought about by strong dependefceurrent decisions on

future performancejme coupling property.

The NetOnline algorithm is comprised of two stages: (1) figda throughput maximizing
energy allocation throught slots, (2) routing. In part I, it is assumed that the energy re
plenishment (energy harvesting) profile can be estimatestl{gted) for that period, ahead of
time. Every node performs the following operations: Calteithe lower bound on the energy
allocation from the lower-bound of the estimated replemisht profile, via the shortest-path
solution (SPS), i.e. SPS is shown to be optimal for a single node case [18&nvthe replen-
ishment rate profile for the entire finite-horizon period i®Wn in advance. Then, based on
these estimations and current amount of recharging (h#mg@sdetermine the energy to be
allocated for each slot. In Part (2), the main concern is terdgine the amount of data in the
outgoing links of each node for the corresponding destinatiode in time slot. The routing

in each slot is determined by solving a simple linear prognamy (LP) problem. Since the
defined problem is also a convex optimization problem, thtb@as use duality and the La-
grange multiplier method to get the optimal solution. The@{dine algorithm is shown to
be optimal under homogeneous replenishment profiles witteqgteestimation for all nodes.

Chen et. al. reports in [186] that, in more general settitigs,algorithm significantly out-

4 In a time-slotted system, if energy is overused in a prevjmriod, the total throughput attainable over the
time horizon will decrease as a result. On the other handhefgy is underused in a previous period, the total
throughput will also decrease, even though there is no Wastergy.

5 The shortest path is calculated using the linear time algorin [187], whose complexity is O(T).
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performs a state-of-the-art infinite-horizon based sch@®RABP proposed by Gatzianas

et.al. [181]), and it achieves empirical performance ctosaptimal.

4.1.9 The Joint Rate Control, Power Allocation and Routing Agorithm

The joint rate control, power allocation and routing algamn [39] (called RC-PA-R in this
thesis) is a resource allocation algorithm developed fdtihmp networks operating in a time-
slotted setting, under node-exclusive interference mot@lké algorithm jointly controls the
data queue and battery (energy)feu to maximize the long-term average sensing rate of an
energy harvesting wireless sensor network under certafh¢@astraints for the data and bat-
tery queues. The resource allocation part of the algoritbnsists of two components: a rate
control (RC) component and a power allocation (PA) compuarigoth components are index
policies, i.e., the solutions depend on the instantanealies of the system variables and
thus, they are memoryless. The algorithm can either be imgahéed in a centralized or dis-
tributed manner depending on the algorithm used for the ®@)ponent. For the centralized
version, the classical Maximal Weighted Matching (MWM)a@&ighm [188] is used whereas
the distributed version employs the Maximal Matching (MMjsbd algorithm as in [189].
RC decides on the amount of data that will be sensed, by cangpall available data with
a finite tunable approximation parameter that controls fhieiency of the algorithm. Thus,
the rate controller makes sure that the data queue remaihis i certain bound, making a
positive dfect on the battery (energy level) as well, since a certaitiggoof the data packets
are not allowed into the transmitting node. PA solves a gngphvex optimization problem
in each time slot to determine the powers to be allocated atonith node transfers data of a
flow to a relay node that is not the destination of that flowgesalthe dterential backlog for
that flow is greater than a fixed value, which is chosen sudhthiearesulting backlog of the
receiving node is not larger than that of the transmittingenafter the transmission. Thus,
the data flow is pushed from the source node to the destinaiibra positive back pressure.
It is shown through both analysis and simulation [39] that prerformance of the proposed
algorithm is close to that of the optimal solution. Speclficaas V increases, the average
total sensing rates of the MWM and MM based algorithm arentepdo keep increasing and

get closer to the optimum and a value that is much larger tadroptimum, respectively.
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4.2 Comparison of the Algorithms

After having described several promising candidate allgors above for possible application
in energy harvesting industrial WSNs, we shall now compaeiyt address the drawbacks,
advantages, and possible application areas of thesethlgsri As a quick referral guide, a

detailed comparison of all algorithms, considered in thiaater, is provided in Table 4.1.

Table 4.1: Comparison of algorithms considered in this tdrafN.S. denotes “Not Speci-
fied”)

Aarhie Di'stributed / BT Type ?f B'at‘tery Bflf‘fer Harvesting
Centralized / Node level Allocation (Finite, Infinite) Method

SSEA, ASEA Node level Yes Energy Finite Solar
PFC Distributed Yes Energy & Rate Finite Solar
FP, MI, MS Centralized No Power Infinite N.S.
QuickFix/Snaplt Distributed No Rate Finite Solar
DRABP, NRABP Centralized No Power Finite N.S.
DC-PM Centralized No Power Infinite N.S.
MAX-UTILITY Centralized Assumes Rate Finite Solar
MAX-UTILITY-D Distributed Assumes Rate Finite Solar
NetOnline Distributed Assumes Energy Finite Solar
RC-PA-R with MWM Centralized No Power Finite N.S.
RC-PA-R with MM Distributed No Power Finite N.S.

Despite their simplistic design, FP, MI, and MS algorithrhgg] operate only in a single-hop
architecture, where a node can only be configured either asraesor a sink. Moreover, the
algorithms require the location of each sensor node to beiradat from GPS or some other
method, during deployment. The main drawback of these itigos is that, when employed,
nodes can transmit sensed data only wheficsent energy is harvested. This may cause long
delays in terms of data delivery, i.e., when more energy iigdsted, the packets will be sent,
but, when low energy is harvested, packets will be kept ngitintil required energy is accu-
mulated. The best one of these three algorithms is known tdibalthough not applicable
for event-driven applications (e.g., detection of threatd oil spills) where data dissemina-
tion is only triggered upon the detection of abnormal pheswan MI can be a good choice
for predictive monitoring based WSN applications such asitndng of road infrastructure,
where sensed data is continuously being disseminated gergpdically). The algorithm pro-
posed by Reddy et. al. [184], DC-PM, also operates on a shagienetwork where a bunch of
energy harvesting sensor nodes communicate with a powegtihation (sink), with the goal

of maximizing the sum data rate. DC-PM is the only algorittaméng the ones mentioned
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in this chapter) that considers duty cycling as a part of thigntdzation process. Although
centralized and suboptimal, DC-PM turns out to have a ssingly simple form of power

allocation and duty cycling. The algorithm is suitable f@phkcations that require simple
duty cycling and power management techniques. Howeverderdo implement solution, it
requires the knowledge of the sum normalized power (sumelsted energy) for every slot

(energy inter-arrival times form the slots) and its statsst

In contrast to Ml and DC-PM, QuickFignaplt algorithms [179] can be used in well-structured
networks with an underlying directed acyclic network grdPAG). The algorithms working
in tandem provide a distributed solution that does not regany knowledge of the future
recharging rates. The combination (QuickMEraplt) is suitable for WSN applications that
demand proportional fairness and perpetual operationthn@advantage of QuickFH&naplt
over Ml is that, when solar energy harvesting is used, baseithe application’s minimum
rate requirement, one can determine the minimum batteg} teat can support the minimum
rate at night (when no, or, too little energy harvesting iailable) and, trust on Snaplt al-
gorithm to maintain the battery at that level to ensure thevok remains active during the
night time. However, although [179] target general multimetworks and fder an innova-
tive solution, the proposed solution (QuickFaaplt scheme) is not optimal, and can incur
high control overhead and unpredictable running time, flatentially limiting the practical
implementation within resource-constrained WSNs. MAX{UTY algorithm, on the other
hand, dfers a time complexity o®(N®) for a system wititN nodes. MAX-UTILITY-D, fully
distributed version of MAX-UTILITY, allows resource-canained sensor nodes to collab-
oratively produce optimal rate assignments. A common &tiah of the algorithms is that
they apply only to tree-based WSNs. As they require energgligtion, MAX-UTILITY and
MAX-UTILITY-D algorithms are not suitable for WSNs powerdxyy unpredictable energy
sources (such as vibration). [176] and [31] also depend emggrprediction. The proposed
algorithms, SSEA, ASEA[176], and PFC [31], are developed¥&Ns that use solar energy
harvesting. SSEA and ASEA are suitable for WSNs that requirémizing variations in the
energy allocation. Note that, there is no energy to be htgleshen the sun is down. How-
ever, in some industrial applications, data needs to bedelll at the same rate at all times.
SSEA and ASEA allow sensor nodes to reserve an adequate aofoemergy to operate at
a constant level at all times. Hence, the target applicalfd®SEA and ASEA is time-driven

WSNs, not the event-driven WSNSs.
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PFC algorithm cooperates with the SSEA energy allocatitierse to maximize long-term
performance, especially the amount of data collected atytsiem level. It is suitable both for
flow-centric and storage centric industrial WSNSs. In steragntric networks, the acquired
data has to be stored in the network temporarily (may be eoofptlays) until the sink node
is connected to the network in order to gather it. Note tHas &lgorithm is the only one
(among the ones mentioned in this chapter) considering@tocentric networks. Hence, if
the IWSN has the ability of solar energy harvesting, and thke sode is not usually, but
only periodically, connected to the network, PFC algoritseems to be the best choice in
terms of minimizing the amount of data loss due to storagestcaimts. The algorithm is a
good alternative for flow-centric networks (the aim is maizimg the throughput) as well,
since it can operate in a distributed manner. However, thariéhm can only operate in solar-
based networks and when a reasonable amount of solar datalé&bée for prediction process

(SSEA).

When prediction is not possible (or available), approatchasdynamically adapt to instanta-
neous energy and datafter states are recommendable. For example, Gatzianas £84). [
model energy harvesting as a time-varying process anddmnrjsintly managing the data and
battery bidfers. The authors consider infinite datdfbuand finite battery Hier sizes. They
assume that the harvesting process is i.i.d, and, show et the proposed policy, DRABP,
the probability of battery state being less than the peakepawclose to the full battery state
vanishes as the battery size grows. NRABP, the multi-hopimerof DRABP, is also shown
to stabilize [181] any multi-hop network. Note that, if thatd bufer size is infinite, the con-
cern is the stability of the data queue, while for finite daifidr, excessive data losses should
be avoided. A common drawback of the proposed schemes isalttabugh Gatzianas et.
al. claim that for non i.i.d processes, a slot analysis caagdmied, this operation has high

complexity and depends on the network size.

In [39], Mao et. al. consider all combinations of finite andinite data and battery Ifier
sizes by defining minimum number of virtual queues in a gdrferenat. In addition to the
constraint on the stability of the data queue (constrainthendata loss ratio when the data
buffer size is finite), they also impose a constraint on the freguef battery discharge.
Rather than assuming an i.i.d energy harvesting process[481], they allow for a general
harvesting process without assuming ergodicity, and,idengointly managing the data and

battery bifers to deal with the coupling between them. The developedritign is more
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advantageous over previously mentioned algorithms, aastahbuilt-in routing algorithm,
and can be used in industrial WSNSs requiring high long-teverage sensing rate. However,
Chen et al. argue in [186] that the infinite-horizon basedtsmis, such as those proposed
in [181] and [39], may be highly irfécient, especially in the context of networks with energy
harvesting. The stated reason is that the harvesting afiéetime varying and may not even
be stationary and ergodic. Note that, the finite-horizorblenm is important and challenging
as well because it necessitates optimizing performancdanétat are exhibited in the short
term rather than metrics that are averaged over a long pefitishe. One diference between
the finite horizon problem in [186] and the infinite-horizoroplem in [181] is, in the finite
horizon problem infficiencies cannot be made to vanish to infinitely small valdéss im-
plies that new techniques, such as NetOnline [186], neec tdelveloped to mitigate these
inefficiencies. Although no comparison of NetOnline to RC-PA-B] [8xists, NetOnline is
shown to outperform the NRABP algorithm proposed in [181].

It should be noted that, depending on the requirements ahtbheen WSN application (whether
long-term or short term metrics are more appropriate) ebattapacity, and the type of ap-
plication, the relative performances of the various prapssurveyed in this chapter will be
perceived dierently. Depending on the type of the industrial setting,tbtwork size and the
performance criteria, we believe that one of these solstierhen appropriately tuned, will

provide an €icient resource management and scheduling solution.
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CHAPTER 5

PROPORTIONAL FAIR RESOURCE ALLOCATION ON AN
ENERGY HARVESTING DOWNLINK - PART |: STRUCTURE

In this chapter, we pose the following problem whose objeds proportional fairness among
users: How to allocate among users the transmission poveeth@nproportion of the time
between energy harvests, to achieve a good balance bethweeighput and fairness in an
energy harvesting broadcast system. Specifically, we figate the proportional fairness
based utility maximization problem in a time-sharing mukier additive white Gaussian
noise (AWGN) broadcast channel, where the transmittetieyagets recharged periodically
(at known intervals). Energy is assumed to be harvesteceatdhsmitter during the course
of transmission (or reception). The data, on the other hendssumed to be ready at the
transmitter before the transmission starts. We focus otininthe optimunoffline schedule,
by assuming that the energy arrival profile at the transnigtdeterministic and known ahead
of time in anoffline manner for a time window, i.e. flame The times at which harvested
energy becomes available and the amounts that become ave kmanoffline fashion, at the
beginning of each frame. The challenge of the optimizatimblem is the set ofausality
constraints introduced by the energy arrival timies, energy may not be used before it is

harvested.

