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ABSTRACT

OPTIMAL RESOURCE ALLOCATION ALGORITHMS FOR EFFICIENT
OPERATION OF WIRELESS NETWORKS

Özel, Ömür

M.S., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Elif Uysal Bıyıkoğlu

July 2009, 105 pages

In this thesis, we analyze allocation of two separate resources in wireless networks:

transmit power and buffer space. Controlled allocation of power can provide good

performance for both users and the network. Although centralized mechanisms are

possible, distributed power control algorithms are preferable for efficient operation of

the network. Viewing distributed power allocation as the collection of rational deci-

sions of each user, we make game theoretic problem formulations, devise distributed

algorithms and analyze them. First, equilibrium analysis of a vector power control

game based on network energy efficiency in a multiple access point wireless network

is presented. Then, a distributed mechanism is proposed that can smooth admission

control type power control so that every user can stay in the system. Introducing

a new externality into utility function, a game theoretic formulation that results in

desired distributed actions is made. Next, the proposed externality is investigated in

a control theoretic framework. Convergence of gradient based iterative power updates

are investigated and stability of corresponding continuous time dynamical system is

established. In the final part of the thesis, allocation of buffer space is addressed in a

iv



wireless downlink using a queueing theoretic framework. An efficient algorithm that

finds optimal buffer partitioning is proposed and applications of the algorithm for

different scenarios are illustrated. Implications of the results about cross layer design

and multiuser diversity are discussed.

Keywords: Distributed Power Control, Game Theory, Utility Function, Buffer Man-

agement, Resource Allocation
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ÖZ

KABLOSUZ AĞLARDA VERİMLİ İŞLEYİŞ İÇİN OPTİMAL KAYNAK AYIRMA
ALGORİTMALARI

Özel, Ömür

Yüksek Lisans, Elektrik-Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Elif Uysal-Bıyıkoğlu

Ţemmuz 2009, 105 sayfa

Bu tez çalışmasında, kablosuz ağlar için iki farklı kaynağın kullanıcılara atanması

analiz edilmektedir: veri iletim gücü ve hafıza. Güç kontrolü hem kullanıcılar hem de

ağın başarımı için önemlidir. Güç atama merkezi bir şekilde yapılabilse de ağın ver-

imli işleyişi açısından güç atamasının dağıtık yapılması tercih edilmektedir. Dağıtık

güç kontrolü kullanıcıların kendi kendilerine aldıkları kararlar bütünü olarak yorum-

lanmıştır. Oyun teorisinin kavramları ile problemler formule edilmiş, dağıtık algo-

ritmalar geliştirilmiş ve analizler yapılmıştır. İlk olarak, ağın enerji verimliliğine

dayanan çok erişim noktalı bir kablosuz ağdaki güç kontrolü oyununun denge analizi

sunulmuştur. Daha sonra, kullanıcıların sistemde var olup olmadığına dayanan kontol

yöntemlerine alternatif olabilecek yumuşak geçişlere dayanan dağıtık bir mekanizma

önerilmiştir. Kazanç fonksiyonu üzerinde yeni bir modifikasyon önerilmiş, istenilen

dağıtık kontrolü elde eden oyun formülasyonu yapılmıştır. Bir sonraki bölümde,

önerilen yeni modifikasyon kontrol teoretik bir yaklaşımla ele alınmıştır. Gradyan

temelli yinelemeli algoritmaların yakınsaması incelenmiş, bu yinelemelere ait dinamik

sistemin stabilite analizi yapılmıştır. Son olarak, bir kablosuz merkez uç birim siste-

minde kuyruk teorisi kullanılarak veri yastığı ataması problemi çalışılmıştır. Toplam
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veri yastığını optimal olarak bölmelere ayıran verimli bir algoritma önerilmiş ve algo-

ritmanın uygulaması çeşitli senaryolar üzerinde örneklerle gösterilmiştir. Elde edilen

sonuçların katmanlararası tasarım ve çok kullanıcı çeşitliliği konusunda içerdiği an-

lamlar tartışılmıştır.

Anahtar Kelimeler: Dağıtık Güç Kontrolü, Oyun Teorisi, Kazanç Fonksiyonu, Hafıza

Yönetimi, Öz Kaynak Tahsisi
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to Tuğcan, my colleagues Gökhan Güvensen and Alper Bereketli were close friends,

either in the department or in the dormitory. I appreciate their earnest friendship.

ix



I also thank people from the research group such as Neyre Tekbıyık, Sinan Akyürek
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CHAPTER 1

INTRODUCTION

Due to channel variations and interference of nodes on each other, wise allocation and

control of resources is important in wireless networks. Moreover, scalability and cost

considerations drive the interest in finding efficient algorithms for networks. In this

thesis, we predominantly study allocation of transmit power and buffer space.

In wireless networks, interference induced interaction make a user’s performance de-

pendent on other users’ actions. Hence, coordination and control is necessary in

wireless networks for acceptable level of communication with minimal cost for users

sharing the network. Transmit power, one of possible actions of users, is an impor-

tant determinant of user performance in the network. On one side, transmit power is

supposed to be high for a good level of communication; on the other side, it should

not be too high in order not to waste limited energy resource and create extra load

(interference) on other members of the network. In this context, power controlled

data transmission can optimize both network and user performance: unnecessary in-

terference is avoided and energy consumption is made more efficient.

Transmit power control can be performed using either distributed or centralized mech-

anisms. Distributed power control is more preferable than its centralized counterpart

as it does not require central processing for the network and communication overhead

to disseminate the control data. In a distributed control mechanism, users use their

own observations, make their own processing and decide on their own. Hence, it is

natural to use a game model for distributed transmit power control: users are players

and the transmit powers are strategies.

Game theoretic models for power control has recently attracted considerable inter-

est [2,3,11,12,24,38–40,53,54,60,70]. Analysis using tools of game theory gives insight
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to understand why and how the coordination is required in the network and provides

methods to generate distributed algorithms [6,15]. Selfish and rational players try to

maximize their own utility and this way distributed actions are obtained. Depending

on the definition of the utility, this utility based power control may drive the network

to an inefficient equilibrium [53]. To avoid inefficiency, utility functions of users can be

introduced externalities such as prices, that act as a punishment mechanism [3,53,70].

In power control context, by means of externalities, users are encouraged to transmit

with less power than they would like to do for obtaining full satisfaction from the

network, which may sometimes lead to harsh decreases and hence to admission con-

trol as in [3, 53, 70]. Being a way of cooperation in distributed power control, these

externalities introduced to the utility functions may sometimes make users discarded

from the system. However, smooth distributed power control mechanisms, unlike ad-

mission control, may be more natural and useful [42, 43]. We addressed smoothness

of distributed actions in a game theoretic framework.

Another resource that is crucial in the performance of a wireless network is buffer [9,

13, 36, 61]. In a finite buffer system shared by multiple sessions, the question of how

much data should be buffered from each session becomes important for throughput

performance. Moreover, if the link is wireless, storing certain amount of data affects

multiuser diversity gain, which has not yet been addressed in the literature. Novel

problem formulations are possible if buffer allocation is considered jointly with channel

assignment and/or scheduling. Cross layer approaches gained popularity [17]. In

particular, joint link and physical layer operations for user scheduling in a wireless

downlink constitute an important portion of recent research trends [30, 59, 73, 74].

However, cross layer approaches come with a high complexity cost. When finite buffer

constraint is also taken into formulation, the optimal joint strategy is not known in

the literature and it is possible that separation of layers performs better. In this

context, benefits of cross layer approaches are questioned and alternative algorithms

are developed in this thesis.
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1.1 Outline of the Thesis

In Chapter 2, we present a game theoretic study of a wireless network with multiple

access points, where users can control their uplink transmit power targeted to any

or all of the access points. Distributed mechanisms that achieve a tradeoff between

energy efficiency and spectral efficiency in the network are obtained through the use

of suitably designed utility functions. A user’s utility is a function of throughput

and average transmission power. A key assumption in the chapter is that throughput

is modeled as a sigmoidal function of SINR (signal to interference-plus-noise ratio).

Each user, being selfish and rational, acts to maximize its utility in response to in-

stantaneous SINR by adjusting its power. The resulting mechanism is a distributed

power control scheme that can incline towards energy-efficient or spectrally efficient

operating points depending on the choice of utility function. Existence and uniqueness

of Nash Equilibrium [15] (NE) points in this game are shown via convergence of the

distributed power iterations. The best-response strategy is shown to converge to the

strategy of each user selecting a single access point, and the corresponding power levels

used for various priorities between energy and spectral efficiency are characterized.

In Chapter 3, we study distributed power control in an interference network. We define

quality of service (QoS) objectives of users based on fading induced outage probabil-

ities. Starting from the objectives, we construct a utility function. Feasibility and

optimality of the power allocation in equilibrium of resulting distributed mechanism

are investigated using a game theoretic approach. Then, we modify the utility func-

tion such that users smoothly decrease their objectives with increasing interference in

the form of non-monotonic reaction curves. This modified game has a unique NE and

resultant modified power control algorithm will be called non-monotonic power con-

trol (NMPC). As users self-select to reduce power smoothly, NMPC is power-efficient

when their own SIR objectives are made unfeasible by the channel gains available.

This algorithm leads to a smooth transfer of resources from disadvantaged user to the

advantaged in terms of channel state. By means of a numerical example, NMPC is

shown to increase the number of users that achieve the objective without removing

any user. Besides, it considerably decreases total power consumption.

In Chapter 4, we extend the approach in Chapter 3 to a control theoretic setting.

3



When rate expectations of users in a wireless network cannot all be continuously

satisfied, one choice is to discard some users from the system, in a mechanism usually

called admission control. However, in a data network, users have a certain tolerance

to occasional rate outages. We argue that reducing users’ rate objectives smoothly,

by considering an outage probability tolerance, may be more preferable to the users

than not being provided any service at all. We propose a distributed utility based

algorithm for doing this. The smoothness of reactions is maintained by transmit

power reaction curves to be absolutely subhomogeneous as a function of interference.

This is done through introducing an “objective reduction factor”, in addition to a

linear price. We first provide conditions for a unique NE. Assuming that distributed

nodes use gradient based optimization, convergence and error sensitivity of gradient

based iterative algorithms are analyzed [2]. Lastly, the continuous-time counterpart of

the problem is considered and a stability condition is established for the system [28].

Finally, in Chapter 5, we analyze throughput performance of a wireless downlink using

a queueing theoretic framework. In particular, we consider a finite buffer shared by

multiple packet queues. Using results about buffer sharing under Poisson arrival and

service in previous literature [13,23,25], we observe that throughput can be improved

by partitioning the buffer space among the queues judiciously, especially under unbal-

anced and high load regime. We formulate optimal buffer partitioning as a resource

allocation problem, the solution of which is found through a greedy incremental al-

gorithm in polynomial time. The rest of the work is devoted to applying the optimal

buffer allocation strategy in different scenarios modeling a wireless downlink. First,

the strategy is applied in a general parallel M/M/1/mi system and a numerical study

verifies that the strategy may boost the throughput considerably. Then, the buffer

allocation problem to queues belonging to users with different arrival rates is tackled

jointly with assignment of users to the set of available channels(bands). The joint op-

timization problem is solved by a best channel highest arrival rate policy under certain

assumptions along with On/Off channel model. Lastly, buffer allocation is considered

for scheduled service. By means of numerical studies, separate buffer allocation and

user scheduling is shown to operate close in throughput to joint queue aware policies.

We conclude the thesis in Chapter 6 by emphasizing key points addressed and possible

extensions for future work.
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CHAPTER 2

DISTRIBUTED CONTROL OF TRANSMIT POWER

FOR ENERGY EFFICIENCY IN WIRELESS

NETWORKS

2.1 INTRODUCTION

The material in this chapter partially appears in Proceedings of IEEE 17th Signal

Processing and Communications Applications Conference [44]. A fuller version of this

chapter is under review [45]. The work in this chapter has been performed as a part

of the project [66].

Due to the broadcast nature of wireless communication, and the interference this tends

to cause, the performance of a user in a wireless network can be highly dependent on

other users’ actions. One of the possible actions is the choice of transmission power.

In order to achieve a certain rate, for example, a user may need to increase its transmit

power as interference level increases. This in turn, can increase the interference on

others, who respond, and so on. This interaction may culminate at a stable operating

point where every user is satisfied with its own level of signal-to-interference ratio.

However, this operating point may not always be energy-efficient. There is a well

known tradeoff between energy efficiency and transmission rate [65, 67], and in the

context of a wireless network, increasing transmission power only makes sense if,

considering the network’s response, it will ultimately lead to an appreciable gain in

rate.

In principle, a network can be engineered to converge to a desired operating point by

using a suitable power control algorithm. Of course, for implementability, distributed
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algorithms are attractive. Distributed power control, where wireless nodes make their

own power control decisions (possibly asynchronously) has been the focus of a large

body of previous studies [14, 19,22,70,72,75].

In recent years, game theory [15] has been used to model the interference-induced

interaction in wireless communication, and to obtain distributed algorithms [3, 12,

39]. In fact, communication networks form an increasingly popular setting for the

application of game theory [43]: For one thing, the terminals (nodes) are quite truly

rational, and usually selfish players.

A power control game arises when users are able to adjust their power in response

to the interference they cause on each other’s receiver, with the goal of maximizing

the utility of their communication with their intended receiver. Depending on the

constraints and the utility function, there may be an equilibrium or several equilibria

in this game. The network designer’s problem is to design the utility function to

give rise to a desirable equilibrium from the perspective of the whole network. One

particular goal for the network designer is to maximize network energy efficiency, that

is, the total power used per overall throughput in the network.

One approach through which users can be driven to be efficient while also trying to

maximize their rate has been pricing. In this case, users try to maximize a net utility,

which is utility minus a price, where price is a function of, say, power. However,

pricing is not always natural in settings where there is no center to collect them or if

the center is not also a player in the game. In this chapter, we set up a utility model

that does not have an explicit price in it in order to especially address ad-hoc or sensor

networks where network-wide energy-efficiency is important, yet prices would be a bit

out of place.

The single base-station uplink power control game has been addressed and solved

in the literature for various utility functions [53, 57]. The main contribution of this

chapter is to solve the multiple base-station (access-point) uplink power allocation

problem. The best-response strategies (reaction curves) are found, and the existence

and uniqueness of Nash equilibrium is shown. Iterative methods to reach the equi-

librium are presented. Secondarily, the behavior of equilibria under utility functions

with varying degrees of energy-efficiency or throughput-maximization priorities are
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investigated.

2.1.1 Related Work

In [53], power control games in a single cell system are considered with a utility func-

tion in the form of rate/power. A “socially optimum” operating point is derived and

prices are introduced to obtain a point closer to the social optimum. In [3], CDMA

power control is modeled as a non-cooperative game with utility proportional to rate.

Linear prices may result in admission control, since users may opt out of the network

as they try to unilaterally optimize net utilities. In [39, 40], power control games in

a CDMA system are established with an energy-efficiency goal. With different types

of receivers, adaptive modulation and coding, hybrid games are obtained and equilib-

rium points are analyzed. Analysis of non-cooperative power control in a single cell

multi-carrier CDMA system is presented in [38]. The multiple base-station problem

addressed in this chapter, while carrying similarities to the multi-carrier CDMA prob-

lem, does not reduce to it, as users that select different base stations still potentially

cause interference on each other (whereas users selecting different carriers do not).

The rest of the chapter is organized as follows: the next section describes the system

model and some definitions. In §2.3, the expression and properties of the utility

function are given. The single access point system is analyzed in §2.4. In §2.5 the

multiple base-station vector power control game is analyzed. Considering different

priorities for different applications, the trade-off between energy and spectral efficiency

is considered in § 2.6. Conclusions are presented in §2.7.

2.2 SYSTEM MODEL

We consider a wireless network of K users and M access points (Fig. 2.1). Users can

transmit with a rate up to R bps in a common frequency band B Hz. Let the channel

gain between user i and access point b be hib. Channel gains are assumed constant

during operation. More generally, hib can be considered as average channel gain in a

fading environment.
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Messages are sent from nodes to access points and each access point hears each user’s

message. Let the message signal of user k to destination access point b be Xkb. The

signal Yb, received at base station b is:

Yb =
K∑

l=1

M∑

j=1

√
hlbXlj + Zb (2.1)

Zb is additive noise at access point b. For convenience, we model Zb as white Gaussian

with zero mean and E|Zb|
2 = σ2. Pij is the average power of the message Xij :

E|Xij |
2 = Pij . Each user is subject to a power constraint:

M∑

j=1

Pij ≤ Pmax ∀i

hkb

Access Point b
User k

Figure 2.1: Wireless Network with Several Users and Access Points

We consider single user decoders in the receivers. Depending on the receiver structure,

cross channel gains may be suppressed by additional processing gains. Typical appli-

cation of this model is DS/CDMA [62] with specific spreading codes for each possible

link. As user i sends different data to different users, user i’s own message to access

points other than b are also treated as interference at access point b. Interference will

be treated as noise, as it is usually done in practical receivers, and will be modeled as

Gaussian, which can be a good assumption as the number of independent interferers
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grows. Gp stands for processing gain. Signal to interference plus noise ratio (SINR)

of user k in the receiver of access point b is:

γkb = Gp
hkbPkb

σ2 + (
∑K

i=1

∑M
j=1 hibPij) − hkbPkb

(2.2)

The model with multiple access points has been motivated by a number of communi-

cation scenarios: (i) a local area network where wireless nodes may be in the range of

multiple access points, (ii) an ad-hoc wireless network with multiple gateway stations

that enable connection to a larger, wired network, (iii) the microdiversity system in

Hanly [21] where multiple access points are considered as a single access point having

multiple antennae distributed in space. The understanding in these scenarios is that

the connections between access points are wired and the communication among them

is straightforward.

In each of these settings, the signaling and coding can take different forms. In addition

to the immediate example of a CDMA system given in the previous paragraph, other

relevant models include multicarrier signaling and time division: In an OFDM mul-

tiplexing strategy, users can allocate different subcarriers to different access points,

and divide their total instantaneous power among the subcarriers. In this case, the

structure of the problem is somewhat different than the single-carrier version in that

users are only subject to interference from users on the same subcarrier. Similarly,

users could allocate different time slots to access to different base stations, allocating a

long term average power constraint between time slots. Again, interference is between

subsets of users using the same time-slot. While characterizing the equilibrium points

are more involved in the multicarrier and multislot models, some of the results in this

chapter continue to hold, as will be argued later in the chapter.

Note that the effects of strategies of the other users are observed in the denominator

of the SINR expression in Eq. (2.2). Hence, users are in such an interaction that

performance of one user is degraded when another user attempts to increase its power.

This interaction is observed not only in single user decoders but also in multiuser

detectors such as MMSE [40] and MMSE SIC [8]. In order to analyze this interaction

among users, we will employ static noncooperative game theory.
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2.2.1 Static (One-Shot) Games and Equilibrium [15]

A static game is denoted as Ω = [U, {Si} , {ui}]. Three components to define a static

game [15] are:

1. User set U

2. Action or strategy set Si, ∀i ∈ U

3. Utility ui as a function of elements of Si, ∀i ∈ U

The user set is the index set of players: U = {1, 2, ..., K}. Given the other users’

actions, users unilaterally maximize their utility in their strategy set. The notion of

equilibrium that captures the non-cooperative nature of the problem is called Nash

equilibrium. An operating point such that no user can achieve higher utility by uni-

lateral changes in action is Nash equilibirum.

Definition 2.2.1 A Nash equilibrium (NE) is the vector of strategies ~s∗ = [s∗1, s
∗
2, s

∗
3, . . . , s

∗
K ]

such that

ui(s
∗
i , ~s

∗
−i) ≥ ui(si, ~s−i) ∀si ∈ Si

is satisfied for all user i where ~s−i = (s1, s2, .., si−1, si+1, .., sK).

