

METU

Communication Networks
Research Group
http://cng-eee.metu.edu.tr

Goal Oriented Communication for the Scale-up of MTC

Elif Uysal

Middle East Technical University (METU), Turkey

CS Distinguished Seminar Chalmers University, Sweden November 10, 2023

Where do I come from

Sensor

Our exploration of Machine Type Communication:

- 2000s: Energy Efficient Transmission Scheduling
 -Exogeneous "bursty" arrivals of data
- 2010s: Energy-harvesting, "Zero-Energy"
 - -Exogeneous "bursty" arrivals of energy
- 2015-2020: Age of Information FRESHDATA
 - "Generate-at-will"
- 2021-today: Goal-Oriented Communication
 - "Selection-from-buffer"

Communication Networks Research Group (CNG)

- •SUIT (Sustainable Urbanization through Innovative Technologies) (2022)
- •Consortium of universities, research labs, companies

General Outline

Why Goal-oriented Communication?

What are some goal-oriented KPIs that can guide the design of protocols today

Re-design of networks through these metrics

Classical Communication Systems

VS

Machine Type Communications

- Humans choose the data
- The network ensures its correct, to some extent timely delivery

Shannon's point to point communication model

- Networked applications, machine-type data.
- Real-time systems; automated decisions in a sense-compute-actuate cycle.
- Massive access e.g. IoT
- Learning for communications/communications for learning

Source: Yazar et al, 6G Vision: An ultra flexible perspective.

Transmission Problem vs Effective Communication

Recent Contributions to The Mathematical Theory of Communication

Warren Weaver

September, 1949

Claude Shannon

Warren Weaver

Foundations of the Theory of Signs

Charles W. Morris

Charles W. Morris

1.2 Three Levels of Communications Problems

Relative to the broad subject of communication, there seem to be problems at three levels. Thus it seems reasonable to ask, serially:

LEVEL A. How accurately can the symbols of communication be transmitted? (The technical problem.)

LEVEL B. How precisely do the transmitted symbols convey the desired meaning? (The semantic problem.)

LEVEL C. How effectively does the received meaning affect conduct in the desired way? (The effectiveness problem.)

Semiosis and Semiotic

- syntactics the study of the methods by which signs may be combined to form compound signs,
- 2) semantics the study of the signification of signs,
- 3) pragmatics the study of the origins, uses, and effects of signs.

The science of relation of signs to their interpreters

GAP current protocols and effective communication

Traditional protocols

Optimized for high throughput/low delay, Low loss (transmit all the data)

Real time monitoring/decision making

Goal-oriented performance criteria

MTC is Loss resilient!

e,g. irrelevant data can be dropped from queues

Future networks: Al-native

Exploit cognition introduced into the communication system for resilient and robust networking

MTC in 6G: we cannot ignore the gap

Sensing and NTN will be native in 6G

Further: Space Communications

Connection Density Air Latency (devices/km²) (ms)

Effectiveness KPI Example: Age of Information

Age is a composite measure of Throughput and Delay.

Age of Information

- A measure of freshness for an information flow
- Let u(t) be the timestamp of the newest packet that the destination has received by time t.
- The age of this flow at t is

$$\Delta(t) = t - u(t)$$

Effectiveness KPI Example: Age of Information

Remote Monitoring and Control

Automated Vehicles

Terrestrial localization and tracking

Effectiveness KPI example: Age of Information

Book Chapter:

Age of Information In Practice

[Uysal, Kaya, Baghaee, Beytur, 2023]

Conference presentations:

[Guloglu, Baghaee, Uysal 2021]

[Beytur, Baghaee, Uysal 2020]

[Beytur, Baghaee, Uysal 2019]

[Sonmez, Baghaee, Ergisi, Uysal 2018]

[Sert, Sönmez, Baghaee, Uysal 2018]

[Baghaee, Beytur, Uysal 2019]

URLLC – The Right Approach?

- high reliability (e.g., > 99.999%)
- 1 ms delay
- One "umbrella" to satisfy almost all MTC applications currently envisioned
- Same requirements to be followed in 6G?

Low Latency: Neither necessary nor sufficient!

Latency	1.1 ms	1.1 ms
Sampling period	1 ms	0.1 ms
Peak Age	2.1 ms	1.2 ms

Not sufficient!

In cyber-physical systems timeliness cannot be captured with low latency alone

Unnecessary!

- Consider eMBB and URLLC coexistence
- High rate vs intermittent critical updates
- Low latency ⇒ reserved slots ⇒ over-provisioning

Semantic communication: a data significance perspective, Uysal et al., IEEE Network 2022

End-to-end Goal-Oriented Communication Architecture

- New effectiveness measures and metrics that define them.
- Develop goal-oriented link, transport and application layer principles in concert
- Relax the exogeneous data arrival assumption
 - Non-uniform process-aware sampling.
- New communication protocol principles tailored for information flow in networked control systems.

Semantic Attribute: Relevance

- Remote Tracking from Samples sent over a network with delay
- Measurements of a process/images/video sent for remote estimation/ AI, etc
- Separate handling of sampling, encoding and transmission -> highly suboptimal
- Optimal sampling and transmission:

Generate At Will, based on Age, delay statistics, and the state of the process

[Sun Polyanskiy Uysal 2019]

Semantic Attribute: Value- Vol

- Relevance: source based
- Value: the value of the next source sample to the point of computation.
- (VoI): difference between the benefit of having this sample and the cost of its transmission.