Analysis of structural characteristics of the problem edsdhat it can be formulated as a
biconvex optimization problem, and that it has multipleiim@t. Due to the biconvex nature of
the problem, a Block Coordinate Descent (BCD) based optititiz algorithm that converges
to an optimal solution is presented in this Chapter. It sthdndl noted that a part of this study

appears in [62].
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5.1 System Model

There is a single transmitter that transmitd\tasers by time sharing on a bandwith W. The
power spectral density of the background noisdlis Channel conditions will be supposed
to remain constant during a duratiénthat will be referred to as a “frame”; i.ag;, the gain

of usern, is chosen to be constant throughout the frame. The tratesstequipped with a
rechargeable battery such that harvested energy becomithée at distinct instances. With
some abuse of terminology, the durations between two hicingtants will be called as “slot”.
The amount of energy harvested from the environment at thmieg of time slott is E;,

and the length of thé" slot isT; as illustrated in Figure 5.1.
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Figure 5.1: Multiple frames in a timeline. The highlightadrhe, frame, includesk energy
arivals. The time between consecutive arrivals is allatsteN users.

The figure shows the details of a specific frame within a tirelNote that, the slot lengths do
not necessarily need to be equal as the energy arrivals neay imadifferent moments in time.
We do not restrict our problem formulation to the case ofqulid energy arrivals Ty = T
forallt € {1,...,K}). In Chapter 6 however, we use periodic energy arrivalsrapion

to derive the characteristics of the optimal solution of pneblem described in this chapter,
Problem 1. In thi®ffline problem, energy arrival times and amounts that will occuhimithe
frame are known at the beginning of the frame. For a given éaime transmitter chooses a
power levelp; and a time allocation vectat = (r1, ..., Tnt), for each time slot of the frame,
wherep,: = p; is the selected transmission power for useluring slott and, 7 is the time

allocated for transmission to useduring slott.
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5.2 Problem Statement and Structure

We define the total achievable rate for usefthe total number of bits transmitted to user

n within the iy, frame), Ry = 2 W logy (1+ ﬁ;g\g,) It should be noted that, with very
long transmission blocks, in terms of the fading dynamibs, érgodic nature of the fading
process is revealed. Thus, we assume that the ergodic tagaaimost achieved. Our goal
is to maximize a total utility, selected as the log-sum of tiser ratesZr'}':l logz(Rn), which

is known to result in proportional fairness [179]. The cqutcef proportional fairness and
the reasoning behind the chosen utility function is ex@dim detail, in Appendix A. Due
to the nature of the time and power allocation problem, anérgy harvesting procedure,
some constraints need to be satisfied when maximizing thiy dtinction. Accordingly, we
define the following constrained optimization problem, Bem 1, where (5.1) represent the
nonnegativity constraints. The set of equations in (5.2lled time constraints, ensure that
the total time allocated to users does not exceed the sigtheiihe set of equations in (5.3),
on the other hand, are technical constraints included torertbat every user gets a non-zero
time allocation during the frame. Finally, the set of equiasiin (5.4), called energy causality

constraints, ensure no energy is consumed before becowailglde.

Problem 1

N K
Maximize: U7, p) = Z log, [Z W log, (1 + Snbx ))

n=1 t=1 NoW
subjecttoirpt >0, pr >0 (5.1
N
Z Tt = Tt (5.2)
n=1
K
Dtz (5.3)
t=1
t t
piTi < Z Ei (5.4)
i=1 i=1

wheret = 1,....,K andn = 1,...,N. Please note that, Problem 1 can be written as a mini-
mization problem in which the function to be minimized-isl (7, p). Unfortunately, (1) is

a nonlinear non-convex problem with potentially multiptedl minima, some of which are
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also globally optimum. Thus, we can only expect that by pragmice of the initial value,

our algorithm converges to a stationary point that is nedhleytrue optimum. In order to
develop such an algorithm, we first decompose the probleortwit parts (power allocation,
time allocation) and determine some characteristics tlihbes useful in understanding the
problem structure better. Fortunately, these charatiterilead us to Corollary 1, which we

exploit to determine the most appropriate algorithm fordRrm (1).

5.2.1 Structure of the Optimal Power Allocation Problem

In this section, we assume that the time allocatifins determined, and try to characterize
the structure of the optimal power allocation problem fas th When the only variables are

power variables, Problem 1 reduces to the following coimstrhoptimization problem:

Problem 2
N
Maximize: Up) = Z fn(P)
n=1

t t
subjectto: p=0, > pTi< > E (5.5)

i=1 i=1

wheret = 1, ..., K and, f, is a function of the total number of bits sent to user

K
fn(P) = log, {Z TntRnt] (5.6)

t=1

andR represents the rate of linkin thet™" slot:

On

Rt =Wilog (1 + Lapt) where L, = NoW

(5.7)

Lemma 5.2.1 will be useful to get a handle on the characiesisif the problem. Although

we claim no originality for the results of the lemma, we pdw®/a proof for completeness.

Lemmab5.2.1 i) Let hy,...,hg be strictly concave functions ofip.., pk respectively,
and, g,...,ck > 0. Then, I= ZiKzl cih; is concave. If one of thg's is positive & 0),

then | is strictly concave.
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ii) Increasing concave functions of strictly concave fims are strictly concave.

Proof. The proof is provided in Appendix B.1. |

Theorem 5.2.2 Problem 2 can be formulated as a strictly convex optimizratimblem. Thus,

there exists only one global optimum for a given time allmrat

Proof. The proof is provided in Appendix B.2. |

5.2.2 Structure of the Optimal Time Allocation Problem

In this section, we assume that the power allocation acrtbsdots has been determined.
Then, given that the power variables are known constantsietamine the characteristics of
the time allocation. So Problem 1 reduces to Problem 3, wiherenly variables are the time

variables:

Problem 3

N
Maximize: U7) = Z $:(@)
n=1
N K
subjectto:ir; > 0, ZT”‘ =T, Z Tnt > € (5.8)

n=1 t=1

wheret =1,...,K,n=1,...,N and, s, is a function of the time variables:

K
$(7) = log, [Z T ntRnt] (5.9)
t=1
andRq's (defined in Eq. 5.7) are known constants that representatieeof link n in the t

slot.

Theorem 5.2.4 below records the convexity of Problem 3, aadd to one of the main re-
sults of this thesis, Corollary 1. The proof of Theorem 5.&4dts on the observation in
Lemma 5.2.3. Although we claim no originality for the resulif the lemma, we provide the

details for completeness.
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Lemmab5.2.3 i) Letq,...,Qqk be gfine functions ofy, ..., Thk respectively, andd. . ., dg>

0. Then, m= 3K, dig; is affine.

ii) Increasing concave functions offae functions are concave.
Proof. The proof is provided in Appendix B.3. |

Theorem 5.2.4 Problem 3 can be formulated as a convex optimization probl&hus, all

local optima are global optima.

Proof. The proof is provided in Appendix B.4. |

Note that, Problem 3 is convex, but not necessasihictly convex. Therefore, in general,
rather than a unigue global optimum, there may be multiptalloptima which are all also

globally optimum.
Corollary 1 Problem 1 can be formulated as a biconvex optimization bl

Proof. The proof is provided in Appendix B.5. |

5.3 Solution Method

In the previous section, we have shown that Problem 1 can tmeufated as a biconvex
optimization problem sinceU (7, P) is a biconvex function. Such functions are well-studied
in the optimization literature [190], [58]. While not conyethey admit #icient coordinate
descent algorithms that solve a convex program at each dtefhis section, we present
a block coordinate descent based algorithm, shortly BCDsfiving Problem 1. In the
BCD solution method, sequentially one block of variablesisimized under corresponding
constraints while the remaining blocks are fixed. We havesitglest case of only two block
variablest andp. Hence, the algorithm alternates between minimizatiom waspect tar

and minimization with respect fo. Our BCD algorithm operates explicitly as follows:

1. Start from any valid time allocation, for example assigntetime slot to dterent user
in the form of TDMA. Assuming that all of the enerdy is used up until the end of

periodt, the power is determined. This power setting satisfies E¢).(5
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2. Keepry fixed for all n and t. OptimizéJ (7, p) with respect tgx,t = 1,...,K and the

constraints given by (5.4).

3. Repeat the following for atl=1,...,K.: Keepry fixed foralln=1,...,N andi # t.
Also keepp; fixed for allt. Maximize U(7, p) with respect tor,n = 1,...,N and

constraint in Eq. (5.2).

4. If the variables have converged, stop. Otherwise, godp 3t

For optimization of the time variables, the Lagrange mlittipmethod is used. The optimiza-
tion of the power variables, however, is accomplished bpgitie Sequential Unconstrained
Minimization Technique (SUMT) [191]. SUMT is an optimizati method that converts a
constrained optimization problem into an unconstraineel lImnadding the constraints to the
objective function as a “penalty”. It then uses a standarcbostrained optimization algo-
rithm (e.g, Newton, Steepest Descent, etc.) [192], [193] to solve toelpm with the new

objective function.

Regarding the issue of convergence, Problem 1 is a biconptimiaation problem and as
such potentially, there exist many local optima. Therefoomvergence to the global optimum
is not guaranteed. However, provided that some conditioessatisfied, convergence to a
partial optimum (see Definition 5.3.1) is guaranteed. A® a@scussed by Lin in [194],
convergence to a stationary (or critical) point, for blodorinate descent methods requires
sub-problems to have unique solutions ( [195], [144]), big property does not hold here:
Although sub-problem 2 is strictly convex, 3 is not striatlynvex (only convex). Fortunately,
for the case of two blocks, Grippo and Sciandrone [196] hdnava that this uniqueness
condition is not needed. Hence, BCD converges to a statignaint of Problem 1. As a
stationary point can be minimum, maximum, or a saddle pdiig, convergence result may
not be stficient. However, we can still use the following definition ahdorem (Definition
4.1 and Theorem 4.2 of [190], respectively) to build a stesngsult. For this, leK ¢ R"
andY ¢ R™ be two nonempty sets, I& ¢ X x Y, and, letB, and By denote the x-sections

and y-sections oB, respectively.

Definition 5.3.1 Let f : B — R be a given function and I€ix*,y*) € B. Then,(x*,y*) is
called a partial optimum of f on B, if
f(X,y) < f(xy") Vxe By and f(X",y") < f(X",y) Yy e By (5.10)
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Theorem 5.3.2 Let B be a biconvex set and let:fB — R, be a dfferentiable, biconvex

function. Then, each stationary point of f is a partial optim

Hence, we conclude that the BCD algorithm surely convergespgartial optimum of Prob-
lem 1. Furthermore, Theorem 4.9 of [190] shows that, whepalilems are solvable, for
BCD-like algorithm$ (There are only two block of variables, and, sequentiallg block of
variables is minimized under corresponding constraintstae other block is fixed), if the
sequence generated by the algorithm is contained in a cdrspgcthen the sequence has
at least one accumulation point. The theorem further stasts when one of the subprob-
lems is strictly convex, all accumulation points are padjatima, and have the same function
value (Note that while a global optimum is a partial optimugndefinition, it may not be
an accumulation point. In that case, all the partial optih& &re in the set of accumulation
points have strictly lower values than optimum functionuea) Hence, we conclude that the
BCD algorithm surely converges to an accumulation poinfctvis also partial optimum, of
Problem 1, and all accumulation points (a set of partialrogjiyield the same utility value.
Note that although the final allocation;*(p*) generated by the BCD algorithm, might be a
partial optimum, it neither has to be a global nor a localroptin to the given biconvex op-
timization problem. Because, although the set of accunionatoints BCD converges to are
partial optima and have the same function value, there mapther partial optima that may
have diterent function values. Depending on the starting point efalgorithm, BCD may
converge to a set that includes the global optimum, orff@mint set that includes local op-
tima, or just partial optima. According to [190], there égia theorem, originally developed
by Wendell and Hurter [197], that describes the connectitween partial and local optima

for the following biconvex minimization problem,
min{f(x,y) : xe XcR", yeYCRM (5.11)

However, as also noted in [190], the given local optimalibydition is in general not s$ki-

cient. Indeed, Wiesemann claims in [198] (p. 92) that, elenverification whether a partic-
ular solution to a biconvex problem is locally optimaN$-complete. Gorski et.al. [190], on
the other hand, claims that to find the global optimum of a tea minimization problem
by a BCD-like algorithm (ACS [190]), a multistart version BCD can be used. But, still,

there is no guarantee to find the global optimum within a nealsle amount of time or to be

1 ACS (Alternate Convex Search) algorithm proposed in [190].
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sure that the actual best minimum is the global one. Hensegins justified to settle for the

modest goal to find a partial optimum in our case.