Note that a NE is not necessarily pareto-optimal, i.e. there may be a point with

utilities u′
i that is feasible and yet u′

i > u∗
i ∀i where u∗

i is the value of user i’s utility at

NE. Actually it is possible to obtain higher total utility using a cooperative mechanism

such as pricing [53,70]. Since (selfish) users are not interested in overall performance

of the network, each user optimizes its own utility in its own action space.

Given actions of users other than k, ~s−k, best response (in other words, the reaction

curve) of user k, rk, is:

rk(~s−k) , arg max
sk∈Sk

uk

NE can also be defined in terms of best responses. ~s∗ is NE iff s∗k = rk(~s
∗
−k) ∀k. In

other words, NE is a fixed point of best responses. Consequently, the concept of NE is

well-suited to the wireless network power control problem, and we will analyze stable

operating points through examining the existence and properties of NE.
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2.3 UTILITY FUNCTION

In game theoretic terms, utility function ui is a mapping from the Cartesian product

of action sets of users to real numbers, ui :
∏K

j=1 Aj → R. The value of the function

ui represents the level of satisfaction of user i with respect to some goal. Usually,

in a communication scenario, satisfaction of a node is related to the communication

performance such as throughput, outage probability, BER, SINR and power or energy

cost. The choice of utility can also depend on external conditions: when spectral

resources are scarce, throughput carries high utility, whereas if energy is limited, a

utility that decreases with transmit power is appropriate. However, a combination of

these parameters must determine the level of satisfaction for mobile data users. Bits

successfully sent per joule of energy spent has been a well known utility function [40,

53, 54] that appropriately combines throughput and cost terms, encouraging energy-

efficient behavior.

The standard definition of throughput is the long term average data rate (bits per

transmission) achieved. Taking into account link-layer framing and error control mech-

anisms whereby a data packet (say, a constant number of bits) is declared unsuccessful

if more than a certain number of bit errors occur and resulting packet drops which

happen with finite probability, throughput by definition is upper bounded by the long

term average coding rate, R. In previous literature, throughput was often modeled

as a sigmoidal function of SIR, or SINR (see Fig. 2.2).) [34]. The main reason for

this is, as a certain threshold in SNR (SINR) γ is exceeded, packet success probability

quickly rises toward 1 with many practical as well as optimal modulation and coding

schemes. As a very simple example for the occurrence of the sigmoid, consider the

following: packets of length L symbols, are sent using BPSK, and the code rate is R

bits per symbol. Each bit is decided erroneously with probability BER(γ). Then, the

long term average throughput T is:

T = R(1 − BER(γ))L (2.3)

When BER(γ) is decreasing with concave and convex regions, as it is typically the

case, T is a sigmoid (e.g., [34]), that is, there is an inflection point γ such that T (γ)

is convex in [0, γ) and concave in (γ,∞). Note that Eq. (2.3) is in the form of an

effective rate, that is, rate multiplied by an efficiency function (packet success rate)
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f(.).

T = Rf(γ) (2.4)

The sigmoidal assumption for f(γ) is valid in many communication scenarios. In a sys-

tem with fixed coding and modulation, such as an ARQ scheme with CRC check [27],

f(γ) has sigmoidal shape. Even if messages heard by each access point were decoded

in a common center, sigmoidal assumption still holds for a fixed coding scheme. More-

over, in case modulation and rate are adapted to changes in SINR, the sigmoidal shape

still applies [39]. Consistent with observations from many theoretical and practical

research results [8,27,38,40,52], f(γ) will be assumed to have sigmoidal shape in this

chapter.
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Figure 2.2: Function f(γ) v.s. γ in normal scale. It is plotted for BPSK modulation with packet
length L = 400 bits.

Let Tkb and pkb be the throughput and power of user k for communication with access

point b respectively. The utility function uk is defined as the ratio of total goodput

to total dissipated power:

uk =

∑M
b=1 Tkb∑M
b=1 pkb

(2.5)

Note that the motivation for having the power term in the denominator of the utility

function is to encourage energy-efficient behavior of users.

12



To avoid associating a positive utility with no transmission, we must have uk → 0

when
∑M

b=1 pkb = 0 for all k. Because, the utility in no transmission case must be

zero. In order to satisfy this condition, we assume that the following two hold:

lim
γ→0

f(γ) = 0 , lim
γ→0

f ′(γ) = 0

Before approaching the general problem, we will first tackle a simpler case. To that

end, in the next section, we formulate and analyze the power control game in a single

access point system.

2.4 POWER CONTROL GAME IN A SINGLE ACCESS POINT

SYSTEM

The notation of this section is obtained by letting M = 1 in the general setup. The

strategy set of each user i is S1i = [0, Pmax], where Pmax is the maximum power level

allowed for each user. Utility function of user k is

u1k =
Tk

pk
(2.6)

Tk is the long term average rate as in Eq. (2.3). Let Ω1 = [U, {S1i}, {u1i}] be the

one-shot game in which each user unilaterally performs the following optimization

max
pk∈S1k

u1k(pk, P−k) for all k ∈ U

An important property possessed by the utility functions ui that plays a key role in

the existence and uniqueness of equilibrium is quasiconcavity.

Definition 2.4.1 A function f : ℜ → ℜ is quasiconcave if ∃x0 such that f is non-

decreasing in x < x0 and f is non-increasing in x > x0

It is observed and can be verified that given P−k, ui(pk, P−k) ∀i are quasiconcave with

respect to pk ( Fig. 2.3 ).

Theorem 2.4.2 Ω1 has a Nash Equilibrium.
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Proof: The result follows from compactness and convexity of strategy set Si and

quasiconcavity of utility functions ui of users (see Theorem 1 in [53]).
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Figure 2.3: Typical variation of utility function uk with power pk given other users’ powers. It is
quasiconcave: monotone increasing up to some value of power, and monotone decreasing afterward.
Note that, depending on Pmax, the decreasing regime may not be observed, but this does not violate
quasiconcavity.

Given pj j 6= k, γk changes linearly with pk. Letting h̃k be effective channel gain of

user k, SINR expression in Eq. (2.2) is:

γk = h̃kpk (2.7)

h̃k =
Gp hk∑

i6=j hipi + σ2
(2.8)

p∗k that optimizes uk over the compact set Sk = [0, Pmax] is such that either it is on

the boundary or it satisfies

∂uk

∂pk
= 0 , pk ∈ Sk

Proceeding by taking the derivative and using the linearity of SINR with transmit

power, the best response rk(P−k) of user k is found as:

rk(P−k) = min

{
γ∗

h̃k

, Pmax

}
(2.9)

γ∗ is unique positive solution of the following equation [51]:

f(γ) = f ′(γ)γ (2.10)
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The value of γ∗ depends on the sigmoidal function f(γ) such that the horizontal

component of the intersection point in Fig. 2.4 is strictly greater than the inflection

point of the sigmoid [51]. Note that the shape of the sigmoidal function is determined

by modulation and coding scheme.

γ f’(γ) f(γ)

γ
*

Figure 2.4: γ∗ is unique positive valued solution of Eqn. (2.10)

By definition, solution(s) of the fixed point equations pk = rk(P−k) is (are) NE(s).

Consider the corresponding fixed point iteration pk(t + 1) = rk(P−k(t)) where the

power of user i at iteration t is pi(t). The iterations converge to the unique fixed point

iff NE is unique. To investigate the convergence of the fixed point iterations, it is useful

to view the iterations as a power update algorithm I(.) such that p(t + 1) = I(p(t))

where p(t) = [p1(t), p2(t), ..., pK(t)]. In our problem, the explicit form of I(.) is such

that Ii(p(t)) = min{p̂i(t), Pmax} where

p̂i(t) =
γ∗
∑

j 6=i hjpj(t) + γ∗σ2

Gp hi
, i = 1, 2, ..., K

It is evident from the above expression that our I(.) satisfies the standard power

update algorithm definition of Yates [71]:

Definition 2.4.3 I(.) is a standard update algorithm if it satisfies

1. Positivity, I(0) > 0
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2. Monotonicity, I(p1) > I(p2), whenever p1 > p2

3. Scalability, I(αp) < αI(p), ∀α > 1

From [71], if algorithm Î(.) with Îi(p(t)) = p̂i(t) is a standard algorithm, then

Ii(p(t)) = min{p̂i(t), Pmax} has a unique fixed point. Hence, we conclude that our

power update algorithm I(.) has a unique fixed point, and consequently Ω1 has a

unique Nash equilibrium.

Theorem 2.4.4 Ω1 has a unique Nash equilibrium.

In general, pk = rk(P−k) ∀k form a system of K non-linear equations. In our particular

problem in Eq. (2.9), non-linearity of rk is due to clipping with Pmax. If Pmax

is assumed sufficiently large, NE is a solution to the following system of K linear

equations:

hkpk∑
i6=k hipi + σ2

= γ∗ ∀k = 1, 2, .., K

The linear system above may have no solution, a unique solution or infinitely many

solutions. If γ∗ is feasible, then the system has a unique solution. The feasibility of γ∗

can be determined using Perron-Frobenius Theorem1 [56]. If the problem is analyzed

in terms of received powers, one can show that the feasibility condition is γ∗ <
Gp

K−1 .

If this condition is not satisfied, power update algorithm Î(.) diverges and for some

of the users p∗i = Pmax and γi < γ∗ while other users achieve γ∗ at NE. On the other

hand, the feasibility condition is necessary (but not sufficient) for all users to achieve

γ∗.

Now that the power control game in a single access point system has been analyzed

and properties of NE derived, we turn our attention to the general multiple access

point system in the next section.

1 Perron-Frobenius Theorem states that the maximum normed eigenvalue of a matrix with non-
negative entries is positive valued and corresponding eigenvector has entries with same sign. It has
implications about inequalities in the metric space of positive numbers. Th. 3.5.1 in the next chapter
briefly explains the theorem. See [56] for a thorough statement of the theorem.

16



2.5 POWER CONTROL GAME IN MULTIPLE ACCESS POINT

SYSTEM

Consider the general model with M access points (Fig. 2.1.) As before, users are

subject to power constraint Pmax. However, now they are allowed to transmit to more

than one access point at a time. In other words, users can divide their power budget

and transmit (different) data to different access points in order to (possibly) obtain a

multiplexing gain.

In this case, the strategy set of a user is

S2k =



[pk1 pk2 . . . pkM ] ∈ RM

+ :
M∑

j=1

pkj ≤ Pmax



 ∀k (2.11)

The utility function is as in Eq. (2.5):

u2k =

∑M
b=1 Tkb∑M
b=1 pkb

Tkb is the long term average rate of user k in access point b. We will analyze Ω2 =

[U, {S2k} , {u2k}] and corresponding user optimization is as follows:

max
pk∈S2k

u2k(pk,P−k)

where pk = [pk1pk2 . . . pkM ] and P−k = [p1p2 . . .pk−1pk+1 . . .pK ].

The following theorem will reveal the special structure of the best response strategy,

namely, each user transmits to a single access point:

Theorem 2.5.1 The utility maximizing strategy of user k, p∗
k , given P−k in game

Ω2 is such that:

p∗kb =





p∗k, if b = b∗k

0, otherwise.
(2.12)

b∗k = arg max
b

{
ĥkb

}
(2.13)

p∗k = min(Pmax,
γ∗

ĥkb∗k

) (2.14)

ĥkb =
Gp hkb

σ2
b +

∑K
i=1 i6=k hib

∑M
j=1 pij

(2.15)
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Proof: The proof relies on the results obtained for single access point system. First,

the set over which the optimization is performed is extended to [0, Pmax]M . The

result for the optimum in single access point system is used, and a componentwise

summation yields the desired conclusion. The details are given in Appendix 6.

Theorem 2.5.1 suggests that each user should just transmit to the access point that

requires minimum power. The similarity of this strategy to the sum-rate optimum

strategy of transmitting to a single user in each channel state in the fading broadcast

channel model [63] is notable. The aim of the resource allocation formulation in [63] is

maximizing long term average rate, given an average power budget. In contrast, in our

formulation, the power budget is optimally divided among base stations to maximize

the utility. Put in a different way, optimizing energy efficiency requires achieving a

target SINR γ∗ by choosing the best access point, while rate maximization allocates

all power resource to the best channel.

In conclusion of theorem 2.5.1, the problem reduces to a joint access point assign-

ment and power control problem. Consider a new game Ω3 = [U, {S3k} , {u3k}]. The

strategy set S3k for each user k is:

S3k = B × P ∀k = 1, 2, ..., N (2.16)

where B = {b1, b2, . . . , bk} and P = [0, Pmax], bi being the ith access point. Let bk

and pk be the access point assignment and transmit power of user k, respectively.

γkbk
= ĥkbk

pk is the SINR of user k. Each user has the following utility function:

u3k = R
f(γkbk

)

pk
(2.17)

Access point assignment and power control game Ω3 is originally proposed in [54]. In

order to find the best-response strategy, optimization is performed in two stages [54]:

1. Given all users’ powers are fixed, the selection of user k is b∗k = arg maxb∈B γbk

2. Given access point b∗k is assigned, the utility maximizing power level is p∗k =

min

{
γ∗

h̃kb∗
k

, Pmax

}

Note that the best response strategies of Ω2 and Ω3 coincide. In [54], Ω3 is proved

to have a unique Nash equilibrium. Similar to the single access point problem, the
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existence proof is based on compactness, convexity of [0, Pmax] and quasiconcavity of

f(γ); the uniqueness proof is by direct verification that the best response strategy is

such that a standard update algorithm is clipped with power limit Pmax (this is made

precise in Appendix 6).

Theorem 2.5.2 Ω2 and Ω3 have unique Nash equilibria. In NE of Ω2, user k only

transmits to the access point that is assigned in NE of Ω3 with nonzero power and

transmit power pk in NE of Ω2 and Ω3 are equal for all k.

Earlier work of Yates [72] posed a non-game theoretic integrated power control and

access point assignment problem. While the formulation was not that of a game, it

applies to the problem at hand. In a K user and M access point system, minimum

total transmit power vector (MTP) is found under SINR constraints γ′
i where each

user is assigned to only one access point.

γi ≥ γ
′

i ∀i = 1, 2, ..., K (2.18)

If γ
′

i are feasible then there exists a unique solution for MTP problem. Perron-

Frobenius Theory [56] is again deployed for analyzing feasibility. Assuming that each

user is assigned to a fixed access point, SINR constraints and channel gains are com-

bined in one matrix. The feasibility condition is that resultant Perron-Frobenius

eigenvalue λPF < 1 for some assignment among KM possible assignments.

Set γ′
k = γ∗. Provided that Pmax is sufficiently large and feasibility is satisfied, the

Nash equilibrium point of Ω2 and Ω3 are equivalent to the unique solution of minimum

total transmit power problem with γ′
k = γ∗.

It is interesting to extend the system model to a multicarrier multiple-access point sys-

tem. The existence of multiple carriers introduces an extra dimension to the strategy

sets: now users, by picking which subcarriers to use to access which base station (and

how much of their total power to allocate to it), are picking a subset of interferers.

The results in [38] and Th. 2.5.1 straightforwardly combine to conclude that the best

response strategy would be to transmit to only one access point by putting the total

power on a single carrier. However, the game may not have unique NE in this case:

Due to the orthogonality among the carriers, monotonicity and thus the standardness
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property cease to hold: as different users can transmit in different carriers, one user

may not respond to an increase in another user’s power. Therefore, the uniqueness

of NE is not guaranteed, and in fact, as observed in [38], for some values of channel

gains, multiple Nash Equilibria may exist.

2.6 ENERGY AND SPECTRAL EFFICIENCY

The analyses of games for single access point system in § 2.4 and for multiple access

point system in § 2.5 were based on energy efficient utility with unit bits per joule.

Unilateral optimization of utilities led users to reach a target SINR γ∗, which is the

unique solution of the equation f(γ) = f ′(γ)γ. However, the spectrum resource is

inefficiently used in case γ∗ has a low value. This observation points to the trade-off

between energy and spectral efficiency.

In order to make the trade-off more clear in the game settings, we introduce a priority

exponent α > 0. Consider the single access point system. We propose to change the

utility function as follows:

uk =
Tk

pα
k

(2.19)

The priority exponent α brings a variable degree of energy efficiency to the utility

function. For α = 1, the utility function in Eq. 2.6 is obtained. α < 1 means that

users value spectral efficiency more while α > 1 drives users to be more energy-efficient.

The equilibrium SINR γ∗ is the unique solution of

f(γ) =
1

α
f ′(γ)γ

The variation of the γ∗ for different values of α is shown in Figs. 2.5 and 2.6.

A similar modification can be made to the utility function for multiple access point

system:

uk =

∑M
b=1 Tkb∑M
b=1 pα

kb

(2.20)

In this case, the best response is again transmitting to a single access point that

requires lowest power to reach γ∗. Variation of γ∗ with respect to α is same as that

depicted in Figs. 2.5 and 2.6.
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2.7 CONCLUSION

In this chapter, we analyzed vector power control in the uplink of a general multi-

ple access point system using a game theoretic framework. Given the other users’

strategies, each user optimizes its utility. Utility function is chosen based on users’

priorities. With an energy efficiency motivation, utility was first chosen in the form

of rate over power. A vector power control game was proposed using this utility

function. Best response strategy of the game was shown to have a special structure:

transmitting to a single access point. Hence, the game reduced to access point selec-

tion and power control. Existence and uniqueness of the game was established using

this special structure.

The best-response strategy basically leads to a target SINR based power control algo-

rithm. Target SINR γ∗ is determined by the coding and modulation type. The Nash

Equilibrium (NE) of the game, and existence conditions for it were shown. When γ∗

is feasible, NE corresponds to the minimum total transmit power vector under quality

of service constraint γ∗.

Finally, the utility function was modified to have a variable degree of energy efficiency.

The variation in the target SINR γ∗ with respect to priority exponent was analyzed

and the trade-off between energy and spectral efficiency was verified.
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CHAPTER 3

DISTRIBUTED POWER CONTROL USING

NON-MONOTONIC REACTION CURVES

3.1 INTRODUCTION

The material in this chapter partially appears in Proceedings of 2009 International

Conference on Game Theory for Networks in [43]. The work in this chapter has been

performed as a part of the project [66].

In general, a wireless network could be viewed as an interference network. In such a

network, power control could be employed to provide an acceptable level of service to as

many users as possible with the minimum amount of energy consumption. Distributed

power control mechanisms are attractive in networks where central control is not

practical.

Among earlier distributed power control algorithms, the proposals of [14,75] should be

noted. In [14], the goal is to guarantee all users a certain target signal to interference

ratio (SIRtar). The following power iteration (to be performed at each terminal) is

at the core of the algorithm:

P (t + 1) = SIRtar I(t)

G
(3.1)

where I(t) is total received interference power at time t and G is an effective channel

gain. In the rest, we will refer to this as Algorithm 1 and a power-limited version

of it as Algorithm 2. It should be noted that when the target SIR is not feasible,

Algorithm 1 diverges [70] (Figure (3.5)).

In [75], the number of users that achieve a target SIR is optimized. When this target

is not feasible, the users whose performances are degraded by interference most are
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removed from the system step by step (referred to as SRA in [75]). The effect of

interference on a user is measured by sum of interfering channel gains divided by user’s

own channel gain. Although a center decides which user is removed next, distributed

power iterations similar to Eq. (3.1) are performed to decide that target SIR is not

feasible (in the rest, we refer to this stepwise removal procedure as Algorithm 3).

