

Optimal Sampling and Scheduling for Remote Fusion Estimation of Correlated Wiener Processes

Aimin Li and Elif Uysal

Communications Networks Group Research Group Middle East Technical University

2025/09/19

Scan to access the PDF

Outline

- Problem Formulation
- Main Results
- Takeaways

Motivation: Goal-Oriented Communications

Scenario: Multiple Correlated Sources

Correlated Multi-Modal Data
Comming From
Heterogeneous Sensors

Distributed Sensors Observing an Overlapping Area

Cross-Platform
Situational Awareness
(Satellite-UAV-Ground)

Motivation: Goal-Oriented Communication

Variable delay due to links being unavailable

Motivation: Goal-Oriented Communication

Open Challenge: How to sample and transmit, to optimize goal-oriented application-layer performance in the presence of network delay

Prior insights (Single Source):

- Wiener process estimation^[2]: threshold policy for sampling f(change, age)
- Single-Source OU process estimation^[3]: MSE monotonic in age
- General inference: non-linear, non-monotonic performance degradation in Aol

Open problem: Multiple sources (correlated, delayed):

- Most studies assume independent multiple sources
- Heuristic metrics for correlated sources: Age of Correlated Information, etc.
- Our formulation: optimal pull-based sampling for remote joint estimation

[2] Y Sun, Y Polyanskiy, E Uysal. Sampling of the Wiener Process for Remote Estimation over a Channel with Random Delay. IEEE Transactions on Information Theory, 2019

[3] TZ Ornee, Y Sun. Sampling and remote estimation for the Ornstein-Uhlenbeck process through queues: Age of information and beyond. ACM/IEEE Transaction on Networking, 2021

Motivation: Age and Beyond

Insights from Age of Information (AoI) research

- AoI captures the freshness of information:
 Sparse Update→ Stale;
 Frequent Update→ Waste of Energy+Stale.
- AoI as a key metric whenever fresher data is more valuable.
- Age-optimal policy neither transmits at the highest possible rate nor requires the smallest end-to-end delay [1]
 (Waiting before transmitting may be efficient).

Open Challenge: Impact of AoI on goal-oriented application-layer performance remains not fully understood.

Motivation: Goal-Oriented Communications

Scenario: Multiple Correlated Sources

Correlated Multi-Modal Data
Comming From
Heterogeneous Sensors

Distributed Sensors Observing an Overlapping Area

Cross-Platform
Situational Awareness
(Satellite-UAV-Ground)

Problem Formulation

Scan me to access the PDF!

Motivation: MSE-Oriented Remote Information Fusion

Information Fusion and Estimation

Challenge: Naïve aggregation of delayed data from correlated sources may lead to redundant or misleading information.

Question: How to sample to optimize the staleness level.

System Model: Multiple Correlated Sources

Multiple Sources: Correlated Wiener Processes

Source Dynamics:

The two observed sources $W_t^{(1)}$ and $W_t^{(2)}$ are Correlated Wiener process:

Mutually Independent
Wiener Process

$$dW_t^{(1)} = dB_t^{(1)}$$

$$dW_t^{(2)} = \rho dB_t^{(1)} + \sqrt{(1 - \rho^2)} dB_t^{(2)}$$

 ρ correlation coefficient; if $\rho = 1$, $W_t^{(2)} = W_t^{(1)}$; if $\rho = 0$, $W_t^{(2)}$ is independent of $W_t^{(1)}$

System Model: Objective

Co-Design Sampler, Scheduler, and Remote Information Fusion

Objective:

• Find out the optimal sampling, scheduling, remote estimation to minimize the long-term average MSE

$$\liminf_{g,\pi,f} \sup_{T \to \infty} \frac{1}{T} \mathbb{E} \left[\int_0^T (W_t^{(1)} - \widehat{W}_t^{(1)})^2 + (W_t^{(2)} - \widehat{W}_t^{(2)})^2 dt \right]$$

System Model: Scheduling Policy Definition

Scheduler Design (Which Source to Transmit?)

Scheduling Policy π

A scheduler is a policy function that determines which source is selected for transmission.

$$a_i = \pi(\mathcal{I}_{D_{i-1}}), \quad \forall i \in \mathbb{N}$$

Here $a_i \in \{1,2\}$ is the scheduling action; $\mathcal{I}_{D_{i-1}}$ is the history before the time D_{i-1}

$$\mathcal{I}_t = \{a_j, S_j, W_{S_j, S_j}^{(a_j)}, D_j | D_j \leq t\}$$

System Model: Sampling Policy Definition

Sampler Design (When to Transmit?)

Sampling Policy *f*

A sampler is a policy function that determines when each sensor is sampled and transmitted.

$$S_i = f(\mathcal{I}_{D_{i-1}}), \quad \forall i \in \mathbb{N}$$

Here $S_i \in \mathbb{R}^+$ is the sampling time of the *i*-th transmitted packet;

System Model: Fusion Policy Definition

Remote Information Fusion

Fusion policy g

A function that determines the real-time estimate $(\widehat{W}_t^{(1)}, \widehat{W}_t^{(2)})$:

$$(\widehat{W}_t^{(1)}, \widehat{W}_t^{(2)}) = g(\mathcal{I}_t), \qquad \forall \ t \in \mathbb{R}^+$$

Scan me to access the PDF!