5.4 Numerical and Simulation Results

In this section, we present the numerical and simulationlt®selated to BCD algorithm.
Throughout our simulations we use the following setip= 1kHz N, = 10°°W/Hz Unless
otherwise stated, all powers are in Watts and all energiesnadoules. For the sake of an
example, we suppose that there are five users in the systerhiCaedergy arrivals in 100
secs (frame length). The arrivals e = [20,100,1,1,1,70,10Q,1,10,40] joules in the
[1st,2nd . 10" slots respectively. The first user is the strongest one, atieér users are
ordered in a such way that the preceding user is twice asgsa®the previous one, i.e., path
losses of the users are; 25, 28, 31, 34, 37 dB respectivetysthinting point of the algorithm is
the “Spend What You Get” policy (proposed by Gorlatova etf1819]) combined with TDMA
time allocation. This policy corresponds to using all egérgthe epoch it was harvested in,
and will be referred to in the rest as SEDMA. We performed simulations both for unequal
and equal slot lengths. In our simulations, we use the faligveequence of slot sizes for 10
slots; S; = [10,12,5,7,4,15,20,2,10,15] andS, = [25,44, 14,7, 3,32 47,19, 26, 38], for
the case of unequal slot lengths, agd, = [10,10,...,10] andS; = [25.5,255,...,25.5]
for the case of equal slot lengths. Note tH&t,and S; have the frame length of 100 secs,

whereasS, andS; have the frame length of 255 secs.

First, we assume that the frame length is 100 secs, and,us&dte the power iterations of the
BCD algorithm, forSy, in Figure 5.2. The power convergence of the algorithm fargokc
energy arrivals$;), however, is illustrated in Figure 5.3. As observed fromfigures, rather
than transmitting with full power, saving some energy fa thture use is preferred. Another
observation is about the fast convergence of the algoriitem, the powers seem to rarely
change after just a few iterations. In order to observe ffeceof frame length and fierent
slot lengths, in Figure 5.4, we show how utility improvesoiigh the iterations for all of the
aforementioned slot length sequences, 8¢,51, Sy, S,. The fast convergence of the BCD
algorithm is more evident in this figure. The optimal schedulpower and time), optimal
utility and thus, the utility improvement (when comparedst@+TDMA) obtained by BCD,

for all four sequences are presented in Table 5.1. The refasaomparing the proposed
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algorithm with SG-TDMA can be explained as follows: In most of the technical grap

proposed algorithms are compared to some other previoushoped algorithms. Since what
we have done in this thesis is new, earlier work related tosmlinject, “proportional fair

power and time allocation on an energy harvesting broadyastm”, does not exist. Hence,
there were no algorithms to compare to our proposed algosithTherefore, for the power
allocation, we have chosen the SG (Spend what you Get) #igoproposed by Gorlatova
et. al. [199], since our algorithm considers spreading@ntrough time, but SG does not.
And, for the time allocation, we have chosen basic time @timisthe most simple and common

approach for dividing the channel.
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Figure 5.2: Powers vs. iterations €4, K=10, Unequal slot lengths): The numbers in the

legend represent the corresponding slots. Starting fronp&8iy, BCD converges to the
optimal powers in 11 iterations.

In some energy harvesting systems, transmitters havecapgaaitors that can store the har-
vested energy and supply in every predetermined time windthowing the case of periodic
energy arrivals. In such a case, if no energy is harvestdumét slot, we set the amount of
harvested energy to O for that slot. As observed from Figutasd Table 5.1, periodic energy
arrivals assumption does not degrade the system perfoenéhareover, as we have shown
in Chapter 6, by using the periodic energy arrivals asswmptie can analytically derive the

characteristics of the optimal solution of Problem 1 andieti®p two heuristics that closely
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Figure 5.3: Powers vs. iterations£M, K=10, Equal slot lengths): The numbers in the legend
represent the corresponding slots. Starting from SG poB&D converges to the optimal
powers in 8 iterations.

track the performance of BCD algorithm. Hence, from now os,present results only for

the case of periodic energy arrivals in 100 s&s,

Throughput improvement is another important criteria in pwblem setup. Hence, we next
investigate the throughput improvement of the users fareimsing path losses. The results
are illustrated in Figure 5.5. In the figure, the Mean Pathsl_scomputed ak = ﬁ Zi’il L
whereL; represents the path loss of useAs seen from the figure, with minor decrease in the
throughput improvement of the stronger users, the wealsuseeive much more bits than
that they used to receive with SG policy and TDMA. Bsncreases, the overall throughput
improvement also increases. For instance, when31, User 1, User 3, User 4, and, User 5
enjoy approximately 3 %, 1621 %, 361 %, 80 % throughput im@noent respectively, while
User 1 siffers only 32 % of loss. Clearly, BCD is a proportionally faigafithm which tries

to maximize the utility by meeting certain demands of evesgru

We next analyze thefiect of number and amount of energy arrivals. Assume thaé they
six users in the system with the following path losses: 19,28 38, 31 dB. The results

obtained for six dferent energy arrival sequences (two foeX0 and four for K=12) are
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Figure 5.5: Throughput improvement vs. mean path loss5NK=10): Mean path loss
is computed as the mean of the path losses of all users in #tensy Results represent
the throughput improvement of five users for threffadent path loss patterns. With minor
decrease in the throughput of the stronger users, the weak teceive much more bits than
that they used to receive with SGDMA.
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Table 5.1: The results of BCD algorithm for fourfidirent slot length sequences

Slot1 | Slot2 | Slot3 | Slot4 | Slot5 | Slot6 | Slot7 | Slot8 | slot9 |slot 10 utility Ixt"'t;
Users vs.
§| Slot 10 12 5 7 4 15 20 2 10 15
® | Lengths
& 1 10 12 0 0 0 0 3.128 0 0 0
‘; 2 0 0 0 0 0 5.763 | 16.871 0 0 0
£ 3 0 0 0 7 4 9.236 0 0 0.198 0
S 4 0 0 0 0 0 0 0 0 9.801 | 6.920 | 75.727| 8.544
5 0 0 5 0 0 0 0 2 0 8.079
Power
. 2 2.091 | 5.972 | 3.433 | 3.433 | 3.102 | 2.553 | 5.972 | 4.426 | 5.163
Allocation
Users vs.
§| Slot 10 10 10 10 10 10 10 10 10 10
® | Lengths
& 1 10 10 6.233 0 0 0 0 0 0 0
‘; 2 0 0 3.766 10 10 0 0 0 0 0
£ 3 0 0 0 0 0 10 10 0 0 0
- 4 0 0 0 0 0 0 0 10 6.309 0 75.732| 9.613
5 0 0 0 0 0 0 0 0 3.960 10
Power
. 2 2.018 | 2.218 | 2.592 | 2.592 | 3.432 | 3.432 | 4.648 | 5.187 | 6.277
Allocation
Users vs.
5| Slot 25 44 14 7 3 32 47 19 26 38
® | Lengths
o 1 25 44 0 0 0 0 0.961 0 0 0
‘; 2 0 0 0 0 0 13.416 | 46.038 0 0 0
£ 3 0 0 14 0 0 18.583 0 19 0 0
- 4 0 0 0 0 3 0 0 0 0 38 |78.233] 9.056
5 0 0 0 7 0 0 0 0 26 0
Power
. 0.795 | 0.795 | 1.386 | 2.449 | 1.839 | 1.212 | 1.027 | 1.386 | 2.449 | 1.839
Allocation
Users vs.
c Slot 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5
-% Lengths
8 1 25.5 |20.899 0 0 25.5 0 0 0 0 0
< 2 0 4.600 | 25.5 25.5 0 4.230 0 0 0 0
_E 3 0 0 0 0 0 21.269( 25.5 | 3.441 0 0
= 4 0 0 0 1] 0 0 0 22.058 | 18.595 0 78.231| 9.983
5 0 0 0 0 0 0 0 0 6.904 | 25.5
Power
. 0.775 | 0.815 | 1.047 | 1.047 | 0.775 | 1.314 | 1.384 | 1.759 | 1.985 | 2.586
Allocation
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shown in Table 5.2. The arrival sequences are intentiomdlysen similar to each other, so
that it would be easier to determine thi@eet of small changes on the utility improvement.
As observed, it is not the number of slots (number of energyads) but the amount of every

individual energy harvest that determines the utility ioy@ment. The events like; sudden
decrease in energy level or harvesting very small amounhefgy for a long time increases
the utility improvement obtained by BCD, as $EDMA policy may cause the base station

to stay idle for a long time because it does not save enerdgyfiore use.

Table 5.2: The ffect of number and amount of energy harvests

Number of utility
Harvests Harvests Improvement
(%)
10 Slot1 | Slot2 | Slot3 | Slot4 | Slot5 | Slot6 | Slot7 | Slot8 | Slot9 | Slot 10
20 100 10 60 10 70 100 10 10 40 2.711
20 100 1 1 1 70 100 1 10 40 7.846
12 Slot1 | Slot2 | Slot3 | Slot4 | Slot5 | Slot6 | Slot7 | Slot8 | Slot9 | Slot 10| Slot 11| Slot 12
20 60 100 1 1 1 70 85 100 1 10 40 7.256
20 60 100 0.5 1 0.5 70 85 100 0.5 10 40 8.430
20 60 100 0.5 50 0.5 70 85 100 0.5 10 40 6.713
20 60 100 1 0.5 0.5 1 1 100 0.5 10 40 8.515

Knowing that it is not the number but the nature of harvestadffiect the utility improvement,
from now on, we set the number of energy arrivals to be 181(® and the harvests to arrive
as in the 29 arrival sequence, i.e. [20, 100, 1, 1, 1, 70, 100, 1, 10, 4@habwe can analyze
the dfect of number of users to the performance of the BCD algoritkereping the number
of harvests and harvest values the same, we perform a sérs@saations with dfferent
number of users. First, thdfects of the optimal power-time allocation pairs on utilityility
improvement, and fairness are investigated. In order tobte ta analyze all scenarios, in
the next three figures, we use the following setups: a) Tlumgést user in the system has
13 dB path loss, and, every new user that joins the system H&sn3ore path loss than the
previous one. b) The strongest user has 19 dB path loss, &ergl,reew user deviates 3 dB. c)
The strongest user has 25 dB path loss, and, every new usatede8 dB. Hence, 13 dB, 19
dB, and, 25 dB seen in the figures represent the path loss efritregest user in the system.
Figures 5.6 and 5.7 show how utility and percentage imprarégnn utility, respectively,
change with the increasing number of users. As seen fromdhee8, the solution found by
BCD exhibits significant improvement over a $EDMA schedule. Between two methods,

SG+TDMA is the worst one since even with a few users, utility carimproved. The results
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show that when case c) is valid, a utility improvement of agpmately 20% is possible with

BCD.
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Figure 5.6: Utility (SG-TDMA, BCD) vs. no. of users: The utilities obtained by SEGDMA
and the proposed algorithm, for increasing number of useescompared. Thetect of path
loss (the strongest user’s path loss is shown between passd) on utility is shown. As path
losses of the users increase the utility decreases.

50

Although we aim at proportional fairness in this thesis, #ynbe interesting to analyse max-
min fairness of the BCD algorithm. Jain’s index [200], [204]a well-known measure of

fairness. The indek| takes the value of 1 when there is a complete fair allocation.

(Z. 1XI)2
N - Z|:1Xi

Fl = (5.12)

For computingFI, we use the no. of bits transmitted to the usegs,= ZthlTitRit for

i =1,...,N. From Figure 5.8, it is clear that SGDMA is worse than BCD in terms of
fairness. Especially for eight usefS|sc.Tpma = 0.41 wheread-1gcp = 0.80. Although
low path losses embrace lower utility improvement, theymyaallow BCD algorithm to be
very dficient in terms of fairness.g, above 0.8. However as the path losfatence be-
tween users increase, completely fair allocations may adhé optimal ones. For instance,

when there are eight users in the system the path losses abée in case c) are; 25, 28,
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Figure 5.7: Utility improvement vs. no. of users: The uilimprovement of the proposed
algorithm over SGTDMA, for increasing number of users, are compared. Tifeceof path
loss (the strongest user’s path loss is shown between pasa#) on utility improvement is
shown. As path losses of the users increase the utility imgmnent increases, i.e, BCD’s
performance improves as the channel quality becomes defyrad

31, 34, 37, 40, 43, 46 dB, yielding an excessivalence of 23 dB between the weakest and
the strongest user. In this case, the algorithm should faser 1 more than it favors user
8, in order to maximize the utility function, causing a prammnally (instead of purely) fair

allocation.
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Figure 5.8: Fairness index (3GDMA, BCD) vs. no. of users: The fairness of $SGDMA
and the proposed algorithm, for increasing number of useesgompared throudhl, which
takes the value of 1 when there is a complete fair allocatidbhe dfect of path loss (the
strongest user’s path loss is shown between parenthesésiyrmess is shown. As fierence
among the path losses of the users increase the fairnesseedé the schemes decrease
(SG+TDMA being the worst), causing comparatively unfair allboas among users.
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CHAPTER 6

PROPORTIONAL FAIR RESOURCE ALLOCATION ON AN
ENERGY HARVESTING DOWNLINK - PART II:
ALGORITHMS

In this chapter, we show that by using the periodic energyasrassumption, it is possible
to analytically derive the characteristics of the optimalltion of the Problem proposed in
Chapter 5. In Chapter 5, we proved that the problem in handisanvex problem and has
multiple optima. This allowed us to decompose the probleta fwo parts (power alloca-
tion, time allocation) and present a Block Coordinate Desbased optimization algorithm,
BCD [62], that converges to a partial optimal solution. Altigh BCD is guaranteed to con-
verge to a partial optimal solution and thus the partial ragti utility, it is computationally

expensive and when there are tens of users and energy srifivahing invertible hessian
matrices (needed for the optimization of the power varsbleay be computationally ex-
cessive. Hence in this chapter, we first derive the chaiatitar of the optimal solution of

Problem 1 and then, build on those to develop simple and ctatipoally scalable heuristics,

PTF and ProNTO [63] that closely track the performance oB&® solution.