Game theory has been a natural tool for developing distributed power control mecha-

nisms. A main stream of questions has revolved around the choice of utility function

and the quality of the resulting equilibria. In [19], a non-cooperative game is set up

based on a certain utility function at the wireless nodes; when equilibrium turns out

to be inefficient, price functions are introduced which result in Pareto improvements.

In [53], Pareto optimal pricing that involves central processing is derived. In [18],

a different central mechanism is proposed to improve the equilibrium: simultaneous

reduction of target SIR values. In [70], net utilities with linear pricing led to an

admission control mechanism.

By adjusting the linear price coefficients as a function of channel gain [3] or interference

power [70], it is possible to obtain distributed power control algorithms that address

important issues such as throughput efficiency, delay tolerance and near-far fairness.

Perhaps pricing is most suited in a framework where the service provider (network

operator) is also an actor in the game [1, 12], with a goal of maximizing its own

revenue. However, pricing is not very natural in systems like wireless ad-hoc and

sensor networks where agents are cooperative rather than competitive. Ironically, a

level of cooperation emerges when users non-cooperatively optimize their net utilities

as discussed in [70]. Each user decreases its objective with increasing interference. We

investigate this cooperation emanating from the non-cooperative behaviour.

In admission-control type approaches (with or without pricing), some users are dis-

carded from the system in order to provide certain guarantees for others. Such schemes

can be characterized by reaction curves [6] that discontinuously fall to zero. We argue

that this is not ideal for data-intensive applications, which have a certain degree of

flexibility and would live with a lower than perfect SIR. Non-monotonic and contin-

uous reaction curves may ease the inflexibility. In this context, we aim for a smooth

mechanism of distributed power control via suitably designed utility functions.

24



Energy-efficiency has been central to the utility function in a number of recent game-

theoretic power control formulations [38, 39]. A simple utility function with a power

term in the denominator serves this purpose quite well, however such an approach

turns out to be too simplistic for practical purposes as resulting equilibria may have

very low spectral efficiency. It seems that the energy-efficiency goal should be com-

bined with some acceptable quality objective about spectral efficiency, rate, or SIR.

How this should be done requires more thought.

At this point we should recognize that as wireless channels are typically time varying,

the definition of ”acceptable quality” will involve time averages or a probabilistic state-

ment on an appropriately chosen statistical channel model. One of the simplest quality

metrics is outage probability. Study of distributed power control within an outage for-

mulation is relatively recent. For example, in [47], outage probability constraints in

CDMA systems with Rayleigh faded links are studied and distributed algorithms are

devised to jointly control power and receiver filter coefficients. Extensive analyses of

price functions and update algorithms are presented in [2].

The contribution of this chapter is to exhibit a utility function, which, when used in

a non-cooperative game, allows power-efficient approximation to outage probability

targets. The key to this behavior is the non-monotone and sub-homogeneous reaction

curve induced by the utility function developed. This can be viewed as an alternative

to pricing. We establish a sufficient condition for the existence and uniqueness of

(Nash) equilibrium of our distributed algorithm. Moreover, we show how an admis-

sion control-type power control algorithm can be smoothened so that the sufficient

condition is satisfied.

The next section sets up the system model, followed by the construction of our utility

in §3.3. Then, definition of Nash Equilibria (NE) and their interpretation in terms

of reaction curves are presented in §3.4. §3.5 is devoted to the analysis of feasibility

and optimality. Smooth reduction of objectives is analyzed in §3.6. We illustrate our

results with a numerical example in §3.7 and conclude the chapter in §3.8.
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3.2 SYSTEM MODEL

We consider a wireless network that contains a number of interfering links {i =

1, . . . , K}, each link corresponding to a distinct transmitter as in Fig. 3.1. We denote

index set of links as < K >. Link i has a transmitter t(i), and receiver r(i). The

receivers r(i), i = 1, . . . , K are not necessarily distinct. (For example, the case of all

r(i)’s being the same models the uplink of a centralized network having a single base

station or access point.)

The channel gain between t(i) and r(j) is Gijhij . That is, due to a signal of power Pi

transmitted by the sender of link i, the receiver of link j receives a signal (interference

if i 6= j) of power GijhijPi. The hij are fading coefficients, while the {Gij} model

interference mitigation due to the specific channel allocation and coding scheme used.

This model is quite general in that, by proper choice of the coefficients {Gij}, it can

model centralized or distributed network architectures, as well as different channel

access mechanisms such as CDMA, TDMA and FDMA.

For convenience, in the rest of the chapter, a Rayleigh-Rayleigh [26] environment is

assumed, i.e., all signal and interference terms are subject to Rayleigh fading. Accord-

ingly, the hij are independent exponentially distributed random variables with unit

variance. Gij are assumed constant during the operation. For convenience, additive

noise and intercell interference are modeled as Gaussian random variables with zero

mean and noise variance is σ2.

We consider single user decoders in the receivers. Depending on the receiver structure,

cross channel gains may be suppressed by additional processing gains. We do not focus

on receiver type; hence, we assume that additional gains are also represented in the

channel gains. The signal to interference ratio (SIR) of user i is given as:

γi =
GiihiiPi

σ2 +
∑

j 6=i GjihjiPj
(3.2)

Each user is subject to power constraint: Pi ≤ Pmax ∀i. Wireless links undergo outage

with probability Oi

Oi , Pr(γi < γth)

where γth is threshold SIR required for communication. γth is determined by several

system properties such as rate, modulation and receiver structure, which is outside
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Figure 3.1: A set of interfering links

the scope of our work (e.g. see [20]). In the rest, we assume the same γth for each

user1.

The expression of Oi for the Rayleigh/Rayleigh environment is not derived here, but

rather we forward reader to [47]. Let xji = Eh(GjihjiPj) = GjiPj be average inter-

ference power of user j on user i and xii = Eh(GiihiiPi) = GiiPi is average received

signal power of user i.

Oi = 1 − exp(
−σ2γth

xii
)
∏

j 6=i

1

1 +
γthxji

xii

(3.3)

In [26], outage probability in Rayleigh faded noiseless multiple access channel is upper

bounded by an exponential term and this result was extended in [49] for the noisy

case as follows:

Pr(γi < γth) ≤ 1 − exp(−
γth

SIRavg
i

) (3.4)

where

SIRavg
i ,

GiiPi

σ2 +
∑

j 6=i GjiPj

SIRavg
i is average SIR with respect to all hji. In [26], it is implied that above upper

bound well approximates the outage probability especially when the outage probability

is below 20%. In fact, the approximation becomes very tight for both extremes.

Users have a certain tolerance to outages. We consider quality of service as utility

and define it in terms of outage probability tolerances. As power control is addressed,

1 The results straightforwardly extend to the case of different γth’s for users, which can model
e.g.different receiver structures.
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utility is defined as a function of average power. In the next section, the utility

function will be characterized.

3.3 UTILITY FUNCTION

In game-theoretic terms, a utility function is a mapping from the action space into real

numbers ui :
∏K

j=1 Aj → R. In our distributed power control algorithms, the action

space will contain power levels used. The actual utility of a user may depend on the

type of application as well as constraints such as energy. For example, a suitable utility

could be a step function (or sigmoid) of SIR for constant-rate real-time applications.

On the other hand, a (function of) packet success probability divided by average power

has been a popular utility function for delay-tolerant data (with ARQ) when energy

is expensive [10,53].

In [70], utility is a softened step function, which is based on target SIR. Similarly,

our starting point is outage objectives. Suppose each user i has an outage probability

objective Oobj that it wants to stay below. Being close to the outage objective will

carry some utility, as long as it is not too costly in terms of power. We can capture

this idea in the following simple utility function, which we shall call Utility 1:

ui =
exp(− SIRobj

SIRavg
i

)

Pi
(3.5)

It is shown in [47] that given an outage objective, there is an SIRobj such that

SIRavg
i ≥ SIRobj ensures that the outage objective is reached. From (3.4), if SIRobj

is chosen such that exp
− γth

SIRobj = 1 − Oobj , the objective is automatically satisfied.

This sets up a correspondence between outage and SIR objectives similar to the one

in [47]. The goal of Utility 1 will be enabling users to achieve their outage objectives

using minimum power. For simplicity, we assume that the target outage probability

is the same for all users, though extending the results to the case of uneven outage

probability targets is straightforward.

One of the key properties of the utility function in Eq. 3.5 is the quasiconcavity. This

property again plays a key role in the existence of an equilibrium in the power control

game.
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We will devise a distributed mechanism by setting up the power control problem as a

non-cooperative game and analyze the properties of the resulting equilibrium. We will

first introduce the concepts of equilibrium and reaction curves. Then, we will analyze

the established game.

3.4 EQUILIBRIUM IN TERMS OF REACTION CURVES

A Nash Equilibrium (NE) [6] in our setting is the following.

Definition 3.4.1 A NE is a power allocation P∗ = [P ∗
1 , P ∗

2 , P ∗
3 , . . . , P ∗

K ] such that

ui(P
∗
i ,P∗

−i) ≥ ui(Pi,P−i) ∀Pi ∈ Ai ∀i ∈ < K >

where P−i = (P1, P2, .., Pi−1, Pi+1, .., PK).

Each user imposes optimization in its own action variable Pi. Given rival users’ actions

P−i, user i responds by selecting an action P̂i such that ui(P̂i,P−i) ≥ ui(Pi,P−i) ∀Pi.

The set of such P̂i’s form the reaction set of user i:

ri(P−i) =
{
P̄i : ui(P̄i,P−i) ≥ ui(Pi,P−i) ∀Pi ∈ Ai

}

If the reaction set is a singleton, then it is called a reaction curve [6] and P̂i is the best

response action to P−i. NE finds another interpretation in terms of reaction sets. A

vector of actions (P ∗
1 , P ∗

2 , . . . , P ∗
K) is NE if P ∗

j ∈ rj(P
∗
−j) ∀j.

For Utility 1 (Eq. (3.5)), it can be shown that reaction set of each user is singleton.

As action set for user i, Si = [0, Pmax], is a compact set in R, one can proceed with

well known analysis on ∂
∂Pi

ui. ui has a unique maximum at either Pmax or P̃i such

that ∂
∂Pi

ui(P̃i) = 0. Using straightforward calculus,

P̃i = SIRobj
∑

j 6=i

Gji

Gii
Pj +

SIRobj

Gii
σ2

From above discussion, we can state the reaction curve as:

ri(P−i) = min
{

Pmax, P̃i

}
(3.6)

Note that ri(P−i) is the same as the interference function in (3.1) when Pmax is

sufficiently large. ri(P−i) is the reaction of user i to interference power. In this context,
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we consider reaction curves as power update algorithms: Pi(n + 1) = ri(P−i(n)) ∀i.

Incidentally, this corresponds to user i setting its SIR to SIRobj as far as its power

limit allows, i.e., a clipped version of the algorithm in (3.1). In the rest, we refer to it

as Algorithm 2.

The following definition from [42] will be useful.

Definition 3.4.2 A vector power update algorithm F(.), such that P(t+1) = F(P(t)),

is monotonic and strictly subhomogeneous (MSS) if

• F(P2) > F(P1) ∀P2 > P1

• F(αP ) < αF(P ), α > 1

MSS algorithms are standard [71], as above properties imply positivity. It can easily be

verified that the update algorithm r(.) is MSS when [r(.)]i = ri(P−i(n)), the reaction

curve in (3.6). In the next section, we investigate equilibria of this game.

3.5 THE POWER CONTROL GAME

In this section, we analyze the game Ω1

Ω1 = [< K >, {Si} , {ui}]

Initially, we let the power constraints go to infinity, and present results on feasibility

and optimal control for the outage probability objectives and analyze NE of Ω1. Later,

the finite Pmax case is investigated.

3.5.1 Feasibility and Optimal Power Control

We let Pmax be sufficiently large. For the setting with outage probability objectives,

consider the set T

T =
{

[P1, P2, ..., PK ] ∈ RK
+ : Oi ≤ Oobj

}

Exact characterization of T is still an open problem. Yet, as we discussed in the utility

definition, we can obtain a subset of T that is nearly equal to it (especially when Oobj
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is small) by transforming the outage constraints into SIRavg
k ≥ SIRobj ∀k. Therefore

in the rest, we investigate the feasibility of the SIR constraints.

SIRavg
k ≥ SIRobj implies P ≥ SIRobjAP + n where matrix A is defined as

Amn =





0, m = n

Gnm
Gmm

, m 6= n.
(3.7)

and the column vector n with entries ni = SIRobj σ2

Gii
. Related to the existence of a

feasible power vector, we collect important results of Perron-Frobenius theorem [56]

in the following.

Theorem 3.5.1 Let B be a square non-negative irreducible matrix. There exists a

unique non-negative x that satisfies x = Bx+c, c > 0 iff Perron-Frobenius eigenvalue

of B, which is guaranteed to exist and to be unique, satisfies λPF < 1.

If λPF is Perron-Frobenius eigenvalue of matrix A, SIRobj < 1
λPF

is necessary and

sufficient for a feasible vector.

Consider the minimum transmit power problem:

min
∑

i

Pi subject to P ∈ T

If T is replaced with its almost equal subset, we can obtain a near optimal solution. In

that case, the power allocation that satisfies SIRavg
i = SIRobj ∀i is the near optimal

solution. Note that such a near optimal solution exists iff SIRobj < 1
λPF

.

3.5.2 Nash Equilibrium under Pmax → ∞

Reaction sets in (3.6) for sufficiently large Pmax become affine hyperplanes in RK
+ such

that SIRavg
i = SIRobj ∀i. Therefore, NE of the game is solution of K unknown linear

system:

GiiPi − SIRobj
∑

j 6=i

GjiPj = SIRobjσ2 ∀i (3.8)

Any solution of the system other than trivial solution is NE of Ω1. Let I denote K×K

identity matrix.

[I − SIRobj A]P = n
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Any solution of above matrix equation that has strict positive entries is NE of Ω1.

Let Perron-Frobenius eigenvalue of A be λPF . From theorem 3.5.1, if SIRobj < 1
λPF

,

there exists a unique NE. Otherwise, NE does not exist.

Remark 1 If SIRobj < 1
λPF

, then NE of Ω1 is minimum total transmit power vector

in the set defined by SIR constraints.

Note that the cost term in the denominator of utility function leads to cost efficient

behaviour and that further results in minimum total transmit power.

3.5.3 Finite Pmax Case

If the power is limited by Pmax < ∞, the feasible set T and corresponding set of

vectors that meet SIR constraints are also constrained. In particular, there may not

exist power vectors such that SIRavg
i > SIRobj ∀i even if SIRobj < 1

λPF
.

As in chapter 2, we can guarantee the existence of NE by quasiconcavity property of

utility function and compactness, convexity of strategy set (see Theorem 1 in [53]).

Let the reaction curve be deployed as an update algorithm, Pi(t + 1) = ri(P−i(t)).

As argued before, this algorithm is MSS and it will always have a unique fixed point

in the finite Pmax case [71]. As any fixed point of the algorithm is NE of the game,

there exists a unique NE for the finite Pmax case. Figure 3.2 illustrates representative

reaction curves and NE.

In Fig. 3.2, it is observed that users inefficiently transmit with power Pmax in NE when

the outage probability objectives are not feasible, resulting in NE on the boundary

of action set. Usually, pricing functions are introduced and net utility is optimized

to avoid this inefficiency [53]. Yet, apart from bringing Pareto improvements to the

network, pricing in this type of problems may have economical implications [1] and

network owner can be added to the game formulation [12]. However, in networks

that users cooperate (say, for a common mission) without a network owner such as

ad-hoc and sensor networks, economic approaches may not make sense. In fact, the

effect of pricing is basically to decrease target SIR (and even turn off transmission)

as a function of interference [70]. We argue that it is more convenient for mentioned
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types of networks to investigate barely the decrease in target SIR with respect to

interference.

With pricing, a sharp cutoff of target SIR (corresponding to turning off) will in-

evitably occur at some point. This is not ideal when variable bit rate applications are

predominant, since they have relatively flexible demands from the network. We shall

thus modify Utility 1 so that users decrease their objectives smoothly as a reaction

to interference. In the next section, we analyze the game resulting from this modified

utility.

3.6 SMOOTH REDUCTION OF OBJECTIVES

As argued above, feasibility of the SIR (or outage) objectives depends on the power

constraint and the gain matrix (exhibited in the relationship of the Perron-Frobenius

eigenvalue and the SIR objective). To illustrate, a user may not reach its objective

under high interference and relatively low channel gain. When such cases occur, users

reach an inefficient equilibrium in game Ω1 and at least one of them forces the power

limit. In order to mitigate this inefficiency, we propose that users smoothly decrease

their objectives as a reaction to interference. In this context, we propose the objective
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reduction factor f i
d for user i, which exhibits itself in the following power iterations:

Pi(t + 1) = SIRtarf i
d(Ii(t))

Ii(t)

Gii
(3.9)

Consider the following modification in utility function (3.5):

um
i =

exp(−
SIRobjf i

d(
∑

j 6=i GjiPj)

SIRavg
i

)

Pi
(3.10)

We call the function in (3.10) Utility 2. Factor f i
d(.) are basically non-increasing

continuous functions defined from non-negative real numbers into the range [0, 1].

Note that the power update algorithm in Eqn. (3.9) can be obtained if users accept

Utility 2 as their net utility.

It can be shown that reaction curve of user i for Utility 2 is

ri(P−i) = min
{

Pmax, P̆i

}
(3.11)

where

P̆i = SIRobjf i
d(
∑

j 6=i

GjiPj)(
∑

j 6=i

Gji

Gii
Pj +

σ2

Gii
)

3.6.1 A Sufficient Condition for Existence and Uniqueness of Equilibrium

We will present a sufficient condition on functions f i
d ∀i for existence and uniqueness

of equilibrium. Our analysis will make use of some results from [42]. We begin with

a definition.

Definition 3.6.1 A real valued function f is called absolutely subhomogeneous (AS)

if the following inequalities hold for all x ∈ R and arbitrary a

e−|a|f(x) ≤ f(eax) ≤ e|a|f(x)

AS functions are basically smooth functions with rate of increase less than linear and

rate of decrease smaller than inverse of linear. The following lemma implies that

clipping an AS function yields another AS function.

Lemma 3.6.2 If f(P ) is AS, then so is min {Pmax, f(P )}.
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Proof:

For arbitrary a, we have AS function f

e−|a|f(x) ≤ f(eax) ≤ e|a|f(x)

Let g(x) = min{Pmax, f(x)} Without loss of generality, assume that a is positive.

Obviously,

g(eax) = min{Pmax, f(eax)}

≤ min{Pmax, e|a|f(x)}

≤ e|a|min{Pmax, f(x)}

To show that left inequality in the AS property is satisfied for g(x), we need to consider

four different conditions as a result of truth values of f(x) < Pmax and f(eax) < Pmax.

For example, if f(x) < Pmax and f(eax) < Pmax, then g(x) = f(x) and g(eax) =

f(eax). Hence, e−|a|g(x) ≤ g(eax) by AS assumption on f(.). It can also be verified

for other cases as follows:

If f(x) > Pmax and f(eax) < Pmax, then g(x) = Pmax and g(eax) = f(eax). So

e−|a|g(x) = e−|a|Pmax ≤ e−|a|f(x) ≤ f(eax) = g(eax).

If f(x) < Pmax and f(eax) > Pmax, then g(x) = f(x) and g(eax) = Pmax. Then,

e−|a|g(x) = e−|a|f(x) ≤ f(eax) ≤ Pmax = g(eax).

If f(x) > Pmax and f(eax) > Pmax, then g(x) = Pmax and g(eax) = Pmax. Thus,

e−|a|g(x) = e−|a|Pmax ≤ Pmax = g(eax).

It will be useful for our purposes to collect results in [42] about AS functions and

uniqueness of fixed points in the following theorem.