GOSPACE

Main Results: Separation Principle

Challenge

- These three policies are mutually coupled.
- Challenging for explicit optimal policies.
 Our work achieves explicit solutions

Separation Principles

- Optimal Remote Information Fusion
- ➤ Given any sampling and scheduling policy pair, the MMSE fusion policy is optimal.
- Optimal Scheduling Policy
- ➤ Given any sampling policy and MMSE remote fusion, the optimal scheduling policy is the Maximum Age First (MAF) scheduling policy.
- Optimal Sampling Policy
- Given the remote MMSE fusion policy and MAF scheduling policy, the optimal scheduling policy is the threshold-based Age-optimal sampling policy.

Main Results: Optimal Remote Information Fusion

Decoupled Fusion Policy

Optimal Fusion Policy given any π and f (Theorem 1):

The **MMSE** g_{MMSE} is the optimal fusion policy:

$$\widehat{W}_{t}^{(1)} = \begin{cases} W_{t-\Delta_{1,t}} & \Delta_{1,t} \leq \Delta_{2,t} \\ [G_{t,\rho}(\Delta_{1,t},\Delta_{2,t}) & Q_{t,\rho}(\Delta_{1,t},\Delta_{2,t})] \cdot \begin{bmatrix} W_{t-\Delta_{1,t}} \\ W_{t-\Delta_{2,t}} \end{bmatrix} & \Delta_{1,t} > \Delta_{2,t} \end{cases}$$
 Weighted Coefficients Weighted Sum

$$\widehat{W}_{t}^{(2)} = \begin{cases} W_{t-\Delta_{2,t}} & \Delta_{2,t} \leq \Delta_{1,t} \\ \underbrace{\left[G_{t,\rho}(\Delta_{2,t},\Delta_{1,t}) \quad Q_{t,\rho}(\Delta_{2,t},\Delta_{1,t})\right]} \cdot \underbrace{\left[W_{t-\Delta_{2,t}} \quad W_{t-\Delta_{1,t}}\right]}_{W_{t-\Delta_{1,t}}} & \Delta_{1,t} > \Delta_{2,t} \end{cases}$$

$$\text{Weighted Coefficients} \quad \text{Weighted Sum}$$

Here, $\Delta_{i,t}$ is the age of source i.

Main Results: Optimal Scheduling

Decoupled Scheduling Policy

Optimal Scheduling Policy given g_{MMSE} and f (Theorem 2):

The Maximum Age First (MAF) π_{MAF} scheduling is optimal

$$\widehat{W}_{t}^{(1)} = \begin{cases} & W_{t-\Delta_{1,t}} & \Delta_{1,t} \leq \Delta_{2,t} \\ [G_{t,\rho}(\Delta_{1,t}, \Delta_{2,t}) & Q_{t,\rho}(\Delta_{1,t}, \Delta_{2,t})] \cdot \begin{bmatrix} W_{t-\Delta_{1,t}} \\ W_{t-\Delta_{2,t}} \end{bmatrix} & \Delta_{1,t} > \Delta_{2,t} \end{cases}$$

$$\text{Weighted Sum}$$

$$\widehat{W}_{t}^{(2)} = \begin{cases} W_{t-\Delta_{2,t}} & \Delta_{2,t} \leq \Delta_{1,t} \\ [G_{t,\rho}(\Delta_{2,t}, \Delta_{1,t}) & Q_{t,\rho}(\Delta_{2,t}, \Delta_{1,t})] \cdot \begin{bmatrix} W_{t-\Delta_{2,t}} \\ W_{t-\Delta_{1,t}} \end{bmatrix} & \Delta_{1,t} > \Delta_{2,t} \end{cases}$$

Weighted Sum

Here, $\Delta_{i,t}$ is the age of source i.

Main Results: Optimal Sampling

[4] Ahmed M. Bedewy, Yin Sun, Sastry Kompella, and Ness B. Shroff. Optimal Sampling and Scheduling for Timely Status Updates in Multi-source Networks. IEEE Transactions on Information Theory, 2021

Scan me to access the PDF!

GOSPACE

Simulations Results

Insight:

- Even for correlated sources, minimizing sum-Aol is equivalent to minimizing MSE.
- As a result, Aol can serve as a surrogate for remote estimation and information fusion for Wiener Processes, no matter whether the sources are correlated.

Comparative Analysis: New Trends and Challenges

Comparsion	This Work	Arxiv Paper [5]
Objective	MSE (Not only function Age)	A General Joint Function of Ages (Age-based Inference Error)
Policies Components	Sampling & Scheduling & Fusion over Continuous Time	Scheduling over Discrete Time Slots
Channel	Random Delay	Zero Delay
Addressed Challenges	Explicit Optimal Co-Design	How to Decouple Ages for scheduling?

[5] Md Kamran Chowdhury Shisher, Vishrant Tripathi, Mung Chiang, and Christopher G. Brinton. AoI-based Scheduling of Correlated Sources for Timely Inference. Arxiv, September 25, 12025 METU)

Comparative Analysis: New Trends and Challenges

Comparsion	This Work	TMC [6]
Objective	MSE	MSE
Policy Components Channel	Sampling & Scheduling & Fusion over Continuous Time	Scheduling Only over Discrete Time Slot Zero Delay
	Delay	2010 2010,
Addressed Challenges	Explicit Optimal Co-Design	How to Schedule Correlated Sources?
Sources	Non-stationary Markov	Non-stationary Hidden Markov

[6] R. V. Ramakanth, V. Tripathi and E. Modiano. Monitoring Correlated Sources: AoI-based Scheduling is Nearly Optimal, IEEE Transaction on Mobile Computing, February, 2025 in Li and Elif Uysal (METU)

Thank you

On behalf of METU CNG https://cng-eee.metu.edu.tr/

Scan to learn more about the GO SPACE Project