6.1 System Model

Consider a time-slotted system where each frame, of lelRgtis divided intoK slots. There
is a single energy harvesting transmitter that transmits tsers by time sharing. Note that,
we use the same system model as in Chapter 5. However, uriiet€r 5, in this chapter we
assume periodic energy arrivals and hence equal slot leiffita T forallt = 1,...,K), as

shown in Figure 6.1, to reveal the characteristics of theradtsolution of Problem 1.
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Figure 6.1: Problem illustration: There dfeenergy arivals in a frame, and, the time between
consecutive arrivals are allocatedNausers.

Similar to the setting in Chapter 5, for a given frame, thagraitter chooses a power levg|
and a time allocation vectat = (1, ..., Tnt), for each time slot of the frame, wherg@,: = p;
is the selected transmission power for useturing slott and, r; is the time allocated for

transmission to userduring slott.

6.2 Structure and Properties of the Optimal Solution

In this section, we analyze the structure and propertiehahiybrid power-time allocation

policy. Remember that the utility function of Problem 1 is

N K
U= Z’i |092(; TntRnt) (6.1)

whereR represents the rate of lirkin t slot, as in Eq. (5.7).

LetR, = [Rut Rz ... Rak]" and7y = [tny 7h2 ... mnk]". Then, utility can be rewritten as

N
U= log(m'Ry) (62)
n=1
=U1+U2+...+UN (6.3)

whereU,, the utility of usem, is
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Un = logz(tn' Rn) (6.4)

In order to reveal characteristics related to the optiméitsm that will help us develop
computationally &icient and close-to-optimal heuristics, we decompose tbhél@m into

two parts (similarly as in Chapter 5): power allocation aintktallocation.

6.2.1 Structure of an Optimal Power Allocation Policy

In this section, we analyze the structure and propertieseobptimal power allocation policy.
In order to do this, we assume that the time allocation isrdeteed, and try to characterize
the structure of the optimal solution of the power allocatiwoblem for this time allocation.
Clearly, when the only variables are power variables, bl reduces to the following

constrained optimization problem, which is equivalent totfiem 2 of Chapter 5:

Problem 4
N
Maximize: Up) = Z Un(P)
n=1
subjectto: p>0 (6.5)

Zt: piTi < Zt: E (6.6)
-1 izl

wheret = 1,...,K and, U, is a function of the power variables (as defined in Eq. (6.4)).
In previous chapter, Chapter 5, we proved the strict cotyexif Problem 4. Similarly,
the general problem, Problem 1, is shown to be a biconvexnigition problem that has
many local minima [62]. As Problem 4 has a unique optimum aimal power allocation
changes for every given time allocation. In Theorem 6.2d claim that one of the optimum
schedules of Problem 1 has a nondecreasing power schedetremé 6.2.3 not only helps
us to prove our claim but also reveals that Problem 1 has phalltiptima. From the proof

Lemma 6.2.3, the attentive reader can observe that anyofeasrmutatiof of the optimal

1 Maximizing U (P) is equivalent to minimizing-U (p) which is a convex objective function.
2 Afeasible permutation is any permutation of a given schethat does not violate the constraints described

129



schedule®”,p"), described in Theorem 6.2.1, is also optimal.

Theorem 6.2.1 When all slots have equal lengthj(¥ T, for Vj € {1,...,K}), there exists
an optimal schedulér", p*) such thatp” is nondecreasing, (e.gp" = (p1, ..., Px) Where

p1 < P2 <... < Py).

Proof. The proof is provided in Appendix C.1, and rests on Lemma3aalow. |

We shall need the following definition of a permutation of @tee sorted in nondecreasing

order of elements, for stating Lemma 6.2.3.

Definition 6.2.2 Given avectoR, = [Ryy Ru2 ... Ruk]T, we defin®, = [Ruz1) Rue@) - -+ Rri)] T

WhereﬁT is a permutation (sorted in increasing order)R{, such that

Ru) < ... £ Rm@) £ ... £ R (6.7)

Lemma 6.2.3 When all slots have equal length;(¥ T, for Vj € {1,...,K}), for any given
schedule(7, P¢), we can find suclt, R, (whereR, = Ry') that (77) TR, = 7' R, for all n =
1,...,N; i.e., the utility, U, does not change. Hencezif'(Ry') is optimal, then€, , R, ) is

also optimal.

Proof. The proof is provided in Appendix C.2. |

6.2.2 Structure of an Optimal Time Allocation Policy

In this section, we assume that the power allocation thrdbgtslots is determined. Then,
given that the power variables are known constants, werdéterthe structure and properties
of the optimal time allocation policy. Since, the only véies are time variables, Problem 1

reduces to Problem 5, which is equivalent to Problem 3 of @indp

in Eqns. (1)-(5.4).

130



Problem 5
N
Maximize: U7) = Z Un(?)
n=1
subject to:t; > 0 (6.8)

Tne=T (6.9)

Tnt 2 € (6.10)

DM 1M

0N
iR

wheret = 1,..,K, n = 1,...,N and,Uy is a function of the time variables (as defined in Eq.
(6.4)). In Chapter 5, Problem 5 is shown to be convex. Thusatialysis can rely on KKT
(Karush-Kuhn-Tucker) optimality conditions, which must $atisfied by the global optimum.

We start by forming the Lagrangian function as follows:

K N NK+N K K N
LE LD =-U@ + D> pnonsmis + ), #ile= ) ionk) + > 4 mi = Ti)
=1 =1 j=NK+1 t=1 i=1  n-1

(6.11)

wherey’s are the Lagrange multipliers, and, the total number ostamts is N(K + 1) + K.
After defining the Lagrangian as in Eq. (6.11), one can canstithe KKT conditions for
the optimal solution, which are presented in Appendix Cldage note that the optimal time
allocation should jointly satisfy the set of equations #dse from KKT conditions. Clearly,
as the number of userdl, and, the number of slot¥, increase, the number of equations
increases dramatically making it cumbersome to write ditallysolutions. Therefore, for the
sake of conciseness, we continue the analysis with theapese of two users and two slots

which allows us to construct the characteristics of thempgltitime allocation policy.

Consider two consequtive slots withffiirent power levels. Let us call the one with the least
powerthe weak slgtand the one with the highest powe strong slat When the slots have

equal lengthT1 = T, = T), the optimal policy has the properties described in Lemr2ai6

3 There areK equality constraints andK + N inequality constraints.
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Lemma 6.2.4 In an optimal schedule, time allocation over the two slofefual length) has

the following properties:

1. The weak slot is assigned to only one of the users. Thegsstoty however, is shared
between users. When both power levels are equal; if onessésisigned to user 1 (user

2), the other slot is assigned to user 2 (user 1).

2. To whom the the weak slot will be assighed depends on tweiari first, T', = %,
which is the ratio of user n’s rate in the second slot to thatha first, and second,
whether the strong slot is before or after the weak slot. Wthenweak slot preceeds
the strong slot, it is assigned to the user with the smdileOtherwise (implying the

decrease in power level), it is assigned to the user with thlednT".

3. In a strong slot, the user that did not (or will not) receimy data in the weak slot is
favored, i.e., more than half of the slot is assigned to tisaruln order to preserve

fairness, this favoring operation is done by considedihgandI,.
Proof. The proof is provided in Appendix C.3. |

6.3 PTF Heuristic

In this section, we develop a heuristic algorithm, Powend&iFair (PTF), based on the char-
acteristics (discovered in the previous section) of amogltibowertime allocation schedule.

As also described in [63], the PTF algorithm operates asvia]

1. For Power Allocation: Assign nondecreasing powers through the slots by using the

energy harvest statistics, as follows:

(a) From a slot, saj, to the next oné + 1: If harvested energy decreases, defér a
amount of energy from slatto sloti + 1 to equalize the power levels. Do this until

all powers are nondecreasing, and, form a virtual nondsirgdarvest order.

(b) By using the virtual harvest order, assign nondecrgasawers through the slots,

i.e., in each slot, spend what you virtually harvested ab#ginning of that slot.
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2. For Time Allocation: For the power allocation found in 1), leB = R.T be the
number of bits that would be sent by usdf the whole slot (of lengti’) was allocated
to that user. Assign the first slot to the user who has the maximate Ry, in that slot.
For the other slots, apply the following: At the beginningeafch slott € {2,...,K},

determine the user with the maximyéhwhere,
_ Bhnt
Zit:]_ Bni
and, assign the whole slot to that user. If multiple usersestiee samg, then, allocate

Bn

the slot to the user with the best channel.

Simulation results show that the performance of the PTHtlgo is close to the performance

of the BCD algorithm.

6.4 ProNTO Heuristic

In this section, we develop a fast and simple heuristic, FlONPowers Nondecreasing -
Time Ordered), based on the optimal power allocation relateracteristics discovered in
Section 6.2.1 and the simulation results obtained by rngnB&D algorithm for periodic

energy arrivals. The ProNTO algorithm operates as follows:

1. For Power Allocation: Assign nondecreasing powers through the slots by using the

energy harvest statistics, as done in part (1) of PTF algurit

2. For Time Allocation: Order the userg),, ..., uy, according to their channel quality
and form a user priority vectog! = [u!,...,ul] whereu! represents the user with
the best channel. AK > N, Allocate every use}%‘m'\') slots as follows: The first
K-modkN) slots are allocated ta}, the next“=""04%N gjots are allocated tal, etc.
Add the remainingnodK, N) slots to the most powerfuhodK, N) users’ slots. For
example; Letk = 12 andN = 5, and the path losses of the users to be 13 dB, 17 dB,
10 dB, 12 dB, 20 dB respectively. Then, the first 3 slots aatied to user 3, the next
3 slots are allocated to user 4, the following 2 slots arecatled to user 1,®9and 14"

slots are allocated to user 2, and the last 2 slots are aldd¢atuser 5.

Thus PTF and ProNTO fiier only in time allocation part. The time allocation metheed in

ProNTO is proposed according to the following observatiwhen a partial optimal solution
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obtained by BCD algorithm is modified as described in Lemn2a36and its proof, to form

the nondecreasing optimal schedule, the time allocatiaornes ordered, e.g., as shown in
Table 6.2. As time allocation method used in ProNTO is simgllan the one used in PTF,
ProNTO can operate faster. Simulation results show thgtehrmance of ProNTO is close

to the performance of the BCD algorithm.

6.5 Numerical and Simulation Results

In this section, we present the numerical and simulationlt®selated to PTF and ProNTO
heuristics. Throughout our simulations, we use the follmyvsetup: W = 1kHz Ny =
10°W/Hz We assume that some amount of energy<(E < co wheree is an infinitely
small value) is harvested every 10 secorfis< 10), within a frame (period of known har-
vests). Note that, throughout this section, the units useffdme length, energy, and power
are; seconds, Joules, and Watts respectively. Throughmimulations, we use four fier-
ent frame lengths; 20, 80, 100, 120. For the frame of 20 sees)s® three dierent energy
harvest models; [8, 50], [50, 0.5], [60, 20]. We define dierent cases for the remaining three
frame lengthsRegular Bursty, and,Very Bursty In Regulat the harvest amounts are close
to each other and form a regular patteBy = [73,65,9, 19,40, 37,22 84, 39,67, 81, 100].

In Bursty, there are short term sudden decreases and increases @sthamounts, caus-
ing a bursty patternEg = [20,100 1,1,1,70,10Q 1, 10,40]. Finally, Very Burstyrepre-
sents an extreme case where the transmitter stays enemgyyhfor a long time;Ey =

[90,2,0.5,0.1,0.3,0.7, 40, 60].

We start by the simplest case of two users and two shdts @, K = 2, frame of 20 secs) to
compare the results obtained by BCD algorithm [62], withadp&mal ones presented in Ta-
ble C.2. Our objective in doing such a comparison is to prheesiccuracy of both theoretical
and simulation results. We refer the interested reader fweAgix C.3 for the details of the
optimality table, and provide the comparison in Table 6.&te\that as in Chapter 5, the start-
ing point of the algorithm is the Spend What You Get (SG) poffroposed by Gorlatova et.

al. [199]) combined with TDMA time allocation (S&DMA). The first column of Table 6.1
shows the amount of the harvesE (E»). The second column represents the mean path loss
(in dB) of the two users. As observed from the table, for amgipewer allocation, the results

found by BCD algorithm and the optimal ones (obtained by KKdfimality conditions) are
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almost the same, verifying the consistency and optimafithe algorithm.