Theorem 3.6.3 Let P(t + 1) = F (P(t)) be MSS and let H(P) = φ(F (P)). If vector

function φ is in the form φ(x1, x2, ..., xK) = [φ1(x1), φ2(x2), ..., φK(xK)] with φi(xi)

absolutely subhomogeneous, then P(t + 1) = H(P(t)) has a unique fixed point.
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Now, let Fi(P) = SIRobj
∑

j 6=i
Gji

Gii
Pj + SIRobj σ2

Gii
. We mentioned earlier that vector

update algorithm F (P) is MSS. By means of some algebraic manipulations, we can

express P̆i in (3.11) as

P̆i = φi(Fi(P))

where φi(xi) = xif
i
d(

Gii

SIRobj xi − σ2Gii). If we choose f i
d(x) such that φi(xi) is AS,

then by using above lemma and theorem, vector power update algorithm H(P) with

Hi(P) = min
{

Pmax, P̆i

}
has a unique fixed point. We call the resulting vector power

update scheme non-monotonic power control (NMPC) and we express it as follows:

Pi(t + 1) = Hi(P(t)) (3.12)

3.6.2 Asynchronous Power Updates

In a real life implementation of non-monotonic power control, it may not be possible

to maintain synchronization among power updates. Hence, a natural generalization of

the power updates in (3.12) is the asynchronous version in which an arbitrary subset

of users S(t) ⊂ < K > update their power in each time slot:

PS(t)(t + 1) = H(P(t)) (3.13)

The definition of asynchronous updates are similar to [7,71], hence it is not given here.

Although S(t) is arbitrary in each time slot, a key assumption about the asynchronous

updates is that each user updates their power infinitely often. No user stops updating

their power level. Each user uses past information about the power levels of users and

due to infinitely often update assumption, the power levels at a specific time always

become obsolete. A set of sufficient conditionfor the convergence of asynchronous

algorithm in Eq. (3.13) is provided by Bertsekas and Tsitsiklis in [7], summarized in

the following theorem:

Theorem 3.6.4 Totally asynchronous fixed point iterations

PW (t)(t + 1) = I(P(t))

where W (t) ⊂ U is an arbitrary subset of user indices that update their power at time

t, converge to the unique fixed point of the synchronous iterations if the following two

conditions hold
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• If the sequence of sets Z(k) ⊂ [Pmin, Pmax]K such that {Z(k) ⊃ I(Z(k − 1))}

satisfy ... ⊂ Z(k) ⊂ Z(k − 1)... ⊂ Z(1) = [Pmin, Pmax]K .

• If there exist bounded sets Qi(k) ⊂ ℜ such that the set Z(k) can be expressed as

Z(k) = Q1(k) × Q2(k) × ... × QK(k)

In Theorem 3.6.4, the first condition is called Synchronous Convergence Condition

and the second one is called Box Condition.

The synchronous convergence condition guarantees the convergence of synchronized

updates, yet an update algorithm does not necessarily satisfy that condition if it is

known to converge. Actually, the convergence of non-monotonic power control is based

on AS property, which relies on contraction property with respect to the following

metric [42]:

µ(x,y) = maxi |log(xi) − log(yi)|

Hence, in the first sight, non-monotonic power updates may not satisfy the syn-

chronous convergence condition. However, a careful investigation of the problem

reveals that the synchronous convergence condition and box condition are indeed

satisfied by the non-monotonic power updates.

To show this, let Qi(1) = [0, Pmax], Z(1) =
∏K

i=1 Qi(1), Zi(1) =
∏K

j 6=i Qi(1) and the

unique fixed point be P∗. As AS functions cannot have the value zero [42], there exists

bi > 0 and corresponding Qi(2) = [bi, Pmax] such that Z(2) =
∏K

i=1 Qi(2) satisfies

Z(2) ⊃ H(Z(1)) and Z(2) ⊂ Z(1). It is also clear that Z(3) ⊇ H(Z(2)) and Z(3) ⊆

Z(2) where Z(3) =
∏K

i=1 Qi(3) and Qi(3) = [b′i, ci] with b′i = minP−j∈Zj(2) Hi(P−j)

and ci = maxP−j∈Zj(2) Hi(P−j) ≤ Pmax. Using the contraction property, for some

0 < ρ < 1, maxi |log(Hi(P)) − log(P ∗
i )| < ρ maxi |log(Pi) − log(P ∗

i )| for all P ∈ Z(2).

Since log(.) function is monotone increasing, then we have Z(3) ⊃ H(Z(2)) and

Z(3) ⊂ Z(2). We can show by an induction argument that Z(k + 1) ⊃ H(Z(k))

and Z(k + 1) ⊂ Z(k) for k > 3. Hence, the synchronous convergence and the box

conditions are satisfied. Asynchronous power updates in Eq. (3.13) converge to the

unique fixed point.
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3.6.3 Smoothing an Admission Control Type Power Control

Note that an admission control type power control scheme where transmission is

stopped when the objective is not reached corresponds to an f i
d(.) as follows

f i
d(x) =





0, x > Bi

1, otherwise.

where Bi = GiPmax

SIRobj − σ2. With such f i
d, there might not be a fixed point because

of the discontinuity. In fact, φi(xi) would be a sawtooth function. However, a good

candidate would be least AS function [42] of the sawtooth (Fig. (3.3)). It serves as a

smooth approximation to a function with abrupt changes.
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Figure 3.3: Least AS approximation for sawtooth function. Pmax = 1

After some algebra, we can show that the function fd(.) that corresponds to least AS

of sawtooth is expressed as

f i
d(x) =





1, x < Bi

(Bi
x )2, otherwise

(3.14)

With above definition of f i
d, we now consider the game Ω2

Ω2 = [< K >, {Si} , {um
i }]

Ω2 has a unique NE by construction. In fact, the modification of the utility function

brought about an improvement in users’ total utility when the original objectives are
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not feasible. They are no longer supposed to transmit with maximum power in such

cases.

In Fig. 3.4, reaction curves in the simple two transmitter-receiver interference channel

are shown for two different infeasible cases. When users hit the power limit without

reaching the objective, they prefer to decrease the objective with the rule f i
d(.). In NE,

at least one user attains objective. Note that NE is not affected by the modification

if the outage objectives are feasible. Users that could not reach their objectives in the

equilibrium of original game decrease objectives smoothly while others do not change

their objectives and still satisfy them.

P
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 , r(P

2
)

P
2
 ,

 r
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1
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P
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P
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P
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P
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Figure 3.4: Possible reaction curves for different channel gains in a two transmitter-receiver system.
Linear portion of reaction curves represent the set of power allocations in which the user attains the
SIR objective. Note that the objectives are infeasible for both cases.

3.7 A NUMERICAL EXAMPLE

Actions of Utility 1 and Utility 2 will be best illustrated in comparison with Algorithm

1, Algorithm 2 and SRA [75](in the following, we call SRA Algorithm 3). To make this

example as plain as possible, we use a simple setting containing only 5 transmitter-

receiver pairs.

In practice, channel gains depend on many factors such as distance, antenna gains,

processing gains and shadowing. Since we do not focus on a specific scenario, channel

gains will be chosen arbitrarily, with direct link gains Gii being considerably higher

than Gij i 6= j. In particular, we have a system of two clusters. Users 1, 2 and 3 form
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Figure 3.5: Evolutions of power and SIR for algorithms 1 and 2. Note that algorithm 1 in (3.1)
diverges in just a few iterations. Algorithm 2 has an equilibrium due to finite power limit. Yet, it is
inefficient as users transmit with powers nearly equal to Pmax

the first cluster; users 4 and 5 the other. We take Gij i 6= j as uniformly distributed

independent random variables between 0 and 0.1 within each cluster. Yet, cross gains

between members of different clusters are chosen as independent uniform in the range

0 and 0.01. We let direct gains be Gii = 5 ∀i ∈< K >. For compatibility, noise power

is σ2 = 0.001.

We base our choice of outage threshold on reported results in [20]. Specifically, a

threshold of 9 dB indicates an acceptable reliability (instantaneous bit error rate of ≈

10−6 in AWGN). Hence, we choose γth = 9 dB. The power limit is Pmax = 1. Outage

probability objective is Oobj = 5% and consequently SIRobj ≈ 21 dB or in normal

scale SIRobj ≈ 125. Note that the value of SIRobj is too large for AWGN channel but

it is required to guarantee an average communication quality in a Rayleigh-Rayleigh

environment.

In the simulated system, Perron-Frobenius eigenvalue of matrix A is calculated as

λPF = 0.0239, i.e. SIRobj > 1
λPF

and thus the system is not feasible.

Figures 3.5 and 3.6 show the evolutions of power and SIR values of five users when

Algorithm 1, Algorithm 2, Algorithm 3 and MNPC are performed respectively. fd(.)
i is

taken as in (3.14) for NMPC, and L = 5 for Algorithm 3 meaning that removal takes
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Figure 3.6: Evolutions of power and SIR values for Algorithm 3 and NMPC. Algorithm 3 removes
users 2,1,3 and 5 respectively so that the objective is feasible. In NMPC, users 3 and 4 reach the
objective while the others operate in a lower outage. Zig-zags are due to non-monotonic reaction
curves of users.

place in every five iterations. It should be noted that Algorithm 1 and Algorithm

3 in [75] rely on infinite power assumption. However, we restrict Algorithm 3 for

Pmax = 1. Note that Algorithm 2 is the finite power version of Algorithm 1.

It is observed from Fig. 3.5 that two users (users 3 and 4) achieve the objective in

NMPC while only one user (user 3) can hardly achieve the objective in Algorithm 2.

In contrast, SIR values obtained by users 1 and 2 is lower in NMPC. Users 3 and 4

achieves 5% outage probability while user 5 has 10%, user 1 has 30% and user 2 has

38% outage probability in equilibrium of NMPC though they originally aimed at 5%.

NMPC converges to such an equilibrium that number of users achieving the objective

increases or remains same compared to Algorithm 2. With its minimizing effect on

infeasibilities, NMPC resembles Algorithm 3 in [75] ( Fig 3.6). Algorithm 3 simply

calculates the sum of rows of matrix A in (3.7) and at each step, the user that has

the highest sum of rows is removed if there is an infeasibility. In fact, if objectives are

feasible, both Algorithm 3 and NMPC operate in the minimum total transmit power

vector.
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NMPC boosts the use of spectrum by allocating resources of the system in favor of the

user who has a potentially better channel, yet it does not remove any user. Rather,

the transfer of resources takes place smoothly so that every user can survive. However,

it is observed that NMPC acts on users much the same way as Algorithm 3, if direct

channel qualities show great variations from one user to another. That is, NMPC

nearly removes the user with too bad a channel. Intuitively, the equilibrium is in the

tail of reaction curve of a bad conditioned user (Fig. 3.4). On the other hand, since

Algorithm 3 relies on feasibility, NMPC may perform better than Algorithm 3 when

channel gains are on the same order as in the example. It is observed that user 3 is

removed by Algorithm 3 yet it achieves the SIR objective in NMPC. From SIR values

in equilibrium, we see that NMPC transfers the resources from users 1 and 2 to users

3, 4 and 5.

We also note that power consumptions of users in NMPC decrease compared to algo-

rithm 2. Algorithm 3 leads to the lowest total power among four algorithms. However,

it causes a poor use of available spectrum unlike NMPC.

3.8 CONCLUSIONS

In this chapter, we presented a distributed power control mechanism based on outage

objectives using non-monotonic and continuous reaction curves. A utility function

that captures outage objective along with power efficiency is suggested. We inves-

tigated the feasibility of objectives and existence of NE. The inefficiency due to in-

feasible cases leads to a NE on the boundary of action set. In order to mitigate the

inefficiency, we proposed to smoothly decrease objectives as a reaction to interference.

Consequently, we obtained a new distributed algorithm, namely non-monotonic power

control (NMPC), that overcomes the inefficiency by smoothly transferring resources

from advantaged users to the disadvantaged ones. In the equilibrium, number of

users that achieve the objective generally increases. The smoothness of this transfer

is determined by fd(.) function. Hence, one possible future direction for this work

may be modeling level of fairness with parameters on fd(.). One other important

issue that our work leaves open is the convergence. Convergence result for NMPC is

for synchronous updates. A natural extension would be asynchronous and stochastic
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power update schemes based on the same utility. Moreover, the deeper question to be

addressed in future work is optimization of the approach in a fading channel.
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CHAPTER 4

COOPERATIVE DISTRIBUTED POWER CONTROL

WITH SMOOTH REDUCTION OF OBJECTIVES

4.1 INTRODUCTION

The material in this chapter is submitted and is now under review [46]. The work in

this chapter has been performed as a part of the project [66].

The number of users that can be supported in a wireless network in a given bandwidth

depends highly on the rate expectations of these users, their power constraints, and

channel gains. In an interference network, depending on the number of users in the

network, the rate expectations of users can sometimes be unrealistic. And yet, these

users may prefer to lower their expectations rather than be provided no service. If the

network has a mechanism through which the transmit powers of users (therefore the

interference on each other) can be controlled, it may be possible to reach operating

points where the number of users that are supported at a satisfactory quality of service

is maximized.

There is a large body of literature on power control mechanisms. Among them, utility-

based power control algorithms play an important role, as a natural method to gen-

erate a distributed algorithm. A utility based power control algorithm basically relies

on users egoistically adjusting their own transmit power to maximize a “net utility”.

Results of such behavior can be analyzed in depth using equilibrium concepts of eco-

nomic models. It is interesting to see that the game can be set up such that the
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egoistic behavior leads to what is in effect cooperation.

Pricing schemes have been popular methods of cooperation in utility based control [3,

53, 70]. However, the prices are not appropriate for a fully distributed system since

the coefficients of prices are determined by another agent (a center). This point is

addressed in [22], where the pricing coefficients are also determined distributedly to

reach the socially optimum in an ad-hoc wireless network. Actually, prices are not

suitable for explaining the cooperation mechanism as it has economic implications and

it necessitates price collector(s) who benefit(s) from the collected amount. In [70], it

is observed that the cooperative effect of pricing is due to reduction of target SIR

value as the interference increases. Hence, pricing turns out to be an implicit method

to drive users lessen their rate objective as interference boosts. Assuming that users

in the network voluntarily cooperate, users reduce their objectives as a reaction to

interference. In this chapter, we attempt to analyze the problem directly in terms of

reactions to interference.

Smoothness of power control is important when the network wants to ensure that each

node stays in the system. This smoothness can be maintained by absolutely subhomo-

geneous [42] reactions. We can design utility functions that result in smooth reaction

curves. We will analyze a game in which reaction curves are smooth. We first provide

conditions for a unique Nash equilibrium. Then assuming that distributed nodes use

gradient based optimization, convergence of gradient based iterative algorithms are

analyzed. Lastly, the continuous time counterpart of the problem is considered and a

stability condition is established for the system.

4.1.1 Related Work

Noncooperative power control has been studied in a multitude of previous work [3,

19, 53, 57] with an emphasis on mechanism design. A common point of them is the

pricing as a punishment mechanism to alleviate inefficiency due to non-cooperative

behaviour. SIR objective reduction implication of prices are first observed in [70]
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and admission control as a result of these prices are dwelled upon. Starting from the

cooperation induced by objective reductions, Ozel et.al. [43] proposed a smooth power

control scheme that allows every user to stay in the system.

A more control theoretic approach is presented in [2] where Alpcan et.al. analyzes

a power control game based on outage probabilities in multicell wireless networks.

Defining the utility as a concave function of non-outage probability, stability conditions

of associated dynamical system and convergence conditions for gradient based iterative

power update algorithms are developed. The main goal of this chapter is to investigate

the smooth cooperative mechanism of [43] from the control theoretic perspective of [2].

The following is the organization of the rest of the chapter: Next section introduces

the system model. In §4.3, specific form of utility function is given and the role of

objective reduction factor is explained. In §4.4, existence and uniqueness conditions

for NE are given. A gradient based distributed power control algorithm in which each

user uses its own utility function is analyzed in §4.5 and the analysis of the same

algorithm, carried to continuous domain is given in §4.6. Numerical illustrations are

provided in §4.7. The chapter is concluded with an emphasis on main points in §4.8.

4.2 SYSTEM MODEL

In this chapter, we adopt mainly the same model as in Chapter 3. As once more

depicted in Fig. 4.1, we have an ad-hoc wireless network with a number of links

{i = 1, . . . , K}, each link corresponding to a distinct transmitter. In the following,

the terms transmitter, user and link will be used interchangeably. The set of link

indices will be denoted by < K >.

As before, Rayleigh-Rayleigh [26] environment is assumed, i.e., all signal and inter-

ference terms are subject to Rayleigh fading. Single user decoders are used in the

receivers and the signal to interference ratio (SIR) of user i is given as:

γi =
GiihiiPi

σ2 +
∑

j 6=i GjihjiPj
(4.1)
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Figure 4.1: The ad-hoc wireless network model: A set of interfering links

Without loss of generality, we consider that each user is subject to the power con-

straint:

Pmin ≤ Pi ≤ Pmax ∀i

The upper bound on power models physical limitations while the lower limit can

be considered as a variable system parameter (which will be discussed later in the

chapter).

Average SIR with respect to all hji is SIRavg
i :

SIRavg
i ,

GiiPi

Ii

Ii is the average interference experienced by user i

Ii =
∑

j 6=i

GjiPj + σ2

The cross channel gains and power values determine the range of interference Ii
min ≤

Ii ≤ Ii
max where Ii

min = σ2 +
∑

j 6=i GjiPmin and Ii
max = σ2 +

∑
j 6=i GjiPmax. Link i

has interference suppression Si, defined by

Si =
Gii∑
j 6=i Gji

47



Oi is the probability that a wireless link experiences outage,

Oi , Pr(γi < γth)

where γth is the minimum SIR required for communication. In Rayleigh-Rayleigh

environment, the upper bound for Oi is given here once more:

Pr(γi < γth) ≤ 1 − exp(−
γth

SIRavg
i

) (4.2)

In a wireless data network, users will have a certain tolerance to outage events: through

link or transport layer control mechanisms such as ARQ, they can ask for repetition of

lost packets, and maintain sufficient quality of service even though the channel is not

completely reliable. If utility is the eventual quality of service, one could define it in

terms of the required outage probability tolerance, as a function of average transmit

power. In the next section, the utility function will be made precise.

4.3 UTILTY FUNCTION AND OBJECTIVE REDUCTION FAC-

TOR

In game-theoretic terms, a utility function is a mapping from the action space into real

numbers ui :
∏K

j=1 Aj → R. In our distributed power control algorithms, the action

space will contain power levels used. The actual utility of a user may depend on the

type of application as well as constraints such as energy. Packet success probability

(or a function thereof) has been a popular choice of utility function, considering an

ARQ-type link layer scheme and energy efficiency as the main concern [10, 53]. This

motivates a step function or a sharply rising sigmoid of SIR as a model of utility for

constant-rate real-time applications.

Following our work reported in [43], the derivation of our utility function will be based

on each user having an outage probability objective, Oobj that it wants to stay below.

For simplicity, we assume that this target outage probability is the same for all users.

Utility is determined by the relative value of non-outage probability 1−Oi with respect
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to the objective 1 − Oobj . Given an outage objective, we can find SIRobj such that

SIRavg
i ≥ SIRobj ensures that the outage objective is reached [47]. From (3.4), we

choose SIRobj such that exp
− γth

SIRobj = 1 − Oobj . We start by the rather simplistic

utility given below:

ui = −
SIRobj

SIRavg
i

(4.3)

It can be deduced by a quick investigation that the game in which users non-cooperatively

maximize the utility in Eq. (4.3) has an inefficient NE: Each user transmits with power

Pmax in NE. Hence, a more sophisticated utility function that leads to a cooperative

mechanism is required.