- Vol >0 18 times out of 500 -> transmit control signal.
- Vol based (blue), periodic with same number of transmissions (red).

T. Soleymani, Value of Information Analysis in Feedback Control. Ph.D. Thesis, Technical University of Munich, 2019. 17

Semantic Attribute: Freshness & Relevance -Aoll

- Combines aging and accuracy
- E.g. application in video streaming: an AoII-based transmission policy reduces the distortion with respect to AoI-based and conventional error-based policies.

A. Maatouk, M. Assaad, T. Ephremides. The Age of Incorrect Information: an Enabler of Semantics-Empowered Communication, 2020

Semantic Attribute: Freshness & Value: QAol

 \triangleright Query Age of Information (QAoI): AoI at query instants Q_k (Chiarotti et. al. 2021)

- Pull based systems.
- Eg. Satellite IoT
 - GEO: Periodic Query instants, constant coverage
 - LEO: Intermittent connectivity with some blind slots, yet predictable query times.
 - Best to send right before query time, but perhaps allowing enough time for retransmission.

Aol Optimization

- Worse Performance
- Wasteful

QAol Optimization

- Better freshness
- Fewer transmissions

[Ildız et al 2021]

"Update-or-Wait" vs

"Pull-or-Wait"

$$\bar{g}_{opt} = \min_{\pi \in \Pi} \lim_{n \to \infty} \sup \frac{E\left[\int_{0}^{D_{n}} g(\Delta(t))dt\right]}{E[D_{n}]}$$

$$s. t. \lim_{n \to \infty} \inf \frac{1}{n} E\left[\sum_{i=1}^{n} (Y_{i} + Z_{j})\right] \ge \frac{1}{f_{max}}$$

$$\bar{h}_{opt} = \min_{\pi \in \Pi} \lim_{n \to \infty} \sup \frac{1}{n} E\left[\sum_{k=1}^{n} g(\Delta(Q_k))\right]$$

$$s. t. \lim_{n \to \infty} \inf \frac{1}{n} E\left[\sum_{i=1}^{n} (Y_i + Z_j)\right] \ge \frac{1}{f_{max}}$$

- Equal, for Poisson queries (Ildız et al 2021)
- PoW dominates (Ildız et al 2022) for
- periodic queries, or
- Constant delay
- General problem open

with the assumptions

- The penalty function g is continuous.
- Y_i and Z_j is lower and upper bounded i.e.

$$P(Y_j \in [B_L, B_U]) = 1$$
$$Z_j \in [0, M]$$

PoW dominates UoW in terms of performance

Pareto distributed transmission delays (IID with paremeters $x_{\rm m}=1$ and α)

Transmission delays are i.i.d. beta random variables with parameters (α, β) .

Selection From Buffer (Shisher & Sun 2022)

The function *h* is **task-specific** and not necessarily monotone Scheduling policy optimizes inference performance using AoI as an **intermediate parameter**.

*Shisher, M. K. C., & Sun, Y. (2022, October). How does data freshness affect real-time supervised learning?. In *Proceedings of the Twenty-Third International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing* (pp. 31-40).

Selection from Buffer (SFB)

Buffer contains the most recently sampled B packets $(X_t, X_{t-1}, \dots, X_{t-B+1})$ at any time slot t.

An optimal scheduler on the transmitter side must determine (i) when to submit a packet to the forward channel and (ii) which packet in the buffer to submit.

In case of IID transmission delay and immediate feedback, index-based threshold policy:

Figure 5: Time average inference error (MSE) vs. the scale parameter σ of discretized i.i.d. log-normal transmission time distribution for single-source scheduling (in robot state prediction task).

^{*}Shisher, M. K. C., & Sun, Y. (2022, October). How does data freshness affect real-time supervised learning?. In *Proceedings of the Twenty-Third International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing* (pp. 31-40).

SFB under variable delay [Ari, Shisher, Uysal, Sun 2023]

In this case, the solution is an index-based threshold policy where the index varies based on the scheduler's knowledge of the memory of the delay:

$$\gamma(\delta, c) = \inf_{\nu \in \mathbb{Z}^+} \frac{1}{\nu} \sum_{k=0}^{\nu-1} \mathbb{E} \left[h(\delta + k + T_{i+1}) \middle| c_i = c \right]$$

$$\alpha = p_{01} + p_{10}$$
$$p_{01} = p_{10}$$

 $\alpha=1$ implies that the forward channel is iid.

Two forward channel states 0 and 1.

As α gets away from 1, the memory increases.

Goal Oriented Communication entering products

Startup: FRESHDATA Technology

•Products and IPR development targeting LoRa Alliance, 3GPP

Satellite IoT

NTN

Terrestrial IoT

Broader Applications: Sustainable Urbanization

- •SUIT (Sustainable Urbanization through Innovative Technologies) http://suit.metu.edu.tr/
- Consortium of universities, research labs, companies
- •11 projects all spinning off from FRESHDATA

Thank you, from the CNG team

http://cng-eee.metu.edu.tr