Table 6.1: BCD vs. optimal results for the special case ofusers and two slots

Harvests Mean Power Allocation Time Allocation Optimal Utilitv by BCD Optimal
Path loss by BCD by BCD Time Allocation Yoy Utility
20.5 [0.050 5.000] [13 ‘;“5’;3 [18 ;";g] 29.809 29.809
[0.5 50] : :
26.5 [0.050 5.000] [13 ‘;';23 [18 ;';23] 28.406 28.406
10 0.242 10 0.243
2.299 2.750
0 051 20.5 [ ] [0 9.757] [o 9.756] 30.940 30.940
26.5 [2.246 2.803] [13 g";gg [13 g";gg] 29.461 29.461
2.5 [3.823 4.176] [18 g'giz] [13 g'gi‘; 33.527 33.527
[60 20] ' '
10 0.078 10 0.078
3.787 4.212
8.5 [ ] [0 o 971 [0 9.921] 32.957 32.957

The attentive reader can observe from Table 6.1 that, where$ta decrease from one slot
to another, the optimal powers tend to be nondecreasingceHienthat case, the algorithm
seems to be converged to the nondecreasing optimal discirs3deorem 6.2.1. Note that,
this nondecreasing optimal could also be obtained by ubmgiodification method explained

in Lemma 6.2.3. By using that method, we modify the resultaioled by BCD algorithm to
reveal the optimal (nondecreasing) power and time allongtblicies for increasing number

of users. For our analysis, we use threffedlent path loss patterns, callddyw, Moderate
High respectively. InLow, the strongest user in the system has 13 dB path loss, amy, eve
new user that joins the system deviates by 3 dB from the pusvime (has 3 dB more path
loss than the preceding user). Moderate the strongest user has 19 dB path loss, and, every
new user deviates by 3 dB. Finally, itigh, the strongest user has 25 dB path loss, and, every
new user deviates 3 dB. Due to space limitations, we presgytioe BurstyModeratecase’s
results in Table 6.2. As illustrated, when the number of sigsrrease, BCD algorithm tends
to assign increasing powers rather than nondecreasingc&nalso see from the table that,
no matter how many users exist in the system, ordering pawendecreasing order, causes
the time allocation to be ordered too. By ordered, we meatrtltiesfirst slot(s) are allocated

to the user with the best channel, the next slot(s) are a#dct the user with the second
best channel, etc. , and the last slot(s) are allocated tosbewith the worst channel. This

observation constitutes the main motivation for the ProNiEQristic.

We next use the above-mentioned energy harvesting cRsgsilar Bursty, Very Bursty to
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Table 6.2: Optimal time and power allocation policies vsmber of users: Found by BCD
algorithm and modified according to Lemma 6.2.3

No.of [T.A. /) Users/| 1 | siot2 | siot3 | siota | siots | siote | siot7 | siots | siot9 |siot 10
Users | P.A. | Slots
A | L 10 10 10 0 10  3.666 0 0 0 0
2 Al o 0 0 0 0 0 6333 10 10 10 10
PA. 2 2575 2575 2575 2.575 4211 4472 4472 4472 4472
1 10 10 10 7188 0 0 0 0012 0 0
s [TAa| 2 0 0 0 2811 10 10 10 9987 0 0
3 0 0 0 0 0 0 0 0 10 10
PA. 2 2415 2415 2553 2916 3916 4 _ 4.727 4.728 4.728
1 10 10 8577 0 0 0 0 0 0 0
| 2 0 0 1422 10 10 4759 0 0 0 0
4 Al 3 0 0 0 0 0 5240 10 8378 0 0
4 0 0 0 0 0 0 0 1621 10 10
PA. 2 2313 23381 2802 2.802 3.634_ 4.050 4.207 5.074_5.074
1 10 10 3332 0 0 0 0 0 0 0
2 0 0 6667 10 5107 O 0 0 0 0
1A |l 3 0 0 0 0 4892 10 528 0 0 0
5 4 0 0 0 0 0 0 4713 10 3.425 0
5 0 0 0 0 0 0 0 0 6574 10
PA. 2 2135 2428 2579 3.152 3.157 3.890 4372 5124 5.559
1 10 10 0533 0 0 0 0 0 0 0
2 0 0 9466 10 0 0 0 0 0 0
al 3 0 0 0 0 10 738 0 0 0 0
6 Rl 0 0 0 0 0 2613 10 3376 0 0
5 0 0 0 0 0 0 0 6623 7772 0
6 0 0 0 0 0 0 0 0 2227 10
P.A. 1.863 1.863 2.233 2.255 3.059 3.258 3.870 4.082 5313 6.597
1 10 8988 0 0 0 0 0 0 0 0
2 0 1011 10 6426 0 0 0 0 0 0
5 0 0 0 3573 10 2435 0 0 0 0
, | Ta] s 0 0 0 0 0 7564 6700 O 0 0
5 0 0 0 0 0 0 329 10 0 0
6 0 0 0 0 0 0 0 0 10 0.648
7 0 0 0 0 0 0 0 0 0 9351
P.A. 1634 1670 2008 2310 2.654 2976 4  4.009 5761 7.373
1 10 7486 0 0 0 0 0 0 0 0
2 0 2513 10 3789 0 0 0 0 0 0
3 0 0 0 6210 893 0 0 0 0 0
al @ 0 0 0 0 1065 10 2048 0 0 0
8 Al s 0 0 0 0 0 0 7951 3428 0 0
6 0 0 0 0 0 0 0 6571 3748 0
7 0 0 0 0 0 0 0 0 6.251 2.483
8 0 0 0 0 0 0 0 0 0 7.516
PA. 1.484 1567 1.827 2.100 2341 2932 4 4413 5766 7.965
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compare the PTF and ProNTO heuristics’ performances toffB€CD’s. We start by testing
the utility and throughput improvement (over $EDMA) performances of the heuristics for
increasing path losses. For this, we set the number of usén®t i.e.,N = 2. The results are
presented in Figure 6.2 and Figure 6.3, respectively. |h Bgtures, the Mean Path Loss, is
computed ag = ﬁ Zi’\il Li whereL; represents the path loss of usekence, the three mean
path losses seen in the figures represent.tive ModerateandHigh cases. One can observe
from Figure 6.2 that, the utility improvements of all algbris tend to increase (or at least stay
constant) when path loss increases, and the utility impneve performances of the proposed
heuristics are very close to that of BCD’s. For the choseesa@roNTO outperforms PTF.
This is more obvious for th¥ery Burstycase. The corresponding throughput improvements
are shown in Figure 6.3. As illustrated, for the caseNoE 2, even with~ 5% of utility
improvement, a 65% of improvement in total throughput is possible. Notd,timeall cases,

the performances are very close to each other.

; ; ; ; ;
| PTF _ProNTO BCD o, PTF . ProNTO BCD  p, PTF p.PIONTO __BCD
) (Regular)

(Very Bursty) (Very Bursty) (Very Bursty) o (Bursty) - (Bursty) (Bursty) > (Regular) - (Regular,
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Mean Path Loss
Figure 6.2: Utility improvement (BCD, PTF, ProNTO) vs. maaath loss folN = 2: The
effect of mean path loss on utility improvement for the threegynbarvesting caseRegular
Bursty, Very Bursty

In order to determine theffect of number of users to the performances of our proposed
heuristics, we next perform a series of simulations by @®rgig all energy harvesting cases

(Regular Bursty, Very Bursty and diferent number of users. By taking average over all
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Figure 6.3: Throughput improvement (BCD, PTF, ProNTO) veam path loss foN = 2:
The dfect of mean path loss on throughput improvement for the #meegy harvesting cases;
Regular Bursty, Very Bursty

energy harvesting cases, we present the average utilityoirement results in Figure 6.4, for
theModeratecase. As illustrated in the figure, when the number of userease, the average
utility improvements of all schemes also increase. Noté thath heuristics closely track the
BCD algorithm. When there are few users in the system, PTRPaoNTO are competitive.

However, when there are more users, ProNTO seems to outpeF®F in terms of average
utility improvement. At all instances, ProNTO is within th&o neighbourhood of the BCD

algorithm.

Although we aim at proportional fairness in this thesis, #yrbe interesting to analyse
max-min fairnesses of the proposed algorithms, PTF and Regby using Jain’s fairness
indexFI. As in Chapter 5, we use Eq. (5.12) to comphtie For computing-1, we use the
no. of bits transmitted to the userss,= Zthl TitRit fori = 1,..., N. From Table 6.3, itis clear
that SG-TDMA is the worst choice in terms of fairness. Although lowtlpdosses embrace
lower utility improvement, they mainly allow both PTF andoRiTO to be very #icient in
terms of fairness. However, as observed from the table, vaHéhree cases are considered,
PTF seems to be more fair than ProNTO is. Hence, ProNTO sexinade of fairness for

utility improvement. It can also be inferred from Figure &l Table 6.3 that, when ProNTO
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Figure 6.4: Average utility improvement (PTF, ProNTO, BGB) no. of users: The average
is taken overRegular Bursty, Very Burstycases. The average utility improvements of the
proposed algorithms over SGDMA, for increasing number of users, are compared. Utility
improvment increases with increasing number of users.

outperforms PTF in terms of utility improvement, thdfdience between two heuristics is
not high. However, this is not the case for fairness,.i.bienvPTF outperforms ProNTO, the
difference can be considered as high. Hence, although ProNTfsseere promising in

terms of utility improvement, depending on system requésts, one can still choose PTF

over ProNTO for more fairness.

Table 6.3: Fairness index (SGDMA, PTF, ProNTO, BCD) vs. no. of users: The fairness
of PTF and ProNTO heuristics are compared to that of ¥BMA's and BCD’s, throughF1.

Fairness Index (FI)
Number
of Users Regular Bursty Very Bursty
SG+TDMA PTF ProNTO BCD SG+TDMA PTF ProNTO BCD SG+TDMA PTF ProNTO BCD

2 0.998 0.994 0.999 0.991 1.000 0.994 0.999 0.991 0.907 0.984 0.999 0.985
3 0.966 0.981 0.993 0.974 0.807 0.997 0.950 0.967 0.639 0.975 0.963 0.963
4 0.933 0.948 0.978 0.943 0.652 0.901 0.891 0.928 0.803 0.882 0.964 0.903
5 0.748 0.965 0.856 0.903 0.555 0.896 0.936 0.892 0.576 0.891 0.830 0.845
6 0.842 0.829 0.905 0.842 0.559 0.780 0.784 0.814 0.312 0.914 0.670 0.794
7 0.679 0.856 0.778 0.784 0.539 0.862 0.661 0.711 0.195 0.809 0.569 0.718
8 0.580 0.817 0.658 0.710 0.355 0.773 0.562 0.635 0.245 0.625 0.691 0.646
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CHAPTER 7

PREDICTION BASED PROPORTIONAL FAIR RESOURCE
ALLOCATION FOR INDUSTRIAL WIRELESS SENSOR
NETWORKS

As industrial WSNs are expected to be deployed in harsh acéssible environments for
long periods of time, a remote base station may be neededhtmtthe operation of these
networks. In industrial applications, it is very likely than area needs to be covered with
multiple WSNSs. In such a case, each of these networks madtiiferent parameters and send
data via the appropriate gateway nodes (cluster heads) aseadiation node located at the

central dfices, where the strategic decisions about the data is taken.

In this chapter, we address the case where the base statiopgked with solar energy har-
vesting. Leveraging the daily periodicity of solar energyvesting, we optimize the daily
message delivery schedule from the base station to the mdaedistributed network. The
inherent diferences in channel gain from the BS to the sensor nodes malehdllenge to
provide service to each of them whiléieiently spending the harvested energy. Leveraging
a close-to-optimal algorithm developed for fair allocatiof harvested energy in a wireless
downlink, we develop a stand-alone algorithm, PTF-On, tipetrates two algorithms in tan-
dem: A Kalman-based prediction algorithm and the modifiedioa of the PTF algorithm.
PTF-On can predict the base station’s energy arrival prifileughout the day, and then, act
upon this energy arrival profile to determine the best powdrtane allocation that will max-
imize the throughput (the amount of data sent to the gatewdgs) in a proportionally fair

way.
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7.1 System Model and Problem Statement

In our setup, there is a single base station that transmité gateways (or cluster heads)
of several sensor networks by time sharing on a bandwith V8hawn in Figures 7.1 and
7.2. The power spectral density of the background noigé,isChannel conditions will be

supposed to remain constant during a durakahat will be referred to as a “frame”: i.agy,

the gain of gatewap, is chosen to be constant throughout the frame.

Radio modem
(8,7 km)
&
Radio modem
D D (5,5 km) 7
g'n

Radio modem
(5,2 km)

Base Station Mote
[R] Repeater Mote
Gateway Mote
Soil Mote

[ water Mote

[ Enviromental Mote

Figure 7.1: Industrial WSN application (agricultural miming) with remote base station.
Example 1: [8]

The base station is equipped with a rechargeable battemgned by a solar panel, such that
harvested energy becomes available at distinct instafi¢desdurations between two harvest
instants will be called a “slot” (as in Chapters 5 and 6). Gustem model is based on the one
illustrated in Fig. 6.1. However, instead of considerindyamne frame, we consider multiple
frames. We assume that the length of a frame is 24 hours. Natewe restrict our attention
to the case of periodic energy arrivalg € T forallt € {1,...,K}), as in Chapter 6). As also
explained in Chapter 6, not all generality is lost, sincevbar amounts are arbitrary and the
absence of a harvest in a certain slot can be expressed wittvash of amount zero for the
respective slot. Thus, we define the length of a slot to be éhsub (half an hour). Thus, the
amount of energy harvested from the environment at the hagjrof time slott of framei is

Eit, asillustrated in Fig. 7.3.
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Figure 7.2: Industrial WSN application (pipeline monitay) with remote base station. Ex-
ample 2: [9]
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Figure 7.3: Energy arrival model
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For a given frame, the base station chooses a power [gvahd a time allocation vector
1t = (T11, ..., TND), fOr €ach time slot of the frame, whergy; = py is the transmission power
for gatewayn during slott and,; is the time allocated for transmission to gatevmeguring
slott. We use the same constrained optimization problem, Prolilgmoposed in Chapter
5. Please note that, Problem 1 is a biconvex optimizatioblpno with multiple optima, and
there exists amyffline heuristic algorithm, PTF, that can closely track the optis@ution
(solution found by BCD) of this problem. In this chapter, wedify the PTF algorithm so
that we can use it in an online setting, i.e., the amounts efggnharvests within a frame
are not known a priori. The modified version of the PTF aldnitwill need to be combined
with an energy prediction algorithm. There are some energgigtion algorithms available
in the literature such as EWMA (Exponentially weighted nrmgvaverage) [202] and WCMA
(Weather conditioned moving average) [203]. However,dhagorithms are simple moving
average based prediction algorithms developed to operatamergy harvesting sensor nodes
that do not have high computation capabilities. As our béatos is equipped with a solar
panel and is expected to harvest energy at a high rate, wéogedea new energy prediction

algorithm which will be explained in the next section.