In [43], we proposed that node i cooperates by reducing its SIR objective with a

factor f i
d. User i’s reaction to interfering power is shaped by f i

d(.). The factor f i
d(.) is

basically a non-increasing continuous function defined from non-negative real numbers

into the range [0, 1]. An example function f i
d(.) is illustrated in Fig.4.2. In general,

we assume that f i
d is first order differentiable except at some points, the set of which

has finite cardinality.

The concept of objective reduction factor will be central to the development of the util-

ity function here too, albeit with a difference: here, a unit price pi is subtracted from

utility to obtain a net utility. It will be observed later in the chapter although users

reduce their objectives as interference escalates, inefficiency in NE is not alleviated

unless this price term exists. The net utility function NUi is the following:

NUi(P) = −
SIRobjf i

d(Ii)

SIRavg
i

− pi (4.4)

Our net utility function employs a linear price, combined with an explicit objective

reduction factor whereby SIR objectives are effectively reduced in response to increas-

ing interference. This is akin to the approach of [3, 70] where, reduction of objectives

is not explicit, but adaptation to interference is made within a price coefficient. In

fact, if net utility were defined as below, the resulting equilibria would be identical:

NUi = −
SIRobj

SIRavg
i

−
1

f i
d(Ii)

pi (4.5)
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Figure 4.2: An example of objective reduction factor f i
d

This point will be made clearer during the analysis of reaction curves in the next sec-

tion. We will devise a distributed mechanism by setting up the power control problem

as a non-cooperative game and analyze the properties of the resulting equilibrium. In

particular, selection of f i
d functions is key to the equilibrium and dynamics of the

system. In the analysis, the following function devised from f i
d(.) plays an important

role

H i(x) = xf i
d(x)

H i(x) is continuous and piecewise continuously differentiable. Optimum values of

H i(x) will be used in the analysis, hence the following definitions are made: H i
min =

minx∈[Ii
min,Ii

max] H
i(x), H i

max = maxx∈[Ii
min,Ii

max] H
i(x), Hmax = maxi H

i
max and Hmin =

mini H
i
min.

In our analysis, the selection of f i
d will be such that the functions [Hi(x)]1/2 ∀i are

absolutely subhomogeneous, which further implies that [xf i
d(ax)]1/2 for all positive a

are absolutely subhomogeneous. Absolute subhomogeneity constitutes the basis for

unique equilibrium. We will next define absolute subhomogeneity and point important

implications of this property.
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4.3.1 Absolutely Subhomogeneous Functions

In [42], Nuzman proposed absolute subhomogeneity for power control algorithms using

a new contraction approach and a formal definition of absolute subhomogeneity is

given in definition 3.6.1 of Chp. 3. Absolutely subhomogeneous (AS) functions involve

an important sense of smoothness. The main characteristic of AS functions is small

rate of change. If the function increases, the rate of increase is less than linear and if

it decreases, its absolute rate of decrease is smaller than reciprocal of linear.

A collection of results in [42] about AS functions are presented in the next theorem.

Theorem 4.3.1 Let P(t + 1) = F (P(t)) be MSS and let H(P) = φ(F (P)). If vector

function φ is in the form φ(x1, x2, ..., xK) = [φ1(x1), φ2(x2), ..., φK(xK)] with φi(xi)

absolutely subhomogeneous, then P(t + 1) = H(P(t)) has a unique fixed point.

Theorem 4.3.1 suggests that if an AS function is applied to each component of an

MSS update algorithm, then there exists a unique fixed point of the new algorithm.

This result justifies the choice of f i
d such that Hi are AS (see [43]).

The definition of AS functions does not impose differentiability and even continuity.

Yet, continuity will be main assumption in our analysis. We present an implication of

AS property under continuity in the next lemma. The result provides a useful bound.

Lemma 4.3.2 Let g : ℜ+ → ℜ+ be a bounded continuous absolutely subhomogeneous

function and let r(x) = gn(x) for some positive integer n. Subdifferential of r, ∂r(x)

satisfies:

∂r(x) ⊂ [−
r(x)

x
,
r(x)

x
]

Proof. Assume that g(.) is differentiable at point x with a positive derivative and let

x + h = eax. For h < 0, a < 0 and for h > 0, a > 0. Using the right inequality of AS

definition, we have,
dr(x)

dx
≤ lim

a→0

(en|a| − 1)r(x)

(ea − 1)x
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Hence, provided a positive derivative,

dr(x)

dx
≤

r(x)

x

If we had a negative derivative, we can use a similar argument and left inequality of

AS definition to conclude that

dr(x)

dx
≥ −

r(x)

x

The results straightforwardly extend for points where the derivative is undefined which

can only be due to inequality of left and right limits. We use the definition of subdif-

ferential in terms of left and right derivatives and a similar treatment of the problem

yields

∂r(x) ⊂ [−
r(x)

x
,
r(x)

x
]

�

4.4 EXISTENCE AND UNIQUENESS OF NASH EQUILIBRIUM

By assumed properties on reduction factor f i
d(.), the net utility function NUi(P) in

Eq. (4.4) is continuous and piecewise continuously differentiable with respect to its

arguments. In particular, the derivative of NUi(.) with respect to Pi is continuous

while there may be discontinuities at some breaking points in the derivative of NUi

with respect to Pj , j 6= i.

The game is Ω = [U, {Si}, {NUi}] where Si = [Pmin, Pmax] and each user’s optimiza-

tion is

max
Pi∈Si

NUi(Pi,P−i) (4.6)

By direct evaluation of the second derivative, we have

∂2NUi

∂P 2
i

= −2
SIRobjIifd(Ii)

GiiP 3
i

and except some points at which derivative is not defined, we have

∂2NUi

∂PiPj
=

SIRobjGji

GiiP 2
i

[Iif
′
d(Ii) + fd(Ii)]
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Note that NUi is strictly concave with respect to its action variable Pi as ∂2NUi

∂P 2
i

< 0.

Hence, there exists a solution to each user’s optimization. Moreover, the Cartesian

product of action sets form a non-empty, compact and convex set, which guarantees

existence of a NE (due to Theorem 4.4 p.176 in [6]).

NE can be defined in terms of reaction curves. Reaction curve (or best response

strategy) of user i, ri(P−i) is defined as

ri(P−i) = max
Pi∈[Pmin,Pmax]

NUi(Pi,P−i)

NE point P∗ is such a point that P∗
i = ri(P

∗
−i) for all i. The explicit expression of

reaction curve for our particular problem is presented in the next theorem:

Theorem 4.4.1 For the net utility function defined in Eq. (4.4), the reaction curve

is

ri(P−i) = min{Pmax, max{Pmin, [
SIRobj

Gii
Iifd(Ii)]

1/2}}

Proof. Given P−i, maximum of NUi(Pi,P−i) occurs either at boundary points Pi =

Pmin, Pi = Pmax or at the point where the derivative wrt Pi is zero. Direct evaluation

of derivative of NUi yields:

∂NUi

∂Pi
=

SIRobjIifd(Ii)

GiiP 2
i

− 1

P̂i that satisfies ∂NUi
∂Pi

= 0 is

P̂i = [
SIRobj

Gii
Iifd(Ii)]

1/2

Hence,

max
Pi∈[Pmin,Pmax]

NUi(Pi,P−i) = min{Pmax, max{Pmin, P̂i}}

�

Note that the reaction curve would be the same if the utility function were defined as

in Eq. (4.5). The reaction curve in above theorem can be expressed in terms of H i(x)

as follows:

ri(P−i) = min{Pmax, max{Pmin, [
SIRobj

Gii
H i(x)]1/2}}
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In order to guarantee an inner NE, ∂NUi
∂Pi

> 0 at Pi = Pmin and ∂NUi
∂Pi

< 0 at Pi = Pmax.

As NE is the intersection of reaction curves, these necessary boundary conditions can

be expressed in terms of reaction curves. In order not to have an equilibrium on the

boundary, we must have

Pmin < ri(P−i) < Pmax

Putting the value,

Pmin < [
SIRobj

Gii
Iifd(Ii)]

1/2 < Pmax

The following two boundary conditions are assumed to hold,

Assumption 1
SIRobjH i

min

GiiP 2
min

> 1 and
SIRobjH i

max

GiiP 2
max

< 1

We state our findings about NE of the game Ω in the following theorem

Theorem 4.4.2 If boundary conditions in assumption 1 hold and if [Hi(x)]1/2 are

AS ∀i, then the game Ω has a unique inner NE.

Proof. The existence of NE is guaranteed. Uniqueness result follows from Theo-

rem 4.3.1. It is well known that Pi(t + 1) = eIi(t) =: Fi(P(t)) where e is a positive

constant, is an MSS update algorithm. After a few algebraic manipulations, one can

show that the reaction curve in Th. 4.4.1 can be expressed as

ri(P−i) = min{Pmax, max{Pmin, P̂i}}

where P̂i = vHi(
Fi(P(t))

c ) for some v > 0. Finally, AS functions are closed under

clipping operations (see Lemma 1 in [43]). Boundary conditions in assumption 1

assure that NE is not on the boundary. �

4.5 ITERATIVE POWER UPDATES AND CONVERGENCE

In this section, we will investigate certain distributed power iterations of users that

capture important properties of real applications. In particular, users are assumed to
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use a gradient based algorithm to optimize the net utility. We will first investigate con-

vergence of synchronous updates and establish sufficient conditions for convergence.

Then we will show that the same conditions are also sufficient for asynchronous up-

dates. Lastly, we will make an error sensitivity analysis and investigate convergence

of corresponding random number sequences.

Users update their power with step size ∆ as follows:

Pi(n + 1) = Pi(n) + ∆
∂NUi(P)

∂Pi
(4.7)

We consider the update algorithm I(P) with Ii(P(n)) = Pi(n + 1). In our analysis,

we will follow the framework in [2].

4.5.1 Analysis of Synchronous Updates

Let unique NE of the game be P∗. A set of functions for analysis, ci(.) : [0, 1] → ℜ

are defined as follows:

ci(τ) , τPi + (1 − τ)P ∗
i + ∆φi(τP + (1 − τ)P∗) (4.8)

where

φi(P) =
∂NUi(P)

∂Pi

We will reach a sufficient condition so that the algorithm has the contraction property

under max norm.

‖I(P) − I(P∗)‖ ≤ ρ ‖P − P∗‖

We have the following bound

|Pi − P ∗
i | = |ci(1) − ci(0)| = |

∫ 1

0

dci(τ)

dτ
dτ | ≤

∫ 1

0
|
dci(τ)

dτ
dτ | ≤ max

τ∈[0,1]
|
dci(τ)

dτ
|

Hence, in order to reach the condition, we will bound |dci(τ)
dτ |.

|
dci(τ)

dτ
| = |(1 + ∆

∂φi

∂Pi
)(Pi − P ∗

i ) + ∆
∑

j 6=i

∂φi

∂Pj
(Pj − P ∗

j )| (4.9)
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By triangle inequality,

|
dci(τ)

dτ
| ≤ |(1 + ∆

∂φi

∂Pi
)||Pi − P ∗

i | + ∆
∑

j 6=i

|
∂φi

∂Pj
||Pj − P ∗

j | (4.10)

which, in turn implies

|
dci(τ)

dτ
| ≤ (1 + ∆(

∂φi

∂Pi
+
∑

j 6=i

|
∂φi

∂Pj
|)) ‖P − P∗‖ (4.11)

provided that

∆|
∂φi(P)

∂Pi
| < 1

If ∂φi

∂Pi
+
∑

j 6=i |
∂φi

∂Pj
| < 0, then the contraction property is guaranteed. We use Lemma 4.3.2

to bound | ∂φi

∂Pj
| for j 6= i and eliminate common terms. The following condition is suf-

ficient for ρ < 1 ∑
j 6=i Gji

2
<

H i
min

Pmax

provided that

∆ <
mini GiiP

3
min

2SIRobjHmax

Note that we can obtain a bound on the stepsize ∆ by considering the boundary

conditions in assumption 1. We state our findings in the following theorem.

Theorem 4.5.1 The synchronous power update algorithm in Eq. (4.7) converges to

the unique NE P∗ if
H i

min

Ii
max

>
1

2
∀i

and

∆ <
mini GiiP

3
min

2 maxi GiiP 2
max

4.5.2 Extension to Asynchronous Updates

The convergence conditions of Bertsekas and Tsitsiklis [7] for totally asynchronous

updates, stated in the Th. 3.6.4 in Chp. 3, will be the main guide to extend the

convergence result of previous section for asynchronous updates. In Theorem 3.6.4,
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the first condition is called Synchronous Convergence Condition and the second one is

called Box Condition. Since the conditions are based on contraction property in max

norm, asynchronous version of power updates in Eq. (4.7) also converges to unique

inner NE, P∗.

Let δ(t) := ‖I(P(t)) − P∗‖ for t ≥ 1. Define Si(t) = [P∗
i − δ(t),P∗

i + δ(t)]. Then the

Cartesian product of Si(t)

S(t) = S1(t) × ... × SK(t)

S(t) satisfy the synchronous convergence condition by definition of max norm and due

to contraction property. Hence, under the same conditions given in Th. 4.7, totally

asynchronous version of gradient based power updates in Eq. (4.7) converge to the

unique inner NE by Theorem 3.6.4.

4.5.3 Error Sensitivity and Conditions for Almost Sure Convergence

In the above analysis, we assumed that users have perfect information before process-

ing and they can calculate the derivative perfectly. But, errors are involved before and

during processing in a real life application of the algorithm. In order to illustrate how

the algorithm would operate in a lossy environment, we assume that the error terms

are coalesced into a single random variable as a linear factor to the update algorithm

as follows:

P̃i(n + 1) = P̃i(n) + ζi(n)∆
∂NUi(P̃)

∂Pi
=: Ii(P̃, ζi) (4.12)

In the notation of the update algorithm, P̃i(n) is the random process representing

ith user’s power level and ζi(n) is the error random process. ζi(n) are assumed i.i.d

uniform in the interval [1 − ξ, 1 + ξ] for all n and i. We will follow a similar analysis

to the one presented for synchronous updates. In this case, the norm is

‖x‖ = max
i

E(|xi|)
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where x is the vector of random variables and E(.) is the expected value. Using the

bound obtained for deterministic Pi and ζi values, we have the following:

E(
∣∣∣Ii(P̃, ζi) − P∗

i

∣∣∣) ≤ E



∣∣∣∣1 + ζi∆

∂φi

∂Pi

∣∣∣∣ |P̃i − P ∗
i | + ζi∆

∑

j 6=i

∣∣∣∣
∂φi

∂Pj

∣∣∣∣ |P̃j − P ∗
j |




Assume that ∆(1 + ξ)B1
i < 1 where B1

i is a lower bound on
∣∣∣ ∂φi

∂Pi

∣∣∣ in [Pmin, Pmax].

Independence of ζi(n) for all n implies independence of xi(n) and ζi(n) for all n,

which in turn follows:

E(|Ii(P, ζi) − P∗
i |) ≤

(
1 + E(ζi)∆(−B1

i + (K − 1)B2
i )
)
‖P − P∗‖

where B2
i is an upper bound on

∣∣∣ ∂φi
∂Pj

∣∣∣ ∀j 6= i. In order to satisfy contraction property,

−B1
i + (K − 1)B2

i < 0

One can show that the bounds can be selected as

B1
i =

2SIRobjH i
min

GiiP 3
max

B2
i =

SIRobj maxj Gji

GiiP 2
min

Following similar steps to derive a sufficient condition as in the case for synchronous

updates, and eliminating common terms in B1
i and B2

i , a sufficient condition for

contraction property is:

P 3
max

P 2
min

<
2H i

min

(K − 1)maxj Gji
∀i

Random power updates defined in Eq. (4.12) converge to P∗ almost surely under

derived conditions. In order to show this, we will make use of a similar technique as

in [2]. Using Markov inequality first and then definition of max norm, we have:

∞∑

t=1

Pr(|Pk(t) − P∗
k| > ǫ) ≤

∞∑

t=1

E(|Pk(t) − P∗
k|)

ǫ
≤

1

ǫ

∞∑

t=1

‖P(t) − P∗‖

≤
1

ǫ

∞∑

t=1

ρt ‖P(0) − P∗‖

≤
‖P(0) − P∗‖

ǫ(1 − ρ)
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for arbirtary ǫ > 0 and ‖P(0) − P∗‖ is a non-negative constant. Pr(A) represents

the probability of event A and the last inequality follows from contraction property

(that is guaranteed by the conditions). The sequence of partial sums is bounded above

and thus convergent. From Borel-Cantelli lemma, the random update scheme in Eq.

(4.12) converges a.s. to the unique NE.

We collect overall results of the analysis in the following theorem:

Theorem 4.5.2 The stochastic power updates in Eq. (4.12) converges to the unique

NE P∗ if the following two conditions hold:

P 3
max

P 2
min

<
2H i

min

(K − 1)maxj Gji
∀i

∆ <
mini GiiP

3
min

2(1 + ξ)maxi GiiP 2
max

4.6 POWER UPDATES AS A CONTINUOUS TIME DYNAMI-

CAL SYSTEM

Consider now the iterative power updates of previous section with small slot duration

and step size ∆ tending to zero. In this case, we obtain continuous time counterpart

of unilateral utility maximization of users in Eq. (4.6). Mathematically, we now have

a dynamical system that is governed by the following differential equations:

.
Pi=

∂NUi

∂Pi
:= φi(P) ∀i (4.13)

We will investigate the stability of the system in Eq. (4.13). In particular, the notion

of stability will be global asymptotic stability in the sense of Lyapunov [28]. NE is the

candidate to be a stable point of the system as it is a solution of the nonlinear system

∂NUi
∂Pi

= 0 ∀i (as an inner NE is guaranteed). We will find sufficient condition(s) on

the stability of NE in defined dynamical system .

It should be noted that φi(P) is differentiable almost everywhere and thus it is Lips-

chitz continuous [28] although it is not differentiable at a set of points where (f i
d)

′(.)
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is possibly discontinuous. We assume (f i
d)

′(.) is not continuous at finite number of

points {dji} for all i. As the surfaces Ii = dji form a set of Lebesgue measure zero

in [Pmin, Pmax]K , φi(P) is differentiable almost everywhere. Hence, it is legitimate to

apply Lyapunov Theory.

Boundary conditions in assumption 1 immediately guarantee that the power values

Pi(t) evolve in such a way that they bounce back to inside of [Pmin, Pmax] whenever

Pi(t) = Pmin or Pi(t) = Pmax. Hence, the power levels of users always reside inside

the set [Pmin, Pmax].

A proper Lyapunov function is to be guessed now in order to establish the sufficient

conditions. A candidate Lyapunov function V : ℜK → ℜ for the system in Eq. (4.13)

is as follows

V (P) =
K∑

i=1

φ2
i (P) (4.14)

Note that V (P) is actually defined in [Pmin, Pmax]M . Since NE is inner and unique,

φi(P) = 0 ∀i if and only if P = P∗. Hence, V (P) is positive for all P other than

NE. The following condition is sufficient for stability of NE, if satisfied at points other

than NE and whenever the derivative is well defined,

.
V (P) < 0

We begin the analysis by calculating
.