7.2 Kalman-Based Solar Energy Prediction

In this section, we apply the Kalman filter algorithm to faistthe energy arrivals within a
frame, for a base station powered with solar panel. We cersitdsub-hourly prediction of
the energy arrivals for a frame of 24 hours (one day) and, ditatad the Kalman filter for the

following state and measurement models:

x(k+ 1) = a1x(K) + a2x(k — 47) + B1y(K) + W(K) (7.1)
2K) = x(K) + v(K) (7.2)

wherex andzrepresent the state (energy level) and the measuremeettisgty. This model

is mainly based on the idea that; due to the diurnal cycle @fyatthe amount of energy that
will be harvested in thek(+ 1) sub-hour of an arbitrary dax(k + 1), should be related to
the energy harvested in th& sub-hour of the same day(k), the solar irradiation received

in the kK™ sub-hour of the same day(k), and, the energy harvested in the+1)!" sub-hour
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[ xk+1)] e 0 0 ... 0 0 a] x® | [a] 1]
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xk-45 |0 0 0 .. 1 0 oflxk-46)| |0 0
xk-46) [0 0 0 ... 0 1 0||xk-47)| |0] 0|

of the previous day (the energy that was harvested 48 sutstamo: x((k + 1) — 48) =

x(k — 47)), x(k — 47). In Egq. 7.1w(K) is a modeling error, which represents theeets of
the uncontrolled events on the harvested energy (such dewhmy caused by clouds passing
through, disturbance to the solar panel, or damage due tcimal act, etc.). In this paper,

it is modeled as Gaussian i.i.d. with zero mean and variar&peThe parameters;,a, and

B1 represent the weights assigned to emphasize the importéice parameters that will be
used for prediction. In the measurement modalenotes the measurement noise and it is

also modeled as Gaussian i.i.d. with zero mean and variafice

By considering that there are 48 sub-hours in a day, the bgtate equations can be re-stated
in matrix form as in Eq. (7.3). Now, we define an augmentedestattor &, which contains

the energy amounts harvested today:

G=|x(K) x(k-1) ... x(k-46) x(k—47)’ (7.4)

We define a new matriA, column vectors, andI as follows:

(01 00 ... 0 0 ay]
1 00..00 0
010..00 0

A= . . (7.5)

E:ﬁl 0 00 (7.6)
=1 o 0 o]’ (7.7)



Thus, the state model in Eq. (7.3), and the measurement rimoHel (7.2) reduce to

Fir1 = Ak + By(K) + Tw(k) (7.8)
2K) = x(K) + V(K) (7.9)

which is structurally equivalent to the “truth” model dabed in Eq. (5.27) (in page 252)
of [204]. Thus, by applying the Discrete-Time Linear Kalnfgiiter described in [204], we
are able to predict the amount of energy arrival in the nelstrsaur by only using the amount
of energy arrival in this sub-hour, the solar irradiatiooai®ed in this sub-hour and, the arrival
in the previous day’s next sub-hour. Please note that, ieraodcompute the best weights,
a» andp; that will be used for simulations, we use a data fitting metthestribed as follows:
By using the 18 days’ data (real power measurements belgrgif1.10.2009-18.10.2009
for Amherst, Massachusetts, USA) provided by Navin Shar2@], we design a Newton
algorithm that aims to minimize the Mean Squared Error (MB&)veen the real data and
the estimated data, for 17 days (B§s= 816sub— hour9g. Thus, the objective function that

needs to be minimized by the Newton algorithm is describédalbe

863

D (x(k+ 1) - (@1x(K) + a2x(k — 47) + B1y(K)))? (7.10)
k=48

1

816

Our simulation results, provided in Section 7.4, show thattest values for defined weights,
a1,a2,81 are 0.7184, 0.1439, and, 0.0063 respectively, wherxtkegs are in terms of kilo-

joules.

7.3 PTF-On Algorithm

In this section, we propose an online proportional fair tese (power and time) allocation al-
gorithm, called PTF-On. PTF-On is the online version of thé& PReuristic proposed in [61].
Note that the PTF algorithm operates in @fiine fashion, i.e., the energy arrival amounts
within a frame are known at the beginning of that frame. Thenmaotivation of the PTF-On
algorithm can be explained as follows: There are 48 subshand thus, 48 energy arrivals
within a frame (24 hours). At the beginning of a each slot, ¢cbgent amount of residual

energy and amounts of previous harvests are known. The d@amofinext 47 energy arrivals

145



should be predicted. Thus, at the beginning of each frameesfenmn two prediction opera-
tions to determine the energy amounts that will be harvedteohg the frame. We perform
this operation as follows: At the beginning of Slot 1, therggearrives and is known to the
base station. Thus, the base station can use K-SEP to pitsdieixt energy arrival, i.e., the
arrival in Slot 2. However, the arrivals other then the airimn Slot 2 can not be predicted
before a sub-hour passes. This is due to the fact that a halfanshould pass to see what is
really harvested in Slot 2, so that this value can be usedeigirthe value in Slot 3. Thus,
we adopt S-SEP, which does not use the data that was harveskedprevious slots (mainly
predicts the amount of energy that will be harvested in tsddy sub-hour as the average of
the energy arrival amounts of the past two dagdsub-hours), to predict the next 46 arrivals.
Thus, all energies (or at least their estimates) are knowhetdase station at the beginning
of the frame. This way, at the beginning of each frame, oneraarPTF algorithm to de-
termine a close-to-optimal power and time allocation thiditmaximize the throughput in a

proportionally fair way, for the up-coming 24 hours.

PTF-On requires past two days’ data for predicting the gnargval amounts of the day it
will be used in. Assume that there are days 1,2,3,4,... Bth,RTF-On will be used to predict
the arrivals, and, determine the most proportional faiouese allocation, for the second half
of day 3 and first half of day 4 (Frame of 24 hours: From 12:00ayf 8 to 12:00 of day 4).
The operation of PTF-On algorithm is explained below, ahgsitated in Figure 7.4.

1. For the 24-hours frame started at 12:00 of day 3, thereb@ifl8 slots, each 30 minutes
of length (Please note that this frame is called the orignaahe). The beginning of the
whole frame will be the beginning of Slot 1. Thus, when therfeastarts, the energy
arrival at the beginning of slot one of dayB;; is known. Thus, the energy arrival at
the beginning of Slot 2E3 5, can be predicted by using the K-SEP algorithm. Then,
use the S-SEP algorithm to obtain rough predictions of therstEs s, . .., E34s, and

form a predicted harvest series as follovi&;req = [E31, E5,, EY

144
32 E53s - E3’48], where

E, E’ andE"” represent the real, the K-SEP predicted, and the S-SERctgddinergy

amounts, respectively.

2. As all the energy amounts (or at least their estimateskm@oen at the beginning of
the frame, use the first part of the PTF algorithm to deterrttirdbest proportional fair

power allocation (sub-hours) within the frame.
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3. In the first slot of the frame, apply the power allocationrfd by the PTF algorithm
for Slot 1 of that frame. LetBy: = Ry T be the number of bits that would be sent to
gatewayn if the whole slot (of lengthl’) was allocated to that gateway. If this slot is
the first slot of the original frame, assign this slot to theegay who has the maximum

rate,R,, in that slot. Otherwise, at the beginning of each dlat{2, ..., K}, determine

Bnt
Zil=1 Bni
to that gateway. If multiple gateways share the s@nthen, allocate the slot to the

the gateway with the maximum where,, =

Then, assign the whole slot

gateway with the best channel.

4. When first slot of the frame finishes, and thus the secondtsds, assign Slot 2 of the
current frame as the first slot of the upcoming frame (half@urIshifted version of the
original frame), and estimate related energy amounts. ,Taeighthe remaining energy
to the energy of the first harvest of the new frame to form a nedipted harvest series.
(Ex: At 12:30,E3> is known andEs 3 can be predicted by K-SEP. The remaining 46

energy harvests are predicted by S-SEP. Thus, a new pretiateest series is formed:

Epred = [Es2 + (Ez1— paT), 53, E5 . - - - ES g ES4])

5. Apply Step 2,3, and 4 in order until the 24 hours is complete., the last slot of the

original frame has been assigned a power and time allocation
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Figure 7.4: Operation of PTF-On algorithm



7.4 Numerical and Simulation Results

7.4.1 K-SEP and S-SEP Related Results

In this section, we present the numerical and simulationlt®selated to our Kalman fil-
ter based solar energy prediction algorithm, called K-%iB8,the online resource allocation
algorithm, PTF-On. By using the best weights that we contgpbieusing the Newton algo-
rithm, we perform numerous simulations to test our predidtée test the performance of our

predictor by the MSE criteria. We compute the MSE as follows:
1 M
MSE= — i —%)? 7.11
v ;(m %) (7.11)

wherex andX represent the real and estimated energies respectivelyMais the number
of samples that will be considered. In order to compare théopeance of our predictor
with another one, we use a simple solar energy predictolecc&-SEP in this paper. We
first let M = 48 (for 48 sub-hours in a day), and, compute daily MSE valoed 6 days, as
shown in Tables 7.1 and 7.2. Then, average MSE over 16 daystobér, 2009 (03.10-2009-
18.10.2009) for K-SEP and S-SEP aMSEf,SFP = 4.377 kilojoulegsub-houfday and

MS E;.S EP = 84.146 kilojoulegsub-houfday respectively. By considering that the maximum
power measured in [205] was 60 Watts, one can produce maxiEyyx= 60.1800= 108
kilojoules in a sub-hour by using this system. Thus, thequerhnce of S-SEP is much

worse than the performance of K-SEP in terms of average, éxear,/MS EX S EP = 2.092
kilojouleg'sub-hour whereas,/MS Ez, S EP = 9.173 kilojoulegsub-hour.

Table 7.1: MSEs for the first 8 days

Days 3 4 5 6 7 8 9 10
MSE of K-SEP|] 0.168 | 12.064| 9.517 |17.07¢6 6.937 | 3.646| 0.329 | 2.691
MSE of S-SEP] 106.689 266.271 122.629 89.941] 141.008 43.907| 122.341 15.874

Table 7.2: MSEs for the second 8 days

Days 11 12 13 14 15 16 17 18
MSE of K-SEP| 2.028| 2.328| 3.451| 3.612| 0.287(1.093| 2.569| 0.194
MSE of S-SEP] 90.872 20.191 69.325 26.108 32.366 5.634| 57.263 135.915

The figures 7.5, 7.6, 7.7 illustrate the performances of W firedictors for three days in
which S-SEP performs the best, the second best, and the waistl6 days’s performance.

As it can be seen from the figure, K-SEP outperforms S-SER iaistéhnces.
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7.4.2 PTF-On Related Results

In this section, we present the numerical and simulationlteselated to the proposed online
heuristic, PTF-On. Throughout our simulations, we use thewiing setup:W = 10 MHz,
No = 101° W/Hz For the sake of an example, we suppose that there are thmeerse
networks, and thus three gateways in the system, simildretone shown in Figure 7.1. The
path loss of the gateways are 78, 92, and, 100 dB respectidycompare the performance
of the proposed algorithm with the performance of the “Spéfitht You Get” policy (where
the amount of energy harvested at the beginning of a slonigpbaiely spent during that slot)
combined with TDMA time allocation, and with the performanaf theoffline PTF heuristic
that operates close-to-optimal. We start our analysis @01gm on 03.10.2009 and finish
it at 12:00 on 17.10.2009. Hence, we have 14 frames, each ichveine 24 hours (48 sub-
hours). For each frame, we test the performances of the RT&AQ PTF algorithms, and,

the SG-TDMA scheme.

For the sake of an example, we illustrate the power allosatfound by PTF and PTF-On for
a frame of 24 hours (Frame 5), in Figure 7.8. As seen from thedighe power levels of

PTF and PTF-On are, most of the time, close to each other.

Utility and throughput improvement (over SGDMA scheme) results of PTF and PTF-On,
for all 14 frames, are illustrated in Figures 7.9 and 7.10.itAsin be seen from the figures,

the performance of the proposed online algorithm, PTF-®wery close to the performance
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of the offline PTF algorithm. Please note that, as the utility is defineduas & “logarithms”

of individual throughputs, even 1% improvement in utiligysignificant. This is more evident

when the average (over 14 frames) utility and throughputravgments of PTF and PTF-On,
are computed. For example; the average utility improverfmmPTF is 3.310%, where the

corresponding average throughput is 150.795%. Simil#ily,average utility improvement

for PTF-On is 3.158%, where the corresponding average ghmut is 143.992%. Figure

7.11 shows the average daily throughputs of the gatewagsg@e amount of data sent to the
gateways in one day) and, the average daily total throughput

45 T T

ElrTF
. T2 JIPTF-On [ ]

3.5 -

25F . 4

1.5 =

Utility Improvement (Percent)

0.5~ -

0 a | | B4 | || | &N |

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Frames

Figure 7.9: Utility improvements of PTF and PTF-On alganthover SGTDMA scheme
for 14 frames
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

In this thesis, we first provided a classification of the cotrr@nd future M2M applications
and, we discussed the architecture and the design issuegMfridtworks. M2M networks
make use of multi-hop routing in order to route data in a wesslnetwork. Therefore, the
intelligent devices used in M2M networks should be relidhjaneans of availability. A key
determinant of longevity and reliability of these netwoiksenergy-éicient system archi-
tectures and algorithms. As ad hoc and sensor networks bsetsuof M2M networks, we
believe that forming energyfigcient ad hoc and sensor networks is an important component
of forming more energyféicient M2M networks. Hence, we next surveyed the shortest pat
based energyficient routing algorithms developed for ad hoc and sensavarks in recent
years. We also developed a classification for these algasitlalso considering the link cost

metrics used in these algorithms.

By considering the fact that sustainable and environmigntiaéndly development of many

wireless networks require increased use of renewable gngegnext investigated the state-
of-the-art resource management and scheduling algorithatscan be used in energy har-
vesting industrial WSNs. Detailed operation of the aldornis, along with their drawbacks,

advantages, and possible application areas are discussed.

By inspiring from the energy harvesting based resourcecatiion studies, we next investi-
gated an original problem; the proportional fair power antktallocation problem in an en-
ergy harvesting broadcast system. This thesis focuses dindithe optimurmoffline sched-

ule for this problem, by assuming that the energy harvedimgs and the corresponding
harvested energy amounts are known at the beginning of eaatef Detailed analysis of

structural characteristics of the problem has been peddrmvhich revealed that it can be
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formulated as a biconvex optimization problem, and thaa& multiple optima. Furthermore,

an algorithm based on block coordinate descent (BCD), tivalysconverges to a partial op-
tima of the problem, was showed. Building on the problem fdation and BCD, the optimal
resource allocation policy was further studied and, theterce of an optimal nondecreas-
ing power schedule and, an ordered time allocation schedete proved. This allowed us

to propose two alternativefficient and scalable heuristics, PTF and ProNTO. The computa-
tional ease of these algorithms were observed in numerxeahples, while the policies they
result in coincide with the structural properties we havevahthe optimal to have. Simu-
lation results indicate that, despite their simplisticiges PTF and ProNTO heuristics can
closely track the performance of the optimal BCD algorithim.our examples, which were
computed for small or moderate problem sizes, both PTF anid RO took one or two orders

of magnitude smaller time to converge than BCD, which hasiopute a Hessian. Typically,
ProNTO outperforms PTF in terms of utility improvement, wdess the latter is fairer. The
utility improvement diference between BCD and ProNTO is shown to be less than 1% at all

instances.

Finally, we developed aanlinealgorithm that bypasses the need dgfine knowledge about
the energy harvesting arrivals. This algorithm employsrggndarvesting prediction algo-
rithms to predict the energy that will arrive in the futuradacan be used in not only broadcast

systems but also in industrial wireless sensor networks.

There are many possible future directions for the work preskin this thesis. The first di-
rection could be developing a new PTF-On algorithm that @egkrate on shorter slot lengths.
This will increase the number of maintenance messages aatagsent to the gateways,
while improving the performance of the algorithm. Howe\es, the number of slots and,
shifting operations will increase, the ways of keeping tbhmplexity low should be consid-
ered wisely. One idea is to shorten the frame length, fromddto couple of hours, and to
determine the allocation at the beginning of each frame. é¥ew as the long term changes
could not be considered in such a case, one should deterher®est frame length that will

provideclose-to-gfine performance.

Another direction can be modifying the ProNTO algorithm aondhbining it with the energy
prediction algorithm, to obtain anothenline algorithm. That way the performance of the

PTF-On and (possibly) ProNTO-On algorithms can be compared

155



Other than changing the resource allocation method, onencatify the energy prediction
algorithm so that it does not only predict the next energivalrbut uses its own prediction
as a measurement to predict the next arrivals, and this wegnbe a stand-alone prediction
algorithm. Using this method may improve the predictiontghefalgorithm and thus, the sys-
tem performance. Moreover, the current Kalman algorithny bexmodified to estimate the

weights (parameters) at every step. That way the accuratyeahodel would be improved.

It should be remembered that the solar energy harvestiniicappn presented in this thesis
is just an example. As shown by the simulation results, thlopaances of the proposed
offline algorithms are higher when the energy arrivals are burstthofigh in solar energy
harvesting applications, the base station (or transtays energy hungry during the night
time (unless anféicient resource allocation method is applied), and thud)&ineesting nature
becomes slightly bursty, there are some other types of grenyesting methods, i.e., from
vibrations and wind, etc. that suits this scenario bettgrsiBiple changing the prediction part
of the proposedanline algorithm, one may solve the proposed problem fdiedént energy

harvesting applications.

Until now, we considered the possible modifications to theppsedonline setup and algo-
rithm. However, there are some other possible directioatrttay require the modification of
the proposedyfline problem. For example, the proposed problem can be modifieorsider

battery indficiencies such as leakage. Moreover, the finite battery Gasbe considered.

Priority is another issue that can be included to the probiemmulation. In the case of
industrial sensor network application presented in thesity sending update and mainte-
nance messages to some of the gateways can be more impbeaargending to others. For
example, among many sensor networks, one may need fastdogypupdates due to mo-
bility /availability of its nodes. In such a case, the problem can bdified to favor some

gateways in arbitrary slots.

Another possible direction would be considering existesfamultiple base stations equipped
with energy harvesting capabilities. In that case, daenisked for some of the gateways can
be sent from either of the base stations, and the resoummeatitin for these base stations
can be done by considering both of the base stations’ hamgegtocesses and the channel

qualities of the users.
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APPENDIX A

THE CONCEPT OF PROPORTIONAL FAIRNESS AND THE
REASONING BEHIND THE CHOSEN UTILITY FUNCTION

In its simplest form, fairness is to allocate the same shadlt However, in wireless net-
works, such a simple idea does not generally make sense, foinwgireless networks, fair-
ness is defined in a number offidirent ways, such as max-min fairness [206], and, propor-
tional fairness [207]. The main focus of this thesis is prtipoal fairness. The concept of
proportional fairness is proposed by Kelly [207], and, gatized by Mo and Walrand [208].
According to [207]: A vector of rates, is proportionally fair if it is feasible — that isx > 0
andATx < ¢ — and, if for any other feasible vectat, the aggregate of proportional changes

is zero or negative

Z a ; X <o (A1)
There are many ways to impose the proportional fairnesst@onson a network. Using
the logarithm utility is one option adopted in this thesisele are other valid and relevant
utility functions, some ensuring fairness as well, such aghted sum-rate maximization.
Howewer, maximizing, log(R), whereR is the rate, provides proportional fairness by defi-
nition. The weighted sum-rate maximization provides omyagproximation. This approxi-
mation converges to the real value for very long term opfatiim, keeping track of the rate
received by each user in time (Please check the proof prdbeéow). Inherently this is a
long-term and online algorithm. On the other hand, we aerésted in finite horizonfine

optimization and our time slots are determined accordinthéoenergy harvesting process,

1 The published version of this paper has strict inequalityhis relation. However, Kelly later provided
a corrected version of this paper (For the corrected vergitgase check httffresearch.microsoft.cgoien-ug
eventgnetworkeconomigg&elly_1997.pdf).
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and thus, the time slots are not necessarily small. Heneeghtbsen log-sum utility function

seems to be the best choice for our case.

Proof.
maxZ log(Rn(1)) = maxZ log (@Rn(t — 1) + (1 — a)rn(t) (A.2)
n n=1
_ (1 —a)rn(t)
- maxnzz; log(aRa(t - 1)) + Iog(l + m) (A.3)
Given the average received rate up until the currentR(it— 1)
_ (1 —a)rn(t)
maxzn: log(Ry(1)) = maan:; log (1 + m) (A.4)
Applying the approximatiomog(1l + x) ~ x for small x,
(L~ a)ra(t) (A5)

max ) log(R,(t)) ~ max
2. 10u(Ro(0) Z; py o
This can be considered as a weighted total rate maximizatibare the weights of each user

at timet are,

Wa(t) = a(l @)y (A.6)

Ro(t-1)°
Weighted sum rate maximization only approximately progigeoportional fairness. At each
time slot it gives the whole time slot to a single user. Therapiationlog(l + x) ~ X is
only accurate if the number of time slots are very high anctgiot durations are very low.
Thus, the expressioli,, log(R.(t)) (the log-sum of user rates) is the true proportional fegmn

metric. [ |
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APPENDIX B

PROOFS OF THE THEOREMS, LEMMAS, AND
CORROLLARY MENTIONED IN CHAPTER 5

B.1 Proof of Lemma5.2.1

i) Let us defind = ZiKzl cihi whereh; is a strictly concave function gf, and,¢ > 0.
Forl to be concave, it needs to satisy the concavity conditien(Ap; + (1 — A)pz) >
A(P1) + (1= DI(p2) where 0< A < 1, for any pointpg, Pz in the domain ofl. Thus,
proving thatl satisfies the concavity condition completes the proof of (arWe start
by

K K
APz + (1 - )P2) = ) cihi(py + (1= Dp2) = D Gi(Ahi(px) + (1 - Dhi(pz)) (B.1)

i=1 i=1

K K
= 1" chi(py) + (L= ) D Ghi(pz) = APD + (L - V() (B.2)
i=1 i=1

where Eq. (B.1) follows from the strict concavity of function. From the set of
equations described above, one can observd that concave function gb. Note that
in Eqg. (B.1), equality may happen onlydf = O for alli. Hence, if there exists an index
jsuchthat; =0fori=1,...,j—1,j+1,...,Kand,¢c >0fori = j, Eq. (B.1) is

satisfied with >". Then, | is strictly concave ifpk. This completes the proof of part (i).

ii) From part (i) we know that] is a strictly concave function if Eq. (B.1) is satisfied.
Assume that Eqg. (B.1) is satisfied and, let there be an inicig@&sncave functiorf.

We need to show thdt(I(p)) is always strictly concave. The proof is as follows:

1(4P1 + (1 - )P2) > Al(p1) + (1 - )I(P2) (B.3)
f(apr + (1 - )P2)) > f(A(pr) + (1 - DI(P2)) (B.4)
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where Eq. (B.3) and Eq. (B.4) follow from strict concavityl@nd increasing property
of the f function respectively. By using concavity of tHefunction, one can further

write the following expression

fll(pr) + (1 - VI(P2)) = Af(I(P)) + (1 - HF(I(P2)) (B.5)

Then, combining Egns. (B.3)-(B.5), leads us to the final ltesfustrict concavity, as

follows:

f((ApL + (1 - )P2)) > Af(1(P1)) + (1 - HF(I(P2)) (B.6)

Thus, we conclude that increasing concave functions dftlstrioncave functions are

strictly concave, which completes the proof.

B.2 Proof of Theorem 5.2.2

Since the constraints of the problem are linear, and, maxgJ (p) is equivalent to mini-
mizing —U(P), showing that the utility functiony (p), is strictly concave will be enough to
show that Problem 2 can be formulated as a strictly conveinigation problem. We start

by checking the concavity dRy. As Ry is a function ofp;, let hy = Ry (as in the proof of

Lemma 5.2.1's parti)). The first and second derivatives lgfare defined ag = %ﬂ&?
#h _ -WLZ/(In2) . 5 o Ph .
andaT[; = TLp? respectively. AsW, L, and (1+ Lypy)< are all posﬁwe,rhg is definitely

negative for allt = 1,...,K. Hence, from the second derivative test [19%],thusRy, is
strictly concave inp;. Furthermore, let, = ZtK: 1 TntRat for an arbitrary usen. As all ty's
(fort = 1,...,K) are nonnegative, and, at least aneis positive for usen, from part () of
Lemma 5.2.1), is a strictly concave function gb. Note that this is true for all users, i.e.,
I is strictly concave for alh = 1,..., N. Thus, from parti{) of Lemma 5.2.1f, is strictly
concave inpforalln = 1,...,N. The rest of the proof is straight-forward, since the wtilit
function,U(p), is a positive linear combination df’s and thus (from part) of Lemma5.2.1)

is strictly concave irp. Hence, the proof is complete.
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B.3 Proof of Lemma5.2.3

i) Let us definem = ZiKzl dig whereq is an dfine function ofrp;, and,d; > 0. For
m to be dfine, it needs to satisfy theffaity condition, i.e.,m(A7T + (1 — )72) =
AM(t7) + (1 — A)mM(72), where 0< A < 1 and7k = [tkn1 ... Tknk]" IS @ point onm.