V (P) and then bounding it

.
V (P) =

K∑

i=1

−2
SIRobj

GiiP 2
i

αiφ
2
i +

K∑

i=1

∑

j 6=i

2
SIRobj

GiiP 2
i

βijφiφj

where

αi :=
2f i

d(Ii)Ii

Pi

βij := Gij [Ii
df i

d(Ii)

dIi
+ f i

d(Ii)]

Using the identities βij ≤ |βij | and φ2
i + φ2

j − 2φiφj ≥ 0, and lemma 4.3.2, we have

.
V (P) ≤

(
K∑

m=1

SIRobj

GmmP 2
m

)
(−2 min

k
αk + K max

ij
|βij |)

K∑

i=1

φ2
i

We reach the following result.
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Theorem 4.6.1 A sufficient condition for global asymptotic stability of the system in

(4.13) is

Hmin

Pmax maxi,j 6=i Gji
>

K

4

Note that the interference characteristic plays a key role in the stability condition of

the system. Besides, it is inconclusive about the stability of the system if the condition

in Th. 4.6.1 is not satisfied.

4.7 NUMERICAL STUDY

In this section, we will provide examples to make the operation of the algorithms and

resultant equilibria clearer to the reader. We will first explain the grounds for selection

of the specific objective reduction factor used in the examples. Then, numerical results

will be shown.

4.7.1 Selection of Objective Reduction Factor

The functional shape of objective reduction factor f i
d reflects user’s attitude towards

utilizing network resources. If the application running on the user requires constant

performance throughout the operation, then f i
d is set to 1 for all interference levels,

and this reflects a rather non-cooperative behaviour. On the other hand, the user

behaves in cooperation with other users of the network if it decreases its objective as

the interference blows up.

Various user behaviour can be addressed by defining different f i
d. In our work, we

assume that f i
d has a specific generic form with piecewise definitions in three regions.

In particular, users are allowed to be non-cooperative up to a certain interference level

Li
1. After this level, users cooperate by means of decreasing their objectives. The rate

of decrease is bound to satisfy absolute subhomogeneity of [xf i
d(x)]1/2. An additional

constraint comes from boundary conditions. One can show that the condition on
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H i
max turns to a condition on the non-cooperative interference region

Li
1 <

GiiP
2
max

SIRobj

User i reacts to interference level higher than Li
1 by decreasing its objective. The

decreasing region of f i
d is constrained by absolute subhomogeneity assumption of

[xf i
d(x)]1/2. An optimal way of cooperation under AS assumption can be described

using least AS upper bound [42] of the reaction that decreases to zero sharply at in-

terference level Li. One can show that the decreasing region of least AS upper bound

of sharp decrease is proportional to 1/x3. The proportionality constant is determined

such that the function is continuous.

A further constraint on the decreasing region is proposed as each user must stay in

the system. User’s reaction to interference is imposed to be higher than its reaction

to the minimum interference it experiences.

H i
min = Ii

min

The region decreasing with proportion to 1
x3 stops when the reaction level reaches

H i(Ii) = Imin. The interference level Ii at which H i(Ii) = Imin is Li
2. f i

d decreases

proportional to 1/x and H i(Ii) = Imin for all Ii > L2
i . The general form of f i

d is as

follows:

f i
d(x) =





1, Ii
min < x < Li

1

(
Li

1
x )3, Li

1 < x < Li
2

(Li
1)3

(Li
2)2

1
x , Li

2 < x < Ii
max.

(4.15)

We allow the non-cooperative region to be as large as possible, hence Li
1 = GiiP

2
max

SIRobj .

Note that Li
1 are set proportional to the direct channel gain Gii. This way, users having

higher direct channel gains favor the network resources more and thus throughput

efficiency of the network is supported. For continuity, Li
2 =

Li
1

(Ii
min)1/3 . Introduction of

the third region in definition of f i
d brings a notion of fairness to the control algorithm

as it maintains users’ remaining in the system. Hence, by defining f i
d as in (4.15),

users react to interference with a balance between throughput efficiency and fairness.
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There may be exceptional cases that require modification in the general form of f i
d

given above. If Ii
min > Li

1, then f i
d would have only the 1

x decreasing region and the

reaction would be a constant for all interference levels. In this extreme case, though

user i transmits with Pmin + υ, it is not allowed to control its power and is in a sense

discarded from the system1. Another exception occurs if Ii
min < Li

1 but Ii
max < Li

2.

In this case, 1
x decreasing region does not appear. Note that the imposed condition

H i
min = Ii

min is satisfied in both cases. Possible reaction curves in several different

cases are depicted in Fig. 4.3.

Putting H i
min = Ii

min, the boundary condition becomes Ii
min >

GiiP
2
min

SIRobj , which in turn

requires

Pmin <
SIRobj

Si

Sufficient condition for synchronous convergence in Th. 4.5.1 becomes

Pmax

Pmin
< 2 +

2σ2

∑
j 6=i GjiPmin

Similarly, global asymptotic stability condition in Th. 4.5.1 turns to

Pmax

Pmin
< 4

mini
∑

j 6=i Gji

K maxi,j 6=i Gji

4.7.2 Simulation Setting and Results

We will simulate an ad-hoc network with 5 transmitter-receiver pairs. Direct and cross

channel gains vary with Rayleigh fading. As the system model can represent a wide

range of communication scenarios, we do not specify physical models about link gains

and multiple access schemes used. Keeping the generality of the model, the average

channel gains Gij are determined arbitrarily with Gii ≫ Gij for all i.

The threshold SINR is set to γth = 9 dB for all experiments. The particular value of

the threshold is chosen since it guarantees a certain communication quality2. Users’

1 Note that 0 < υ ≪ Pmin. This makes sure that the equilibrium does not lie on the boundary
2 9 dB threshold ensures BER less than 10−6 for QPSK modulation and BER is in acceptable

levels for higher order modulations. See [20].
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Figure 4.3: Possible Reaction Curves

goals are to stay below an outage probability of Oobj = 10%, which corresponds to

SIRobj = 18.7 dB or SIRobj = 75 in normal scale. As in previous chapter, the

objective SIR level is too high compared to the SIR levels needed in AWGN channel.

The reasons of this are the assumed time variations in the channel and the fact that

users aim to have an average communication quality in the varying environment.3

In the simulated system, users are capable of a suppression level of around Si = 15

dB. Note that the exact values of channel gains and noise power are not important

in terms of operation. Gii takes arbitrary value in the interval [1, 2] for all i and

exact values of Gij are chosen randomly (say distributed uniformly in a relatively

small interval than its mean value) so that around 15 dB suppression is maintained.

Throughout the simulations, we set maximum transmit power as Pmax = 1 and noise

3 Average SIR required to satisfy outage objective depends on the statistics of fading. Under
Ricean and Nakagami fading models, required average SIR turns out to be less if judiciously compared
to Rayleigh fading. See [48].

64



power as σ2 = 0.001.

In the simulated setting, maxi
∑

j 6=i Gji = 0.034, mini
∑

j 6=i Gji = 0.024, maxij Gji =

0.01, maxi Gii = 1.5 and mini Gii = 1. Interference suppression capability Si ranges

from 30 to 60. We fix Pmax = 1 for all experiments.

In the first experiment, we investigate the NE by means of convergence of iterating

reaction curves. Perron-Frobenius eigenvalue of the system is λPF = 0.0154, which

implies that SIRobj = 75 is not feasible. Actually, users can achieve a common SIR

level of at most 1
λPF

= 65 in normal scale. Transmitters optimize their utilities in each

iteration given the perfect information of other users’ power actions. In particular,

users have instantaneous access to the perfect information of congestion level at the

intended receiver and process this information to adjust its power level. Minimum

power is taken as Pmin = 0.3. Evolutions of power level of transmitters and achieved

SIR level in their corresponding receivers are shown in Fig. 4.4. Convergence is

observed in about 15 iterations.
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Figure 4.4: Evolutions of power and SIR are illustrated for Pmin = 0.3. Users have perfect knowledge
of congestion level at their intended receiver and synchronously react by changing their power levels.

In the next experiment, synchronous iterative power update algorithm in Eq. (4.7)

is simulated. Perron-Frobenius eigenvalue of the system is λPF = 0.0227. 1
λPF

= 65

in normal scale and SIRobj = 75 is not feasible. Choices of Pmin and step size ∆

determine the convergence of the update algorithm. In particular, sufficient conditions
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in Th. 4.5.1 and boundary conditions reveal an interval for Pmin:

1

2
−

σ2

∑
j 6=i Gji

< Pmin <
SIRobj

Si

It should be noted that interfering channel gains play an important role in the choice of

Pmin while direct channel gains and objective SIRobj do not appear in the constraints.

Minimum power is taken as Pmin = 0.5. The step size is chosen as ∆ = 0.05 so that

(along with the chosen value for Pmin) the synchronous convergence conditions given

in Th. 4.5.1 are satisfied. Evolutions of power and SIR are illustrated in Fig. 4.5.

Convergence is observed in about 20 steps.
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Figure 4.5: Evolutions of Power and SIR in synchronous update algorithm of Eq. (4.7) with
Pmin = 0.5 and ∆ = 0.05.

Now, in the same system as in previous experiment, we change the minimum power to

Pmin = 0.3 and ∆ = 0.01, in which case Pmin violates the convergence condition in Th.

4.5.1. However, the update algorithm is observed to converge in Fig. 4.6. Convergence

is relatively slow in this case due to smaller step size. It can be concluded that the

convergence results in Th. 4.5.1 are not necessary conditions though they provide

a useful guideline for selection of the parameters. Moreover, it turns out that the

conditions obtained for step size are necessary for invariance of iterative power update

algorithms.

Finally, we address error sensitivity of the synchronous power update scheme. System

is not feasible as Perron-Frobenius eigenvalue of the system is λPF = 0.0207. 1
λPF

= 49

in normal scale. Pmin = 0.5, ∆ = 0.05 and ξ = 0.5 are the parameters taken for the
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Figure 4.6: Evolutions of Power and SIR in synchronous update algorithm of Eq. (4.7) with
Pmin = 0.3 and ∆ = 0.01.

simulation. Note that the step size ∆ satisfies the convergence condition in Th. 4.5.2,

but Pmin does not satisfy the respective sufficient condition. Yet, in this case too, the

erroneous updates converge, as can be observed in Fig. 4.7.
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Figure 4.7: Evolutions of Power and SIR in synchronous update algorithm of Eq. (4.12) with
erroneous feedback information. Pmin = 0.5, ξ = 0.5 and ∆ = 0.05.

4.8 CONCLUSION

In this chapter, we presented a game theoretic analysis of utility based distributed

power control with smooth reactions to interference. The utility function has been

defined as a measure of relative performance with respect to rate objectives. Users

decrease their rate objectives as a reaction to interference, exhibited in the definition

of net utility by means of an objective reduction factor. This is inherently an egoistic
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cooperation mechanism which serves to improve overall network performance. Each

user’s reaction to interference is assumed to be absolutely subhomogeneous so that a

unique Nash equilibrium of the game is guaranteed. Iterative power update algorithms

based on gradient optimization techniques have been investigated and convergence

conditions have been derived. Finally, power updates are considered as the result of a

continuous time dynamic system, which is a limiting case for small step size. Sufficient

conditions for stability of the system have been established. Numerical results verify

the sufficiency of the convergence conditions of iterative algorithms, while cases are

shown exhibiting these conditions are not necessary for convergence.
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CHAPTER 5

A RESOURCE ALLOCATION APPROACH TO

BUFFER SHARING

5.1 INTRODUCTION

The work in this chapter has been performed as a part of the project [66].

Memory is a limited resource in communication devices. Although the communication,

computation and memory capabilities continuously increase, with the advance of 3G

and broadband wireless MAN, there is also a substantial increase in the demand

for bandwidth and memory. For example a typical WiMax base station serves a

metropolitan area, where hundreds of users are demanding high speed multimedia

applications. Therefore buffer management schemes have to be devised in order to get

maximum performance with limited memory space. Besides, even if there is unlimited

buffer space, limiting the space used for a communication session can be used in order

to limit the delay.

Sharing the limited buffer resources among multiple communication sessions is a prob-

lem that previously attracted interest in the context of shared-memory switches [23]

and wireline networks [25]. There are two main and opposite methods of buffer man-

agement, which are complete sharing and complete partitioning. In complete sharing

(CS), the complete memory pool can be used by all sessions. This provides a degree

of flexibility and increases the utilization factor of the buffer. On the other hand,

a high-rate session can completely occupy the memory space and cause dropping of
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some other low-rate sessions with strict delay requirements. Even if there are no strict

delay requirements, this “hogging” of the buffer by a subset of the sessions will have

detrimental effects on total throughput, and in a wireless system, limit the benefit

from multiuser diversity .

The hogging caused by the CS policy, i.e. buffer being occupied by only a subset

of the sessions, is therefore detrimental in terms of multiuser diversity, and hence

limits overall rate much below system capacity. The opposite extreme, Complete

Partitioning (CP) of the buffer, where each session is given equal amount of dedicated

memory space, could potentially solve this problem though it performs poorly for low

loads. To find a middle point in between CP and CS, it is possible to determine the

dedicated memory space according to the arrival rates and service capacities of users.

To illustrate, a larger space can be dedicated for a user with high arrival rate for

same service condition or smaller space is given to the user with lower service rate for

identical arrival conditions. This provides a QoS for the delay constrained users and

also reveals a novel trade-off between buffer utilization and multiuser diversity.
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Figure 5.1: A network with a wireless last mile: Multiple sessions sharing a finite buffer space are
taking scheduled service in a wireless downlink.
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Complete partitioning has clearer advantage over sharing under unbalanced and high

load [23]. Indeed high load is a very interesting case to consider. A multiuser downlink

may work in the overloaded regime for several reasons. Such a system typically serves

various uncoordinated users, as in fixed wireless [50] Internet access, as well as in

cellular systems. It is to be expected that sessions initiated by various user applications

do not have correct estimates of the bandwidth, that is to say transmission rate,

available to them, as the total number of sessions is dynamic, as well as the channel

itself. Under such uncertainties, operating close to instability may be preferable to

occasionally idling and not fully utilizing the tight wireless resource, as consequent

packet drops may be tolerated by higher-layer mechanisms (such as TCP). That is,

perhaps the unstable regime is a practical reality in wireless systems.

Buffer partitioning would both give individual throughput guarantees to low rate users

and also exploit multiuser diversity by keeping waiting rooms for individual sessions.

Throughput maximization has been addressed in a large body of literature: from sum-

rate maximizing schemes [31] to proportional-fair schedulers [68], and utility-based

rate allocations [37], there is a plethora of results about achieving various degrees of

complexity and fairness. It is well known that stability or 100% throughput requires

taking full advantage of server capacity and minimizing idleness. In the specific case of

a wireless node, the server is the wireless channel, and achieving its full capacity region

requires exploiting multiuser diversity, i.e., benefiting from the increasing likelihood

of a user having a very good channel condition as the number of users increases [64].

This of course requires there being a sufficient number of packets in the queues at any

time [17]. In an infinite-buffer system, there are well-known mechanisms for achieving

100% throughput, for example by a maximum-weight-matching (MaxWeight) between

queue states and channel states at any given time.

Throughput maximization problem in a finite shared buffer scenario requires handling

the problems of buffer management and scheduling jointly. Optimal buffer manage-

ment and scheduling in terms of throughput in the finite-buffer case is still an open

problem, and the suboptimality of MaxWeight was established in [55] for the same
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problem in NxN switches. It should also be noted that MaxWeight requires making

rate allocation decisions based on joint queue and channel state information. We

believe that being able to separate the rate allocation problem from the buffer man-

agement problem carries practical value, as the former is traditionally in the physical

layer and it can be cumbersome to keep physical layer algorithms informed about

queue state for especially high speed operation.

Optimal buffer partitioning can be applied in order to maximize throughput under

high load and limited buffer memory. It may be claimed that optimal buffer manage-

ment is obsolete, since higher layer mechanisms adjust arrival rate so that the system

becomes stable. However, this is not completely true because depending on the net-

work structure, response time of TCP can be on the order of seconds [29, 35], which

makes order of thousand time slots. Considering the highly varying wireless channel,

the system can easily become overloaded between congestion window updates. Opti-

mal buffer management can be used together with higher layer mechanisms in order

to better utilize wireless resources. As an example, consider the network in Figure 5.1

where there is a network terminated by a wireless last hop. The buffers at the wire-

less transmitter will need to have a sufficient number of packets to be able to exploit

multiuser diversity and operate at a timescale determined by the rate of the wireless

channel. The queue lengths here could be capped at the optimal partitioning levels.

The TCP’s that work end to end could be responsible for satisfying a long-term rate

requirement to ensure that the right number of packets is maintained.

5.1.1 Contributions

We mainly asks two questions in this chapter: (1) Given arrival and service rates, how

should we partition a finite buffer among users to maximize total throughput? (2)

How close can we get to maximum throughput if we let scheduling be done without

regard to queue state, and use optimally partitioned buffer for the resulting service

rates? In answer to the first question, an optimal iterative algorithm for allocating
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buffer space to queues based on their arrival and service rates will be derived. To

address the second question, let us describe further the model in consideration. We

consider a downlink multiuser system where N independent packet arrival processes

are separately queued to be sent by a single transmitter over a wireless channel which

can be described as a stationary stochastic process. The service model of course

depends on how the data streams are multiplexed to be transmitted. We consider two

main channel allocation mechanisms

• Case 1. Fixed channel allocation (e.g. an FDMA system with orthogonal chan-

nels, experiencing outage and possibly correlated fading.)

• Case 2. Channel-Aware Dynamic Scheduling (e.g. selecting user(s) with good

channel states at each scheduling interval. Subcases based on TDMA, MIMO

and OFDMA will be considered.)

Note that in all of the above cases, we can effectively associate a server with each queue,

which may take vacations (such as when the corresponding queue is not selected for

service, due to its channel condition). These vacations will be considered part of service

time of the corresponding head-of-line packet that needs to wait for service during that

time. As a result, service times are not independent across users. However, they will

be independent of the arrival process and the queue state of the same queue. This is

consistent with scheduling mechanisms that are queue state-blind.

5.2 OPTIMAL BUFFER PARTITIONING

In a multiple arrival multiple service finite buffer system, effective buffer management

can provide considerably good throughput performance [13, 25]. While optimality

would require a dynamic allocation of buffer space among queues in general, static al-

location, referred to as partitioning , was observed to perform very well (and is perhaps

optimal) for unbalanced and high loads [25]. It is shown in [13] that optimal policy

for two user balanced high load case is equally partitioning the available buffer for
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users. We will introduce framework in [13] and discuss implications of the framework

for unbalanced load case in the following subsection.

5.2.1 Partitioning for Unbalanced Load

Assume arrival and service processes are Poisson so that multi-dimensional Markov

chains are the tool of analysis [13]. In a system of N users with a total pool of B

buffers, the feasible set Ψ is

Ψ =

{
m = (m1, m2, ..., mN ), mi ∈ N+ :

N∑

i=1

mi ≤ B

}

A policy Ω is defined as a subset of the feasible set. Applying a policy means that

the states in that subset are allowed and remaining states in the feasible set are not

allowed. Management is done through dropping packets to prevent occurrence of the

states outside the policy region.

In the sequel, we assume policies are coordinate convex. By definition, a finite set of

integer n-tuples is coordinate convex if ((x1 − 1)+, (x2 − 1)+, ..., (xn − 1)+) is in that

set whenever (x1, x2, ..., xn) is in that set. If Ω is coordinate convex, then the packets

can not be dropped once they are allowed to wait in the buffer. It is possible to allow

push-out type policies in general [9]. However, push-out type policies are hard to

implement as it requires extra read-write operations on the memory, which degrades

the speed of operation. Hence, we restrict ourselves to the coordinate convex policies.

Optimal coordinate convex policy for N user case is not known [13]. However, some

observations about the geometry of the optimal policy can be made using the frame-

work of [13]. Any subset ω of Ψ is removable from Ω if Ω|ω is coordinate convex.

Similarly, ω′ is annexable to Ω if Ω∪ω′ is a policy. We will use following two theorems

from [13]:

Theorem 5.2.1 Let ω be removable from Ω and ω′ be annexable to Ω. Then

1. id(ω) <,=, > id(Ω) ⇐⇒ id(Ω|ω) >,=, < id(Ω)
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2. id(ω′) <,=, > id(Ω) ⇐⇒ id(Ω ∪ ω′) <,=, > id(Ω)

Here, id(.) stands for idleness probability. But, it is defined in a more general sense.

id is a function that takes each subset ω of Ψ to the interval [0, 1]. Let ρ be defined

as the load (arrival rate / service rate) and wj be defined as set of points in ω that

has jth entry zero.

id(ω) =

∑N
j=1

∑
(i1,i2,...,iN )∈ωj

∏N
k=1 ρik

k
∑

(i1,i2,...,iN )∈Ω

∏N
j=1 ρ

ij
j

Optimal policy is defined as the policy that minimizes idleness probability. There

may be many optimal policies but there is a unique maximal policy, the one which

has highest cardinality.

Theorem 5.2.2 If Ω is maximal, then

1. ω removable from Ω implies id(ω) ≤ id(Ω)

2. ω′ annexable to Ω implies id(ω′) > id(Ω)

From [13], we have for 2-user case, maximal policy Ω∗ is in the following form:

Ω∗ = {(x1, x2) ∈ I2|x1 ≤ m1, x2 ≤ m2, x1 + x2 ≤ B}

where m1 + m2 ≥ B and I = {1, 2, ..., B}.

We are interested in the evolution of Ω∗ as ρ2 increases and ρ1 is fixed. Although

partitioning may not be optimal in general, as the loads become unbalanced there is

a tendency of the optimal policy for partitioning. We will present two observations

concerning this issue.

First observation is that m2 is non-increasing as ρ2 increases. Let for some fixed ρ∗1, ρ∗2,

the maximal policy has parameters m∗
1, m∗

2 and ω′ = {(0, m∗
2 +1), (1, m∗

2 +1), ..., (B−

m∗
2 − 1, m∗

2 +1)}. Obviously, ω′ is annexable to Ω∗. We denote Ω∗(ρ∗1, ρ2) as the same

region only the loads changed. Using theorem 5.2.2 of Foschini:

id(ω′) > id(Ω∗(ρ∗1, ρ
∗
2)) (5.1)

75



If we attempt to write the explicit expression for id(ω′), we have:

id(ω′) =
ρ0

1ρ
m∗

2+1
2∑B−m∗

2−1
j=1 ρj

1ρ
m∗

2+1
2

=
1

∑B−m∗
2−1

j=0 ρj
1

(5.2)

That is, id(ω′) does not vary with ρ2. Since, idleness probability decreases as any one

of the loads increase, we have for all ρ2 > ρ∗2

id(ω′) > id(Ω∗(ρ∗1, ρ2)) (5.3)

Hence, from the two theorems of Foschini, m2 can not increase as ρ2 increases.

The second observation is that m2 decreases after some point as ρ2 increases. This is

due to the fact that idleness probability decreases as load is increased. Now, let ω′′ =

{(0, m∗
2), (1, m∗

2), ..., (B − m∗
2, m

∗
2)}. It is clear that ω′′ is removable from Ω∗(ρ∗1, ρ

∗
2).

Using the second theorem, we immediately have:

id(ω′′) ≤ id(Ω∗) (5.4)

Similar to previous analysis, id(ω′′) does not vary with ρ2. Hence, after some point in

ρ2, id(ω′′) > id(Ω∗(ρ∗1, ρ2)), which means that removing ω′′ leads to better throughput

using again both of the theorems cited from [13].

As conjectured in [13], it is possible to extend the result for multiple user case. Ac-

tually, the benefit of buffer partitioning for unbalanced load are discussed in [32, 69]

under different data and flow models. Hence, we will resort to buffer partitioning as

the management policy. Each user is assigned a portion of the available buffer budget

which fits to a resource allocation setting. In the next section, we will formulate buffer

partitioning as a resource allocation problem and develop an efficient algorithm to find

throughput-optimal buffer partitioning.

5.2.2 Partitioning as a Resource Allocation Problem

In an M/G/1/m system, throughput is a monotone increasing and concave function

of both arrival rate and buffer space for a fixed service process. Let T (λi, m) be the
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throughput at arrival rate λi with waiting room for m packets. Let ∆Ti denote the

increase in throughput provided by an increase of one in buffer space in queue i.

∆Ti(m) = T (λi, m) − T (λi, m − 1) (5.5)

Adding one more waiting room to the system always increases the throughput [4,76],

i.e ∆Ti(m) > 0. Moreover, the concavity implies diminishing returns, i.e ∆Ti(m+1) <

∆Ti(m) ∀m.

In the rest, we use the shorthand Ti(m) to mean T (λi, m). The buffer allocation that

maximizes total throughput is a solution to the following optimization problem:

max

N∑

i=1

Ti(mi) s.t. m ∈ Ψ (5.6)

Using the monotonicity and concavity of throughput function, the following algorithm

finds an optimal buffer allocation.

5.2.3 Algorithm for Maximum Total Throughput

As no user will be denied service in our model1, we must allocate a buffer space of at

least one to each user. To divide up the rest of the buffer space, we shall now propose

an iterative mechanism. The server has a total of B rooms available for N users. A

pseudo code of the algorithm for reaching an optimal buffer allocation is as follows:

1. Initially, allocate each user one waiting room, i.e. mi = 1 ∀i

2. Calculate ∆Ti(mi) for any i that has not been calculated.

3. For j ∈ arg maxi ∆Ti(mi), mj = mj + 1

4. If
∑

i mi = B then stop, otherwise go to step 2.

The algorithm greedily allocates buffers to users that yield maximum increase at each

step. We next discuss optimality and complexity of the algorithm.

1 Combining buffer allocation with admission or flow control [5] is very interesting yet outside the
scope of this thesis work.
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5.2.3.1 Optimality

An equivalent problem to the optimization problem stated in Eq. (5.6) was studied

in [58] and a similar algorithm was proposed for optimal resource allocation. Opti-

mality can be established using a contradiction argument. Assume that there is an

allocation that yields strictly greater sum of throughputs than that found by the al-

gorithm. Note that procedure of the algorithm is equivalent to finding B −N highest

numbers among all N(B −N) possible ∆Ti(mi) i = 1, 2, ..., N and m ∈ Ψ. The resul-

tant sum throughput is sum of the B−N highest ∆Ti(mi) plus the sum of throughputs

for mi = 1. Hence, existence of assumed allocation contradicts with the maximality

of B − N numbers selected by the algorithm.

5.2.3.2 Complexity

The first recursion of second step involves Θ(N) time units. Then B − N recursions

take place with a sorting based operation in each recursion. Hence, the time com-

plexity of the algorithm is Θ(N + (B − N)logN) units. Furthermore, it is argued

in [41] that another algorithm with Θ(N2(log(B −N))2) time complexity can be pro-

posed. This algorithm is based on Lagrange multipliers and it may be less complex

for B ≫ N .

Next, we consider the application of optimal buffer allocation to several settings mod-

eling the cases in Section 5.1.

5.3 APPLICATIONS

We start with a simple general setting similar to the one in [25] where queues are

assumed M/M/1/mk. Then, we investigate a model of the FDMA downlink, where

each frequency band is characterized by an outage probability, corresponding to Case

1 in Section 5.1. We state and solve joint buffer allocation and channel assignment
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problem. We then turn to a setting where users or groups of users share the channel

in time, which models Case 2. This time, the buffer allocation problem is solved for

parallel M/G/1/mk queues.

5.3.1 Parallel Channels as M/M/1/mk Queues

This is a simple model for users being given separate orthogonal channels, arrivals are

Poisson, packet lengths are exponential, and each channel has a (possibly different)

constant transmission rate.

Average throughput T and packet drop probability Pd of the M/M/1/m queue [16]

are expressed in the following equations

T (λ, ρ, m) = λ(1 −
(1 − ρ)ρm

1 − ρm+1
) (5.7)

Pd(ρ, m) =
(1 − ρ)ρm

1 − ρm+1
(5.8)

The optimal buffer allocation can yield a considerable increase in the total throughput

(see figure 5.2). Note that the percentage increase in the throughput becomes higher

as more users share the available buffer space. This is due to monotone decreasing

property of ∆Ti(m).

5.3.2 FDMA with Channel Outage

Consider a frequency division multiple access (FDMA) multi-user downlink. There

are N users, and a frequency band will be allocated to each user. Each frequency

band exhibits “outage” at random times, that is, the SNR dips below a level that

can support the (fixed) code rate being used. On every channel, the outage periods

are IID across time, and the starting times of outage events form a renewal process.

We also assume that both outage durations and the periods between outage are long

enough for hundreds of packet transmissions, such that in each state, the queue reaches

79



0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

12

14

16

%
 I
n
cr

e
a
se

Users / Buffer

t

Figure 5.2: The percentage increase in total throughput v.s. users per buffer. Optimal buffer
allocation is compared to even buffer allocation in parallel M/M/1/mi system with a total buffer of
B = 3500. There are two classes of users. 25% of users belong to first class and the remaining belongs
to the second. ρ1 = 11ρ2 = 1.1. As more users share the buffers, buffer allocation yields higher
increase in throughput.

steady-state. The probability of outage depends on the frequency band used, and not

on which user is using this channel2.

Suppose each user is allocated one of the bands in an arbitrary fashion. Since the

queue reaches steady-state in both outage and non-outage, each user’s queue is an

M/M/1/mi queue during non-outage, and is full (contains exactly mi packets) during

outage. Specifically, let queue j be served in frequency band i, whose outage proba-

bility is pout
i . At steady state in outage, the queue is full, so the stationary probability

of drop in outage is 1. In the non-outage case the packet drop probability is Pd(ρ, m).

The average packet drop probability and the throughput are therefore:

P avg
d (λ, pout, m) = (1 − pout)Pd(λ, m) + pout (5.9)

T (λ, pout, m) = λ[1 − P avg
d (λ, pout, m)] (5.10)

= (1 − pout)λ[1 − Pd(λ, m)] (5.11)

2 The channel statistics not depending on user (and hence receiver location) may correspond, for
example, to the case when the receivers are geographically clustered far away from the base station.
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The algorithm to find optimal buffer allocation can be applied with a slight modifica-

tion in this case.

∆T out
i (mi, p

out
i ) = (1 − pout

i )λi[Pd(λi, mi) − Pd(λi, mi + 1)] (5.12)

Under these assumptions, the introduction of outage channel to the problem brings

forth a new dimension in terms of optimization: Assigning the channels to users

for optimal total throughput. Channels with outage probabilities p1, p2, . . . , pN are

matched to the users in a one-to-one fashion.

Problem 1 Given λi and available channels’ outage probabilities pi, maximize
∑

i(1−

pπ(i))Ti(λi, mi) subject to
∑

i mi = M and mi ≥ 1 and π is any permutation of

i = 1, 2, ..., N .

The problem is an extended version of the resource allocation problem discussed in

section 5.2 with a combinatoric dimension. Hence, the resource allocation problem is

revisited in more detail. Since the resource parameter is discrete, analysis becomes

harder. Thus, we resort to investigate the continuous counterpart of the problem;

i.e.buffer parameter m is assumed continuous. Then, we will discuss applicability of

the analysis to the discrete problem.

Two monotone positive real functions are monotone disuniting if their difference di-

verges to infinity. Note that monotone functions have well-defined inverse functions.

In our analysis, we will use the same idea for inverses and we introduce monotone

inverse disuniting functions.

Definition 5.3.1 Monotone Inverse Disuniting Functions The pair of functions

f1 and f2 are said to be monotone inverse disuniting if

1. f1 : ℜ+ → I1 and f2 : ℜ+ → I2, I1, I2 ⊂ ℜ+ are monotone increasing with

f1(x) > f2(x) ∀x ∈ ℜ+.
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2. ∀y1, y2 ∈ I1 ∩ I2 , y1 > y2 ⇒

(f−1
2 (y1) − f−1

1 (y1)) > (f−1
2 (y2) − f−1

1 (y2))
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Figure 5.3: Monotone Inverse Disuniting Functions. The difference increases as y is increased

Now, we can state the result on the joint optimization problem:

Theorem 5.3.2 Let M be a positive constant and

S , {(x1, x2) : x1 + x2 ≤ M, x1 ≥ 1, x2 ≥ 1}

If f1, f2 are monotone inverse disuniting and α1 > α2 > 0,

max
x∈S

{α1f1(x1) + α2f2(x2)} > max
x∈S

{α1f2(x2) + α2f1(x1)}

Proof. Let Z = maxx∈S{α1f2(x2)+α2f1(x1)}, x
∗ = (x∗

1, x
∗
2) = arg maxx∈S{α1f2(x2)+

α2f1(x1)}. It is enough to show that there exists some (x∗∗
1 , x∗∗

2 ) ∈ S such that

α1f1(x
∗∗
1 ) + α2f2(x

∗∗
2 ) > Z. To show this, we will consider two cases:

1. Assume f1(x
∗
1) ≥ f2(x

∗
2). Then setting x∗∗

1 = x∗
1 and x∗∗

2 = x∗
2 and exchanging

the channels, α1f1(x
∗∗
1 ) + α2f2(x

∗∗
2 ) > Z.
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2. Assume now f1(x
∗
1) < f2(x

∗
2). Let’s exchange the channels and define x∗∗∗

1 =

f−1
1 (f2(x

∗
2)) and x∗∗∗

2 = f−1
2 (f1(x

∗
1)). Note that by definition we have α1f1(x

∗∗∗
1 )+

α2f2(x
∗∗∗
2 ) = Z. The same throughput is achieved with total buffer X∗∗∗ =

f−1
1 (f2(x

∗
2))+f−1

2 (f1(x
∗
1)). In the previous allocation, total buffer was X∗ = x∗

1+

x∗
2 = f−1

1 (f1(x
∗
1)) + f−1

2 (f2(x
∗
2)). Because of the monotone disuniting property

(and for f1(x
∗
1) < f2(x

∗
2)), we have f−1

2 (f2(x
∗
2)) − f−1

1 (f2(x
∗
2)) > f−1

2 (f1(x
∗
1)) −

f−1
1 (f1(x

∗
1)). After rearranging we get, f−1

2 (f2(x
∗
2))+f−1

1 (f1(x
∗
1)) > f−1

2 (f1(x
∗
1))+

f−1
1 (f2(x

∗
2)). This means that X∗∗∗ < X∗. The same throughput is achieved

with smaller buffer memory. Hence, there exists some allocation (x∗∗
1 , x∗∗

2 ) ∈ S

such that α1f1(x
∗∗
1 ) + α2f2(x

∗∗
2 ) > Z.

�

Corollary 1 For α1 > α2 > ... > αK > 0, and (fi, fj) ∀i < j are monotone inverse

disuniting, permutation π∗ that solves the joint optimization problem

max
π,x∈S

απ(i)fi(xi)

is the identity permutation π∗(i) = i

Proof. Assume another permutation π′(i) 6= i solves the joint optimization problem.

There exists at least two indices i1, i2 such that i1 < i2 and π′(i1) > π′(i2) so that

απ′(i1) < απ′(i2). If above theorem is applied to these two indices, it is deduced that

another permutation π
′′

with π
′′
(i1) = π′(i2) and π

′′
(i2) = π′(i1) yields better, which

is a contradiction. Hence, the identity permutation π∗(i) = i yields the joint optimal.

�

Lemma 5.3.3 For λ1 > λ2, let fi(m) = T (λi, m) i = 1, 2 as in Eqn 5.10. f1 and f2

are monotone inverse disuniting with f1(m) > f2(m) ∀m ∈ ℜ+.

Proof. The derivative w.r.t. m is −ρm+1(1−ρ) ln ρ
(1−ρm+1)2

, which is always positive. The

derivative w.r.t. ρ is 1+mρm+1−(m+1)ρm

(1−ρm+1)2
, which is also greater than zero (The nominator
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of the derivative is a convex function with minimum of zero). Therefore the first

condition is satisfied.

As for the second condition, after some rearrangement, we get f−1
i (y) =

ln
(

ρi−y

ρi(1−y)

)

ln ρi
.

Let’s define F21(y) = f−1
2 (y) − f−1

1 (y).

F21(y) =
ln
(

ρ2−y
ρ2(1−y)

)

ln ρ2
−

ln
(

ρ1−y
ρ1(1−y)

)

ln ρ1
(5.13)

F ′
21(y) = (

1

ρ1 − y
)

1

ln ρ1
− (

1

1 − y
)

1

ln ρ1
− (

1

ρ2 − y
)

1

ln ρ2
+ (

1

1 − y
)

1

ln ρ2
(5.14)

Collecting common terms once more, we get,

F ′
21(y) =

1

ln ρ2

(
ρ2 − 1

(ρ2 − y)(1 − y)

)
+

1

ln ρ1

(
ρ1 − 1

(ρ1 − y)(1 − y)

)
(5.15)

We know that y < 1 and y < ρ1, ρ2, therefore we need to check for the positivity of

the terms ρi−1
ln ρi

, i = 1, 2. For both of the cases ρi > 1 and ρi < 1, it is positive therefore

the inverse difference function F21(y) is increasing in y. Hence, the pair of functions

are monotone inverse disuniting. �

Theorem 5.3.4 Suppose λ1 > λ2 > ... > λK and pout
1 ≤ pout

2 ≤ ... ≤ pout
K . Optimal

channel allocation that solves problem 1 is π∗(i) = i.

Proof: The result immediately follows from above theorem and lemma.

In our actual problem, the arguments of functions f1 and f2 in theorem 5.3.2 are

integers. We can still let the functions be defined for positive real numbers but the

optimization is performed over integers. Then, the steps in the proof can be ap-

plied the same way in general. But there is an exceptional case in which monotone

inverse disuniting property may not be sufficient. Let f−1
1 (f2(x

∗
2)) = I1 + d1 and

f−1
2 (f1(x

∗
1)) = I2 + d2 such that Ii and di for i = 1, 2 are integer and fractional parts

of the corresponding numbers. If d1 < 0.5, d2 > 0.5, I1 + I2 = B − 1 and d1 + d2 < 1,

then a resource of amount 1− (d1 + d2) is available but integer arguments can not be

obtained by adding that amount. So, one has to decrease one of the arguments and
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increase the other. Adding the remaining fractional resource by decreasing one of the

arguments and increasing the other may not yield better total throughput.

Note that Theorem 5.3.4 implies a separation between the problems of buffer allocation

and channel assignment in this case: The optimal solution is a best-channel highest-

arrival rate allocation, i.e., channel assignment is based on arrival rate but not on

queue (buffer) state. It is of interest whether this separation can be carried on to

more general multiplexers.

5.3.3 User Selection in a Time-Varying Channel

Now, we generalize our service model to cover Case 2 in the Introduction. Here, a user,

or a subset of users, is selected at each scheduling time, based on their (combined)

achievable rate at that time. Note that the selection (or scheduling) decision does not

respect the instantaneous queue state.

For simplicity, we start with analyzing a user scheduler where only a packet of one

user is selected at a time in a multiuser wireless downlink. Selection of user is based

on channel state and the scheduling is performed at the end of service of a packet.

Packet lengths are assumed constant. The achievable rate of any user is drawn from

the same distribution, independently. Let this rate be R. The random variable R ∈

{1, 2, . . . , rmax} is described by some probability mass function pR(r). We will assume

that users have symmetric channels; more explicitly, their channel gains hi(t) are

independent memoryless random processes with the same statistics. Accordingly, if

the packet of user i has been selected for service, the service time of a packet will be

1/Ri where Ri has the same distribution as R: Ri ∼ R.