Thus, proving thain satisfies the condition completes the proof of part (i). Veetdty
K K

M(TL + (L= )72) = ) digi(Arsi + (L - D7a) = ) di(AGi(ra) + (L - Dai(r2)) (B.7)
i=1 i=1

K K
= A diGi(rs) + (1= 1) Y didi(ra) = D) + (L - Ym(T) (B.8)
i=1 i=1

wherery;, Ty are theé! entries of théy vector andr; vector respectively, and, Eq. (B.7)

follows from the “dfine” property of them, function. From Eq. (B.8), one can clearly

observe tham function is an &ine function of time variables. Hence, any nonnegative

linear combination of fine functions is fiine, and, the proof of part)(is complete.

ii) From part ) we know thatm is an dfine function. In this part, we need to prove that

an increasing functiors, of m, s(m(7)), is a concave function. Hence, we start by

m(A71 + (1 - A)72) = AM(71) + (1 - YM(72) (B.9)

sS(M(A71 + (1 - )72)) = S(AM(71) + (1 - YM(72)) (B.10)

where Eq. (B.9) and Eg. (B.10) follow fronftane property oimand increasing prop-
erty of thesfunction respectively. By using concavity of teéunction, one can further

write the following expression

S(AM(71) + (1 - YM(72)) = As(M(71)) + (1 - YS(M(72)) (B.11)

Then, combining Egns. (B.9)-(B.11), leads us to the finallted concavity, as follows:

s(M(A71 + (1 - )72)) = As(M(71)) + (1 - Ys(M(72)) (B.12)

Thus, we conclude that increasing concave functionstfofeafunctions are concave,

which completes the proof.
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B.4 Proof of Theorem 5.2.4

Similar to the proof of Theorem 5.2.2, showing that the iytifunction, U (7), is concave will

be enough to show that Problem 3 can be formulated as a copwiexization problem. We
start by checking the concavity af forn = 1,...,N. As R, is a known constant for every
ne{l,...,N}andt € {1,...,K}, letd; = Ry, and,q: = t for an arbitrary usen (as in the
proof of Lemma 5.2.3's pari)). It is well-known that a linear function is arffane function.

As ¢ is a linear function ofr; for any usem, q; is afine. Now, letm, = Zthl TntRnt for

an arbitrary usen. Note that allR.;'s are nonnegative constants known apriori. Thus, from
part (i) of Lemma 5.2.3s, is concave irr for all n = 1,...,N. The rest of the proof is
straight-forward, since the utility functiotJ (7), is a nonnegative linear combination fs

and thus (from parti) of Lemma 5.2.1) is concave ih Hence, the proof is complete.

B.5 Proof of Corollary 1

A function f : X x Y — ‘R is called biconvex iff (x,y) is convex iny for fixed x € X and is
convex inx for fixedy € Y [58]. Since the constraints of the problem are linear, shgwinat
-U(7, p) is biconvex will be enough to show that Problem 1 can be fdated as a biconvex
optimization problem-U (7, p) is a function of two set of variableg;andp. From Theorem
5.2.2, givent, —U(p) is convex. Similarly, from Theorem 5.2.4, givgn —-U(7) is convex.

Hence,—~U(7, p) is biconvex, which completes the proof.
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APPENDIX C

PROOFS OF THE THEOREMS AND LEMMAS MENTIONED
IN CHAPTER 6

C.1 Proof of Theorem 6.2.1

The proof is done by contradiction. For any given time altmrar, consider a given power
sequencePe = (pPy, ..., Pd-1, Pds ---» PK), iN Which the power level decreases at some time, say
d > 1. In such a case, we can defer some energy, 8 < pg_1Tq4-1 , from the @ — 1)

slot to thedt slot forming a modified schedul@,’c = (p1, -.s P> Py oo pk), that will not
violate the energy causality conditions (as shown in Figl).CClearly, we can continue
this deferral operation unt, , < p and still not violate the energy causality conditions.

Applying the same method for every possible decrease leattsainondecreasing schedule,

PL = (P, s P10 Ps - P), Wherep, < pl < ... < p.

\A
A A
1= b
Pa-1 pe | Parmq 7| Pa T,
N
L J L J
I T
Eg-1ya =Pa—1*Ta1+tpa*Ta Ea-1a' = Pa-1— ﬁ} Ty q + (Pa +]TAd) *Tyq

=Pa-1*Tg-1 —A+pg*Tqg+A
=Pa1*Taq1+Pa*Tq

= E(d—l)d

Figure C.1: Maintaining Energy Causality After Energy Dredé

From Lemma 6.2.3U(%,Pc) = U(T E,PZ,). Thus, for time allocatiort™ = ?7’2, Pg is
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optimal. This completes the proof.

C.2 Proof of Lemma 6.2.3

Let,R, = R, whereR, is as defined in Definition 6.2.2. Note that Eq. (6.7) forces

logo(1+ Lnp}) < ... <loga(l+ Lnp) < ... < loga(1+ Lnpk) (C.1)
T+Lapy<...<1+Lop <...<1+Lapy (C.2)
Pr<...<p<... <Py (C.3)

Hence, sortingR, in increasing order, forces nondecreasing powers (ordsmbddulePé
mentioned previously), which indeed forces all otRe(wherei € {1,...,i—1,i+1,...,N})

to be sorted in increasing order, to fonﬁﬁ. Now, we have new rate?{ for all usersi =
1,....,N. Remember that the utility of a user is defined as in Eq. (6)us, changing
the order ofR; vector does not change the valuelgfif the order of7; is also changed so
that the previous element pairs are matched again. Let Ugimxhis, with an example. Let
R2 < R1, Ruk < R, and,R1 < Rs < ... < Rk-1). Then,7/, and,R’ vectors are defined as
R =[Rk R2R1 R ... Rk-p]" andt = [rik 7i2 7i1 7i3 --. Tik-]". Hence, it is straight

forward to write that

.,
7 R =7k Rk + 1i2Ri2 + 7iaRis + ... + Tik-1)Rik-1)
= 7i1Ri1 + 1i2R2 + ... + Tik - Rik-1) + Tik Rik

TR (C.4)

wheret; andR; are as defined in Eq. (6.2). As it can be obserthds U as long aﬁ = ﬁT
J— — =T —

andr{ = (Fi)RT. Here, ;¥ indicates ther; vector ordered according ﬂaT. Under these

circumstanced/; = U/ foralli = 1,..., N, and, the overall utility does not chandé,= U’.

This completes the proof.
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C.3 Proof of Lemma 6.2.4

For the proof of Lemma 6.2.4, we use the KKT optimality coiwdis. After defining the

Lagrangian as in Eq. (6.11), one can list the KKT conditidies,the optimal solution, as

follows:
CL: V.LF. i, 1) = 0 which is equivalent 2, ..., ;2| = [0,..., 0], and thus, leads
us to:
oL ou(T) . « %
Gt -ty THN@-Den T Hnenk A4 =0 (C.5)

where for¥ne {1,...,N}andvt € {1,..., K},

ouE) 1 Rnt
OTnt In22 1 iR

(C.6)
Substituting Eq. (C.6) into Eq. (C.5), we obtain the follogyiset of optimality condi-
tions forvne {1,...,N}andv¥t e {1,...,K}:

1 Rw

A =
'nZZ Tannl

+ HN(t-1)4n T HneNk (C.7)

C2: Due to the nonnegativity property of the Lagrange mlidtip, the second set of opti-

mality conditions are defined as:

pj20 forj=1,....NK+N (C.8)

C3: Similarly,v; 7) > 0for j = 1,...,NK necessitates:

T >0 (C.9)

K
Dtwze forn=1.. N and t=1,....K (C.10)
t=1
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C4: In order for the equality conditions to be satisfied, wech® havew;(7") = 0 for all j
corresponding the equality constraints. This leads usaddlowing set of conditions

forj=1,...,K:

D =T, (C.11)

C5: The last set of conditions are duaﬂ]*lvj (t)=0forj=1,...,NK+N and are defined

as:

HN(-1)+nTnt = 0 (C.12)

K
Mok T —€) =0 forn=1,... N, and t=1,....K (C.13)
t=1

The optimal time allocation should jointly satisfy the sétconditions described in Eqns.
(C.7)-(C.13).

Let, Ay = 7R + 77,Rn2. Then, for the special casd\(= 2 , K = 2), the set of KKT
conditions described in Section 6.2.2 reduces to Eqns4€J-(C.14q9).

oL 1 Ryt

P = 2 A +,u§(t_1)+n +pra—A =0 (C.14a)
>0 (C.14b)

7 20 (C.14c)

T+ T =€ (C.144d)

Ty + Ty = Tt (C.14¢)

Hog-1yinTnt = 0 (C.14f)

Hpn(Ty +To—€) =0 (C.14q)

wherey;'s fori = 1,...,6, are the lagrange multipliers and= 1,2 andt = 1, 2. Combining
the set of equations described above leads us to the folipogtimality conditions for the

time allocation:
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Hoy_1T3 =0 (C.15a)

% - %Zntz + MZH) (Te-73) =0 (C.15b)
Solving the set of equations in Eq. (C.15), one can obtainofitamal time allocation de-
scribed in Table C.1. Due to the convex nature of the probkim,solutions presented in
Table C.1 represent the global optimums, when the rate wepnents of the userf, = %,
are equal. Note that, as the optimal solutions for all caseeind on the lengths of the slots,
whenTq # T, itis hard to develop a direct relation between power atiocaand time allo-
cation. Therefore, we next analyze the case of equal slogvéal the link between these two.
When all slot lengths are equdly(= T, = T), the optimal time allocation illustrated in Table
C.1reduces to the one presented in Table C.2, posing thedeslation. By inspecting Table
C.2, one can observe the properties mentioned in Lemma &R.dases are summarized in

Table C.2, which completes the proof.
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Table C.1: Overall Optimality Conditions for the Specials€af Two Users and Two Slots.

Users’ Rate Slot Length Slot 1 Slot 2
Improvement & User 1 User 2 User 1 User 2
Relation Rate Improvement
(User 1 vs. User 2) Relation T o T12 T2
T, T, 0 1 T\ | 1 T,
—<T ! —(T ——) —(T +—)
T, 1! 2\2 1) |2\
T, Ty 0 0 T,
P [‘1
T,
T
[ <—<TI, I 0 0 T
l"l < FZ TZ
T, T, 0 0 T,
R 1"2
T,
T, 1 1 0 T.
T, >T; E(T1 + ToI) > (Ty — TIy) 2
1 T 1 T
T DD
2 L,/ |2 I,
P 0 T 1 T\ |1 T
e B
z A r,/|2\'2 T,
T, 0 0 T,
e
I, =T = =11 =12
1e e T, 0 T, T, 0
1 1 T. 0
> (Ty = T2I) E(Tl +T,I0) 2
T,
—>I; =T 1 1 0 T
T, | ST | S (T = Tol) ?
T, 0 T, 1 ( Tl) 1 ( Tl)
—<T. “(T+=) | 5=
T, 2 2t r,/ | 2\'? T,
T, 0 T, T, 0
—=T,
T,
T, 0 Ty T, 0
Ib<—<T
F1 > FZ 2 TZ 1
T, 0 T, T, 0
= [‘1
T,
T, 1 1 T. 0
7.>h 5~ Tl | 5 (T + 121 2
2
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Table C.2: Overall Optimality Conditions for the Specials€af Two Users and Two Slots
(T, = T»): Categorized according to the relation between the poalysated in the first and
second slots. For a given power allocation, the optimal tathecation difers according to

the relation between the rate improvements of the users.

Power Relation | Users’ Rate Improvement Slot 1 Slot 2
(Slot 1 vs. Relation User 1 User 2 User 1 User 2 Utility
Slot 2) (User 1 vs. User 2) T ™ T2 2
T(1 1) T(l 1) L (RZZ(R +R )2)+21 (T)
L<h T 0 AW A G 092\R,, 1 Tz 09213
T 1 T 1 T
T o E(l - F_1> 5(1 + F_l) logs((Ryz + R12) Ry + Ryp)) + 2log, (E)
ri=ro,
P11 <Dp2 T 1 T 1 T
. 5t r_z> 5(1- r—z) 10g2((Rys + Rug) Ray + R2)) + 2l0gs (5)
T(1+1) T(1 1) ! (R“(R +R )2)+zz (T)
L>T 0 T 2V |2\, 092 \g,, a1 T 2z 0923
r<n, T 0 0 T loga(R11R2,) + 2log, (T)
T 0 0 T log,(R11R2;) + 2log,(T)
L=
P1=P2
0 T T 0 log, (Ry1Rz7) + 2log,(T)
r>r, 0 T T 0 logz (Ry2R21) + 2l0g,(T)
log (&(R +R )2) + 2log (Z)
T T 2 21 22 2
<Dy Tasry|la-rpy 0 T Ry 2
2 2
T
T T T 0 1092((R11 +R12)(Ry1 + Rzz)) + 2log, (E)
L=r E(l_rz) E(1+Fz)
P1> P2 T
T T 0 T loyz((Ru +Ri2)(Ry1 + Rzz)) + 2log, (E)
A+ [;A-T)
2 2
log (@(R +R )2) + 2log (z)
T T 2 11 12 2
r>n, Ta-m | ta+n T 0 Rix 2
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