With memoryless arrivals, the individual user packet queues can be viewed as M/G/1/mi

systems. We will use Gelenbe’s approximate expression [36] for M/G/1/mi packet
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drop probability Pd.

Pd(λ, µ, m) =
λ(µ − λ)e

−2
(µ−λ)(m−1)

λa2+µs2

µ2 − λ2e
−2

(µ−λ)(m−1)

λa2+µs2

(5.16)

where a = V ar(Ta)
E(Ta)2

and s = V ar(Ts)
E(Ts)2

. Note that a = 1 for Poisson arrivals. Throughput

can be expressed in terms of Pd as follows:

T (λ, µ, m) = λ(1 − Pd(λ, µ, m)) (5.17)

It can easily be verified that throughput in (5.17) is monotone increasing with both λ

and m. Hence, the incremental buffer allocation algorithm also solves the throughput

maximization problem here.

Recall that scheduling is done without regard to queue backlog information. We, now,

consider the scheduling that takes queue states into account. It is of interest to ask

whether a separation of scheduling and buffer allocation holds here as in the parallel

channel case. Though the general problem is too complicated, we attempt to solve

the simplest version of the problem next.

Consider the buffer management problem in which service is maintained by user se-

lection over independent channels with two possible states, 0 or 1 (Fig. 5.4). Only

one packet of a user is served if that user is selected. Note that when both channels

are in state 0, service is not provided for any user. We again resort to judicious buffer

partitioning. Assume that channels are in state 0 with probability p0 (symmetric

Single−User

Transmitter

Scheduler

Channel
A(t)  A(t)

1 2

Packet

Drops
Partitioned Buffer

Figure 5.4: The model for two user joint buffer management and user scheduling in a time-varying
channel

channels) and the arrivals are Bernoulli with probability (rate) λ1 and λ2. Without
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loss of generality, let λ1 > λ2. It is sure that user 1 is scheduled when channel 1 is

in state 1 and channel 2 is in state 0 and user 2 is scheduled for the reverse case.

However, when both channels are in state 1, scheduler should select one of them. We

impose that scheduler selects user 1 with probability a given both channels are in

state 1. Accordingly, service probabilities µ1 and µ2 are expressed as follows:

µ1 = p0(1 − p0) + a(1 − p0)
2 (5.18)

µ2 = p0(1 − p0) + (1 − a)(1 − p0)
2 (5.19)

Throughput expression is the same as that for M/M/1/m:

T = λ(1 −
(λ/µ)m(1 − (λ/µ))

1 − (λ/µ)m+1
) (5.20)

Assuming that B buffers are available and treating the buffer mi as a continuous

variable, the joint buffer partitioning and scheduling problem is stated as follows:

max T1(λ1, µ1, m1) + T2(λ2, µ2, m2) (5.21)

subject to

m1 ≥ 1, m2 ≥ 1, m1 + m2 ≤ B, µ1 + µ2 ≤ Cµ1 ≥ c1, µ2 ≥ c2

where C = 2p0(1 − p0), c1 = c2 = p0(1 − p0).

Note that throughput in Eq. (5.20) is monotone increasing and concave with respect

to both m and µ. The constraint set is a compact and convex region, hence existence

of an optimum is guaranteed. Actually, uniqueness of the optimum value is also

guaranteed as KKT conditions are satisfied.

A first result about the joint optimization follows for λ1 = λ2. In this case, m∗
1 =

m∗
2 = M/2 and a = 0.5 . The exact characterization of the joint optimal seems to be

intractable but some trends can be understood via numerical observations. Numerical

results show that if λ1 > 1
p0

λ2, then a∗ = 1 (see Fig. 5.5). That is, if the average

arrival rate of user 1 is higher than a ratio times the average arrival rate of user 2,

then joint optimal scheduling is always scheduling the higher arrival rate user. For
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the arrival rates in between λ2 < λ1 < 1
p0

λ2, 0.5 ≤ a∗ ≤ 1. Actually, a∗ experiences

a sharp transition from 0.5 to 1 if available buffer B is relatively small. However, a

smooth transition occurs if B is large. See Fig. 5.6.
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Figure 5.5: The joint optimal scheduling probability a∗ in (%) is plotted with respect to (λ1, λ2)
plane. B = 20 buffers per user. P0 = 0.6 and P0 = 0.4 on the left and right plots respectively.
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Figure 5.6: The joint optimal scheduling probability a∗ in (%) is plotted with respect to (λ1, λ2)
plane. P0 = 20. B = 20 and B = 5 on the left and right plots respectively.
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5.4 SIMULATIONS

In this section, we will compare throughput performances of several joint buffer man-

agement and scheduling policies by means of simulations. In particular, queue aware

and queue blind scheduling with and without buffer partitioning will be compared in

a multiple state wireless downlink channel.

We address joint user scheduling and buffer management in the simulations. Simu-

lated user scheduling mechanisms are MaxWeight (MW), Max. Channel (MC) and

Time Division Multiplexing (TDM). MaxWeight scheduling calculates the product

of backlog and rate at each slot and selects the user that has the maximum of the

products. Note that MW scheduler relies on cross layer operation of link layer and

physical layer as it necessitates instantaneous backlog and channel state information.

Max. Channel selects the user that has the best rate. Due to discrete nature of the

rates, there may be ties, i.e. best rate can be achieved by more than one user. We

assume that the scheduler has the information of arrival rate λ and the user with

higher λ is selected in case of ties. This way, MC scheduler does not process the in-

stantaneous backlog information but rather first order statistic of the arrival process.

Hence, the cross layer operation in MW is not observed in MC. TDM scheduling, the

simplest of the three, is basically the round robin scheduling of users.

As buffer management policies, complete sharing (CS), equal partitioning (EP) and

optimal partitioning (OP) schemes are considered. CS policy allows each user to be

accommodated if there is an available space. On the other hand, EP reserves equal

buffer spaces for each user. OP policy is the one proposed in Section 5.2 with Gelenbe’s

expression used in the packet drop probability. The service rate and second order

statistic of the service process is assumed to be known to the buffer manager. Note

that packet service times are not independent in this simulation setting as packet

length is assumed fixed. However, the approximate expression of Gelenbe is still

employed. By means of extensive MATLAB simulations, Gelenbe’s formula is shown

to still approximate the drop probability.
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One may argue that the proposed scheduling and buffer partitioning assumptions rely

mainly on the idealistic assumption of Poisson arrivals. In the simulations, we will

also examine the performance of the joint policies for bursty arrivals.

5.4.1 Simulation Setting and Results

Wireless channel of users is modeled as four-state independent discrete random vari-

ables. In each state, a rate is achievable. Assuming fixed length packets, we normalize

the rate with packet length. For channel state i, i packets can be sent in each slot,

i ∈ {0, 1, 2, 3}.
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Figure 5.7: N=2 and B=5 buffers per user. x-axis represents load of user 1. ρ2 = 0.3

We simulated several joint buffer management and user scheduling policies and com-

pared their total throughput and average packet drop probability performances using

MATLAB. In each experiment, 106 time slots are simulated. In the beginning of each

slot, packets are flushed from the buffer due to the rate allocated in the previous slot

and then arrivals are accepted if the management policy allows. In Figs. 5.7 and

5.8, 2 user system with λ2 fixed and λ1 is varied in the x-axis of the plot. Channel

service capacity is µ = 0.35 pckts/slot/user. Loads and throughput are normalized

according to µ. ρ2 = 0.3 in Fig. 5.7 and ρ2 = 0.6 in Fig. 5.8. The multiuser diversity

gain is observed when TDM and MC scheduling are compared. Throughput of MW

scheduling with CS or EP is observed to outperform the others but the MC scheduling

with OP performs quite close to MW. CS policy in each scheduling has decreasing
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throughput after some load level though partitioning retains its performance. Next,
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Figure 5.8: N=2 and B=5 buffers per user. Load of user 1 is changing in the x-axis while ρ2 = 0.6

we experiment the joint policies in a 5 user downlink with unbalanced loads. The

results are shown in Fig. 5.9. MW scheduling clearly outperforms the others. MC +

OP policy comes after the MW. The advantage of optimal partitioning is observed.
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Figure 5.9: N=5 and B=5 buffer per user. A realistic unbalanced load regime: x-axis represents
load of user 1 and ρ2 = 0.2 ρ3 = 0.8, ρ4 = 0.3, ρ5 = 0.9

In the last experiment, we examine the performance of the policies under bursty

arrivals. In particular, Markovian Modulated Poisson Arrivals (MMPA) are assumed.

Throughput and packet drop probability of the joint policies are shown in Fig. 5.10.

Similar trends are observed as the Poisson case. The load level that starts to decrease

in CS policy is observed to be lower for bursty arrivals.
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Figure 5.10: The performance of buffer partitioning under MMPA with modulating Markov chain
transition probabilities equal to 0.5. Arrival rate is 0.2λ and 1.8λ according to the state of the Markov
chain.

5.5 CONCLUSION

In this chapter, we proposed an efficient suboptimal buffer management method and

showed several applications of the method to different communication scenarios. In

particular, partitioning buffers judicuously for unbalanced load according to the ar-

rival and service statistics is an effective method to boost throughput performance. We

resort to partitioning as buffer management policy. Solution of optimal buffer parti-

tioning is provided with an efficient algorithm. Then, buffer partitioning is considered

jointly with user scheduling and channel assignment problems. It is numerically shown

that using first order statistic of the arrival process along with buffer partitioning can

provide good performance improvement.
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CHAPTER 6

CONCLUSIONS AND FUTURE DIRECTIONS

In this thesis, we analyzed power control and buffer management and proposed dis-

tributed and efficient algorithms that can be applicable for different scenarios in wire-

less networks. We made use of game theory in the analysis of distributed power control

while tools of queueing theory have been employed to analyze the buffer management

problem in wireless networks.

Chapter 2 addresses energy efficient distributed power control in a wireless network

with multiple access point system. Considering multiple access points as a single access

point with multiple antennae distributed in space, users are allowed to multiplex their

data to access points. Using a game theoretic approach, utility is set as bits per Joule

and user strategies are vectors of powers in each access point direction. We show that

users transmit to a single access point in the equilibrium point of the game. This way,

usual single access point transmission gains another meaning: It is an energy-efficient

strategy for users themselves. Moreover, the tradeoff between energy and spectral

efficency is shown via modifying the utility function. It may be interesting to apply

same ideas to the same multiple access points but considered as a macrodiversity

system in this case. Message of a user is decoded jointly by using observations of all

access points. As the diversity gain is observed in the exponent of bit error ratio, a

quick investigation of the problem reveals that the sigmoidal assumption of efficiency

function holds also for this case and the multiple access point system reduces to a

single access point system.
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In Chapter 3, a smooth distributed power control mechanism is developed. In general,

equilibrium of utility based distributed power control is inefficient and externalities

such as prices are required to punish users for their selfish behaviour. Sometimes

this punishment may be so high that some users may be discarded from the system.

We developed a new externality to the utility function based on reducing objectives

as interference escalates. This reduction is rather smooth so that every user stays

in the system unlike admission control. Apart from previous work, we analyzed the

problem in terms of reactions to interference and we established sufficient conditions

for unique equilibrium in terms of functional form of reactions to interference. Actually

our new approach provides analysis of distributed actions from a practical perspective

as implementation of the algorithm just requires the reactions to interference in the

form of a lookup table on each node.

Notion of smooth reactions to interference is investigated from a control theoretic

perspective in Chp. 4. Defining utility as a function of SIR objectives, we introduce

the new externality to the utility function and net utility is obtained. Under absolute

subhomogeneity, unique Nash equilibrium is guaranteed. Then we investigated conver-

gence of gradient based power iterations and extended the analysis for asynchronous

and erroneous cases. Finally, a continuous time dynamical system as a limiting case

of iterative power updates has been analyzed.

We leave stability analysis of discrete time system open, as one of future directions of

the current thesis work. Although the stability of continuous time equivalent system

is more general, it may be interesting to investigate the stability of the discrete time

system. Since there are not straightforward techniques to establish stability for general

discrete time systems, the particular problem at hand may yield a simple analysis.

One other issue that has not been addressed in the thesis is the convergence rates of

iterative update algorithms. Although numerical results gave some feeling about the

order of convergence rates, there is no analysis presented in the thesis. Hence, explicit

analysis of convergence rates can be another future direction. The performance of

algorithms can also be analyzed taking the variation of slowly fading component of
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channel gains into account so that the effect of possibly slow convergence rate and

relatively faster channel variation is revealed. To address the dynamic channel in the

future work, the notion of smoothness can be analyzed with extended game theoretic

formulations. Strategy set of users can be the transmit power function in each joint

channel state as was done in [33]. Finally, convergence rate of the update algorithms

can also be examined in asynchronous case under certain delay models.

In chapter 5, management of finite buffer resource in a wireless downlink is addressed.

Since partitioning available buffers judiciously for each user proves to be a good policy

for high throughput performance, we attempted to solve the optimal buffer partition-

ing problem as that of a resource allocation. We proposed a fast algorithm for optimum

partitioning. It requires the first order statistic of arrival process, first and second or-

der statistic of the service process, which can be obtained by appropriate filtering.

Then, we presented several applications of the algorithm. First, we applied the algo-

rithm to parallel M/M/1/mk queues and illustrated that a considerable throughput

increase is obtained. Then, buffer partitioning is considered jointly with channel as-

signment problem and a separation result is obtained: assign higher arrival rate user

to better channel. Finally, the buffer partitioning problem is formulated jointly with

user scheduling. By means of extensive simulations, buffer partitioning is shown to

provide a good merit as a separate link layer mechanism that can operate without re-

gard to instantaneous values of varying physical layer parameters. Although complex

cross layer mechanisms such as MaxWeight scheduling achieves higher throughput

performance, our algorithm operates on disjoint layer basis and can achieve compara-

ble performance to MaxWeight. It is concluded that the benefit of cross layer design

should be revised under finite buffer assumption.

Because of practicality and comfort it brings to our lives, wireless applications are

becoming more popular day by day. Especially wireless last mile systems are deployed

in offices or in cellular communication. Data arrives from a wired source and is served

by a wireless link in the wireless last mile. Time varying nature of wireless links

makes the wireless last mile systems vulnerable to congestion. Although TCP has an

95



inherent congestion control mechanism, reaction time of the source to congestion can

be high. The optimal buffer partitioning algorithm proposed in Chp. 5 is well suited

to operate in the transient time between reactions to congestion. It can be applied as

a supporting mechanism for TCP. Buffer partitioning can also be considered together

with Active Queue Management, which are possible future extensions of the work. One

can also elaborate on the queueing theoretic side of the problem. The use of buffer

partitioning in several different arrival and service statistics can be investigated. For

example, multiple sessions with bursty MAP arrivals and deterministic service can be

analyzed. Moreover, results related to polling systems from queueing theory can be

used to analyze maximum channel wireless scheduling.
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APPENDIX A

It will be shown that

f(ĥkb∗k
p∗k)

p∗k
≥

∑
b f(γkb)∑

b pkb
∀[p11 p12 · · · p1M ] ∈ Sk (.1)

Let W = [0, Pmax]. Without loss of generality, assume k = 1 ( i.e. consider the first

user ) and b∗k = 1 ( i.e. for the first user the maximum ĥbk parameter is obtained with

base station 1 ). Hence,

ĥ11 ≥ ĥ1b ∀b ∈ {1, 2, · · · , M} (.2)

There are two cases to consider:

1. p∗11 = γ∗

ĥ11

2. p∗11 = Pmax

Assume the first case. Note that γ1b = γ1b(p11, p12, · · · , p1M ) is a function of user

1’s power strategy vector [p11 p12 · · · p1M ] given the other pij . As for b = 1, we have

∀p11 ∈ W
f(γ∗)

p∗11
≥

f [γ11(p11, p12 = 0, p13 = 0, · · · , p1M = 0)]

p11
(.3)

Then the inequality follows:

f(γ∗)

p∗11
≥

f [γ11(p11, p12, p13, · · · , p1M )]

p11
(.4)

∀[p11 p12 · · · p1M ] ∈ S1

Consider for b = 2, maximization is at either p12 = Pmax or p12 = γ∗

ĥ12
. For the latter

case, the procedure is similar to previous one. In the former case, at p12 = Pmax, then

f(γ12(p11 = 0, p12 = Pmax, p13 = 0, · · · , p1M = 0)

Pmax
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≤
f(γ∗)

p′12
≤

f(γ∗)

p∗11

for some p′12 ≥ Pmax such that p′12 = γ∗

ĥ21
, then it is obvious that p′12 ≥ Pmax ≥ p∗11.

Hence it follows ∀p12 ∈ W :

f(γ∗)

p∗11
≥

f [γ12(p11 = 0, p12, p13 = 0, · · · , p1M = 0)]

p12
(.5)

We immediately see that:

f(γ∗)

p∗11
≥

f [γ12(p11, p12, p13, · · · , p1M )]

p12
(.6)

∀[p11 p12 · · · p1M ] ∈ S1

By proceeding similarly for other base stations, the inequalities obtained in .4 and .6

can be generalized :

f(γ∗)

p∗11
≥

f [γ1b(p11, p12, p13, · · · , p1M )]

p1b
(.7)

∀[p11 p12 · · · p1M ] ∈ WMand ∀b ∈ {1, 2, · · · , M}

Converting the inequalities to

p1b

p∗11
≥

f [γ1b(p11, p12, p13, · · · , p1M )]

f(γ∗)
(.8)

∀[p11 p12 · · · p1M ] ∈ S1

and summing over b, we obtain:
∑

b p1b

p∗11
≥

∑
b f [γ1b(p11, p12, p13, · · · , p1M )]

f(γ∗)
(.9)

∀[p11 p12 · · · p1M ] ∈ S1

Converting once more, we obtain the desired result.

In the second case, p∗11 = Pmax. Using the maximality assumption of ĥ11, we observe

that p∗1b = Pmax ∀b ∈ {1, 2, · · · , M}.

f(ĥ1bp
∗
1b)

p∗1b

=
f(ĥ1bPmax)

Pmax
∀b ∈ {1, 2, · · · , M} . (.10)

Again using the maximality of ĥ11, we reach Eqn. .7. Hence, the desired result follows

for the second case.
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APPENDIX B

Best response rk(pk(t), P−k(t)) = min{pi(t), Pmax} where pi(t) is determined in two

steps as follows:

b∗i (t) = arg max
b∈B

Gp hbpi(t)∑
j 6=i hbpj(t) + σ2

b

pi(t) =
γ∗(
∑

j 6=i hb∗i (t)jpj(t) + σ2
b∗i

)

Gp hb∗i (t)i

It is sufficient to show that the update algorithm I(.) with Ii = pi(t) is a standard

algorithm.

1. The positivity of the algorithm is obvious: for all p(t) ≥ 0, pi(t + 1) > 0, i =

1, 2, ..., K.

2. The monotonicity of the algorithm follows from the fact that if px(t) > py(t)

then h̃x
b∗i (t)i(t) < h̃y

b∗i (t)i(t) for all i. Note that the base station selections for

px
i (t) and py

i (t) may be different. That is, in general bx∗
i (t+1) 6= by∗

i (t+1) for all

i. Yet the inequality always holds because of the monotone decreasing property

of h̃b∗i (t)i(t) with p(t). px
i (t+1) > py

i (t+1) for all i. Hence px(t+1) > py(t+1).

3. The scalability of the algorithm follows with a similar reasoning. Let px(t) =

αpy(t) for some α > 1. For a fixed base station ( i.e. b∗i (t) is same for all t

), scaling the powers with α leads to p1
i (t + 1) < αp2

i (t + 1). As the minimum

power requiring base station is selected, this inequality is again satisfied for all

i. Hence, px(t + 1) < py(t + 1). We conclude that the power update algorithm

is standard.
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